Welcome to mirror list, hosted at ThFree Co, Russian Federation.

3DScene.hpp « GUI « slic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 6d82e3bb7c0b2c87680fddf15c1603ca1c9aaa8a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
#ifndef slic3r_3DScene_hpp_
#define slic3r_3DScene_hpp_

#include "libslic3r/libslic3r.h"
#include "libslic3r/Point.hpp"
#include "libslic3r/Line.hpp"
#include "libslic3r/TriangleMesh.hpp"
#include "libslic3r/Utils.hpp"
#include "libslic3r/Geometry.hpp"

#include "GLModel.hpp"

#include <functional>
#include <optional>

#ifndef NDEBUG
#define HAS_GLSAFE
#endif // NDEBUG

#ifdef HAS_GLSAFE
    extern void glAssertRecentCallImpl(const char *file_name, unsigned int line, const char *function_name);
    inline void glAssertRecentCall() { glAssertRecentCallImpl(__FILE__, __LINE__, __FUNCTION__); }
    #define glsafe(cmd) do { cmd; glAssertRecentCallImpl(__FILE__, __LINE__, __FUNCTION__); } while (false)
    #define glcheck() do { glAssertRecentCallImpl(__FILE__, __LINE__, __FUNCTION__); } while (false)
#else // HAS_GLSAFE
    inline void glAssertRecentCall() { }
    #define glsafe(cmd) cmd
    #define glcheck()
#endif // HAS_GLSAFE

namespace Slic3r {
class SLAPrintObject;
enum  SLAPrintObjectStep : unsigned int;
class BuildVolume;
class DynamicPrintConfig;
class ExtrusionPath;
class ExtrusionMultiPath;
class ExtrusionLoop;
class ExtrusionEntity;
class ExtrusionEntityCollection;
class ModelObject;
class ModelVolume;
enum ModelInstanceEPrintVolumeState : unsigned char;

// Return appropriate color based on the ModelVolume.
std::array<float, 4> color_from_model_volume(const ModelVolume& model_volume);

// A container for interleaved arrays of 3D vertices and normals,
// possibly indexed by triangles and / or quads.
class GLIndexedVertexArray {
public:
    // Only Eigen types of Nx16 size are vectorized. This bounding box will not be vectorized.
    static_assert(sizeof(Eigen::AlignedBox<float, 3>) == 24, "Eigen::AlignedBox<float, 3> is not being vectorized, thus it does not need to be aligned");
    using BoundingBox = Eigen::AlignedBox<float, 3>;

    GLIndexedVertexArray() { m_bounding_box.setEmpty(); }
    GLIndexedVertexArray(const GLIndexedVertexArray &rhs) :
        vertices_and_normals_interleaved(rhs.vertices_and_normals_interleaved),
        triangle_indices(rhs.triangle_indices),
        quad_indices(rhs.quad_indices),
        m_bounding_box(rhs.m_bounding_box)
        { assert(! rhs.has_VBOs()); m_bounding_box.setEmpty(); }
    GLIndexedVertexArray(GLIndexedVertexArray &&rhs) :
        vertices_and_normals_interleaved(std::move(rhs.vertices_and_normals_interleaved)),
        triangle_indices(std::move(rhs.triangle_indices)),
        quad_indices(std::move(rhs.quad_indices)),
        m_bounding_box(rhs.m_bounding_box)
        { assert(! rhs.has_VBOs()); }

    ~GLIndexedVertexArray() { release_geometry(); }

    GLIndexedVertexArray& operator=(const GLIndexedVertexArray &rhs)
    {
        assert(vertices_and_normals_interleaved_VBO_id == 0);
        assert(triangle_indices_VBO_id == 0);
        assert(quad_indices_VBO_id == 0);
        assert(rhs.vertices_and_normals_interleaved_VBO_id == 0);
        assert(rhs.triangle_indices_VBO_id == 0);
        assert(rhs.quad_indices_VBO_id == 0);
        this->vertices_and_normals_interleaved 		 = rhs.vertices_and_normals_interleaved;
        this->triangle_indices                 		 = rhs.triangle_indices;
        this->quad_indices                     		 = rhs.quad_indices;
        this->m_bounding_box                   		 = rhs.m_bounding_box;
        this->vertices_and_normals_interleaved_size  = rhs.vertices_and_normals_interleaved_size;
        this->triangle_indices_size                  = rhs.triangle_indices_size;
        this->quad_indices_size                      = rhs.quad_indices_size;
        return *this;
    }

