Welcome to mirror list, hosted at ThFree Co, Russian Federation.

FillGyroid.cpp « Fill « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d6bf03ce655180ee0e72c8857acb334e1d2efd8c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#include "../ClipperUtils.hpp"
#include "../PolylineCollection.hpp"
#include "../Surface.hpp"
#include <cmath>
#include <algorithm>
#include <iostream>

#include "FillGyroid.hpp"

namespace Slic3r {

static inline double f(double x, double z_sin, double z_cos, bool vertical, bool flip)
{
    if (vertical) {
        double phase_offset = (z_cos < 0 ? M_PI : 0) + M_PI;
        double a   = sin(x + phase_offset);
        double b   = - z_cos;
        double res = z_sin * cos(x + phase_offset + (flip ? M_PI : 0.));
        double r   = sqrt(sqr(a) + sqr(b));
        return asin(a/r) + asin(res/r) + M_PI;
    }
    else {
        double phase_offset = z_sin < 0 ? M_PI : 0.;
        double a   = cos(x + phase_offset);
        double b   = - z_sin;
        double res = z_cos * sin(x + phase_offset + (flip ? 0 : M_PI));
        double r   = sqrt(sqr(a) + sqr(b));
        return (asin(a/r) + asin(res/r) + 0.5 * M_PI);
    }
}

static inline Polyline make_wave(
    const std::vector<Vec2d>& one_period, double width, double height, double offset, double scaleFactor,
    double z_cos, double z_sin, bool vertical)
{
    std::vector<Vec2d> points = one_period;
    double period = points.back()(0);
    points.pop_back();
    int n = points.size();
    do {
        points.emplace_back(Vec2d(points[points.size()-n](0) + period, points[points.size()-n](1)));
    } while (points.back()(0) < width);
    points.back()(0) = width;

    // and construct the final polyline to return:
    Polyline polyline;
    for (auto& point : points) {
        point(1) += offset;
        point(1) = clamp(0., height, double(point(1)));
        if (vertical)
            std::swap(point(0), point(1));
        polyline.points.emplace_back((point * scaleFactor).cast<coord_t>());
    }

    return polyline;
}

static std::vector<Vec2d> make_one_period(double width, double scaleFactor, double z_cos, double z_sin, bool vertical, bool flip)
{
    std::vector<Vec2d> points;
    double dx = M_PI_4; // very coarse spacing to begin with
    double limit = std::min(2*M_PI, width);
    for (double x = 0.; x < limit + EPSILON; x += dx) {  // so the last point is there too
        x = std::min(x, limit);
        points.emplace_back(Vec2d(x,f(x, z_sin,z_cos, vertical, flip)));
    }

    // now we will check all internal points and in case some are too far from the line connecting its neighbours,
    // we will add one more point on each side:
    const double tolerance = .1;
    for (unsigned int i=1;i<points.size()-1;++i) {
        auto& lp = points[i-1]; // left point
        auto& tp = points[i];   // this point
        Vec2d lrv = tp - lp;
        auto& rp = points[i+1]; // right point
        // calculate distance of the point to the line:
        double dist_mm = unscale<double>(scaleFactor) * std::abs(cross2(rp, lp) - cross2(rp - lp, tp)) / lrv.norm();
        if (dist_mm > tolerance) {                               // if the difference from straight line is more than this
            double x = 0.5f * (points[i-1](0) + points[i](0));
            points.emplace_back(Vec2d(x, f(x, z_sin, z_cos, vertical, flip)));
            x = 0.5f * (points[i+1](0) + points[i](0));
            points.emplace_back(Vec2d(x, f(x, z_sin, z_cos, vertical, flip)));
            // we added the points to the end, but need them all in order
            std::sort(points.begin(), points.end(), [](const Vec2d &lhs, const Vec2d &rhs){ return lhs < rhs; });
            // decrement i so we also check the first newly added point
            --i;
        }
    }
    return points;
}

static Polylines make_gyroid_waves(double gridZ, double density_adjusted, double line_spacing, double width, double height)
{
    const double scaleFactor = scale_(line_spacing) / density_adjusted;
 //scale factor for 5% : 8 712 388
 // 1z = 10^-6 mm ?
    const double z     = gridZ / scaleFactor;
    const double z_sin = sin(z);
    const double z_cos = cos(z);