    GLIndexedVertexArray& operator=(GLIndexedVertexArray &&rhs) 
    {
        assert(vertices_and_normals_interleaved_VBO_id == 0);
        assert(triangle_indices_VBO_id == 0);
        assert(quad_indices_VBO_id == 0);
        assert(rhs.vertices_and_normals_interleaved_VBO_id == 0);
        assert(rhs.triangle_indices_VBO_id == 0);
        assert(rhs.quad_indices_VBO_id == 0);
        this->vertices_and_normals_interleaved 		 = std::move(rhs.vertices_and_normals_interleaved);
        this->triangle_indices                 		 = std::move(rhs.triangle_indices);
        this->quad_indices                     		 = std::move(rhs.quad_indices);
        this->m_bounding_box                   		 = rhs.m_bounding_box;
        this->vertices_and_normals_interleaved_size  = rhs.vertices_and_normals_interleaved_size;
        this->triangle_indices_size                  = rhs.triangle_indices_size;
        this->quad_indices_size                      = rhs.quad_indices_size;
        return *this;
    }

    // Vertices and their normals, interleaved to be used by void glInterleavedArrays(GL_N3F_V3F, 0, x)
    std::vector<float> vertices_and_normals_interleaved;
    std::vector<int>   triangle_indices;
    std::vector<int>   quad_indices;

    // When the geometry data is loaded into the graphics card as Vertex Buffer Objects,
    // the above mentioned std::vectors are cleared and the following variables keep their original length.
    size_t vertices_and_normals_interleaved_size{ 0 };
    size_t triangle_indices_size{ 0 };
    size_t quad_indices_size{ 0 };

    // IDs of the Vertex Array Objects, into which the geometry has been loaded.
    // Zero if the VBOs are not sent to GPU yet.
    unsigned int       vertices_and_normals_interleaved_VBO_id{ 0 };
    unsigned int       triangle_indices_VBO_id{ 0 };
    unsigned int       quad_indices_VBO_id{ 0 };

#if ENABLE_SMOOTH_NORMALS
    void load_mesh_full_shading(const TriangleMesh& mesh, bool smooth_normals = false);
    void load_mesh(const TriangleMesh& mesh, bool smooth_normals = false) { this->load_mesh_full_shading(mesh, smooth_normals); }
#else
    void load_mesh_full_shading(const TriangleMesh& mesh);
    void load_mesh(const TriangleMesh& mesh) { this->load_mesh_full_shading(mesh); }
#endif // ENABLE_SMOOTH_NORMALS

    void load_its_flat_shading(const indexed_triangle_set &its);

    inline bool has_VBOs() const { return vertices_and_normals_interleaved_VBO_id != 0; }

    inline void reserve(size_t sz) {
        this->vertices_and_normals_interleaved.reserve(sz * 6);
        this->triangle_indices.reserve(sz * 3);
        this->quad_indices.reserve(sz * 4);
    }

    inline void push_geometry(float x, float y, float z, float nx, float ny, float nz) {
        assert(this->vertices_and_normals_interleaved_VBO_id == 0);
        if (this->vertices_and_normals_interleaved_VBO_id != 0)
            return;

        if (this->vertices_and_normals_interleaved.size() + 6 > this->vertices_and_normals_interleaved.capacity())
            this->vertices_and_normals_interleaved.reserve(next_highest_power_of_2(this->vertices_and_normals_interleaved.size() + 6));
        this->vertices_and_normals_interleaved.emplace_back(nx);
        this->vertices_and_normals_interleaved.emplace_back(ny);
        this->vertices_and_normals_interleaved.emplace_back(nz);
        this->vertices_and_normals_interleaved.emplace_back(x);
        this->vertices_and_normals_interleaved.emplace_back(y);
        this->vertices_and_normals_interleaved.emplace_back(z);

        this->vertices_and_normals_interleaved_size = this->vertices_and_normals_interleaved.size();
        m_bounding_box.extend(Vec3f(x, y, z));
    };

    inline void push_geometry(double x, double y, double z, double nx, double ny, double nz) {
        push_geometry(float(x), float(y), float(z), float(nx), float(ny), float(nz));
    }