    bool vertical = (std::abs(z_sin) <= std::abs(z_cos));
    double lower_bound = 0.;
    double upper_bound = height;
    bool flip = true;
    if (vertical) {
        flip = false;
        lower_bound = -M_PI;
        upper_bound = width - M_PI_2;
        std::swap(width,height);
    }

    std::vector<Vec2d> one_period = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip); // creates one period of the waves, so it doesn't have to be recalculated all the time
    Polylines result;

    for (double y0 = lower_bound; y0 < upper_bound+EPSILON; y0 += 2*M_PI)           // creates odd polylines
            result.emplace_back(make_wave(one_period, width, height, y0, scaleFactor, z_cos, z_sin, vertical));

    flip = !flip;                                                                   // even polylines are a bit shifted
    one_period = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip); // updates the one period sample
    for (double y0 = lower_bound + M_PI; y0 < upper_bound+EPSILON; y0 += 2*M_PI)    // creates even polylines
            result.emplace_back(make_wave(one_period, width, height, y0, scaleFactor, z_cos, z_sin, vertical));

    return result;
}

void FillGyroid::_fill_surface_single(
    const FillParams                &params, 
    unsigned int                     thickness_layers,
    const std::pair<float, Point>   &direction, 
    ExPolygon                       &expolygon, 
    Polylines                       &polylines_out)
{
    // no rotation is supported for this infill pattern (yet)
    BoundingBox bb = expolygon.contour.bounding_box();
    // Density adjusted to have a good %of weight.
    double      density_adjusted = std::max(0., params.density * 2.);
    // Distance between the gyroid waves in scaled coordinates.
    coord_t     distance = coord_t(scale_(this->spacing) / density_adjusted);

    // align bounding box to a multiple of our grid module
    bb.merge(_align_to_grid(bb.min, Point(2.*M_PI*distance, 2.*M_PI*distance)));

    // generate pattern
    Polylines   polylines = make_gyroid_waves(
        scale_(this->z),
        density_adjusted,
        this->spacing,
        ceil(bb.size()(0) / distance) + 1.,
        ceil(bb.size()(1) / distance) + 1.);
    
    // move pattern in place
    for (Polyline &polyline : polylines)
        polyline.translate(bb.min(0), bb.min(1));

    // clip pattern to boundaries
    polylines = intersection_pl(polylines, (Polygons)expolygon);

    // connect lines
    if (! params.dont_connect && ! polylines.empty()) { // prevent calling leftmost_point() on empty collections
        ExPolygon expolygon_off;
        {
            ExPolygons expolygons_off = offset_ex(expolygon, (float)SCALED_EPSILON);
            if (! expolygons_off.empty()) {
                // When expanding a polygon, the number of islands could only shrink. Therefore the offset_ex shall generate exactly one expanded island for one input island.
                assert(expolygons_off.size() == 1);
                std::swap(expolygon_off, expolygons_off.front());
            }
        }
        Polylines chained = PolylineCollection::chained_path_from(
            std::move(polylines), 
            PolylineCollection::leftmost_point(polylines), false); // reverse allowed
        bool first = true;
        for (Polyline &polyline : chained) {
            if (! first) {
                // Try to connect the lines.
                Points &pts_end = polylines_out.back().points;
                const Point &first_point = polyline.points.front();
                const Point &last_point = pts_end.back();
                // TODO: we should also check that both points are on a fill_boundary to avoid 
                // connecting paths on the boundaries of internal regions
                // TODO: avoid crossing current infill path
                if ((last_point - first_point).cast<double>().norm() <= 5 * distance && 
                    expolygon_off.contains(Line(last_point, first_point))) {
                    // Append the polyline.
                    pts_end.insert(pts_end.end(), polyline.points.begin(), polyline.points.end());
                    continue;
                }
            }
            // The lines cannot be connected.
            polylines_out.emplace_back(std::move(polyline));
            first = false;
        }
    }
}

} // namespace Slic3r