    template<typename Derived, typename Derived2>
    inline void push_geometry(const Eigen::MatrixBase<Derived>& p, const Eigen::MatrixBase<Derived2>& n) {
        push_geometry(float(p(0)), float(p(1)), float(p(2)), float(n(0)), float(n(1)), float(n(2)));
    }

    inline void push_triangle(int idx1, int idx2, int idx3) {
        assert(this->vertices_and_normals_interleaved_VBO_id == 0);
        if (this->vertices_and_normals_interleaved_VBO_id != 0)
            return;

        if (this->triangle_indices.size() + 3 > this->vertices_and_normals_interleaved.capacity())
            this->triangle_indices.reserve(next_highest_power_of_2(this->triangle_indices.size() + 3));
        this->triangle_indices.emplace_back(idx1);
        this->triangle_indices.emplace_back(idx2);
        this->triangle_indices.emplace_back(idx3);
        this->triangle_indices_size = this->triangle_indices.size();
    };

    inline void push_quad(int idx1, int idx2, int idx3, int idx4) {
        assert(this->vertices_and_normals_interleaved_VBO_id == 0);
        if (this->vertices_and_normals_interleaved_VBO_id != 0)
            return;

        if (this->quad_indices.size() + 4 > this->vertices_and_normals_interleaved.capacity())
            this->quad_indices.reserve(next_highest_power_of_2(this->quad_indices.size() + 4));
        this->quad_indices.emplace_back(idx1);
        this->quad_indices.emplace_back(idx2);
        this->quad_indices.emplace_back(idx3);
        this->quad_indices.emplace_back(idx4);
        this->quad_indices_size = this->quad_indices.size();
    };

    // Finalize the initialization of the geometry & indices,
    // upload the geometry and indices to OpenGL VBO objects
    // and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs.
    void finalize_geometry(bool opengl_initialized);
    // Release the geometry data, release OpenGL VBOs.
    void release_geometry();

    void render() const;
    void render(const std::pair<size_t, size_t>& tverts_range, const std::pair<size_t, size_t>& qverts_range) const;

    // Is there any geometry data stored?
    bool empty() const { return vertices_and_normals_interleaved_size == 0; }

    void clear() {
        this->vertices_and_normals_interleaved.clear();
        this->triangle_indices.clear();
        this->quad_indices.clear();
        vertices_and_normals_interleaved_size = 0;
        triangle_indices_size = 0;
        quad_indices_size = 0;
        m_bounding_box.setEmpty();
    }

    // Shrink the internal storage to tighly fit the data stored.
    void shrink_to_fit() {
        this->vertices_and_normals_interleaved.shrink_to_fit();
        this->triangle_indices.shrink_to_fit();
        this->quad_indices.shrink_to_fit();
    }

    const BoundingBox& bounding_box() const { return m_bounding_box; }

    // Return an estimate of the memory consumed by this class.
    size_t cpu_memory_used() const { return sizeof(*this) + vertices_and_normals_interleaved.capacity() * sizeof(float) + triangle_indices.capacity() * sizeof(int) + quad_indices.capacity() * sizeof(int); }
    // Return an estimate of the memory held by GPU vertex buffers.
    size_t gpu_memory_used() const
    {
    	size_t memsize = 0;
    	if (this->vertices_and_normals_interleaved_VBO_id != 0)
    		memsize += this->vertices_and_normals_interleaved_size * 4;
    	if (this->triangle_indices_VBO_id != 0)
    		memsize += this->triangle_indices_size * 4;
    	if (this->quad_indices_VBO_id != 0)
    		memsize += this->quad_indices_size * 4;
    	return memsize;
    }
    size_t total_memory_used() const { return this->cpu_memory_used() + this->gpu_memory_used(); }

private:
    BoundingBox m_bounding_box;
};

class GLVolume {
public:
    static const std::array<float, 4> SELECTED_COLOR;
    static const std::array<float, 4> HOVER_SELECT_COLOR;
    static const std::array<float, 4> HOVER_DESELECT_COLOR;
    static const std::array<float, 4> OUTSIDE_COLOR;
    static const std::array<float, 4> SELECTED_OUTSIDE_COLOR;
    static const std::array<float, 4> DISABLED_COLOR;
    static const std::array<float, 4> SLA_SUPPORT_COLOR;
    static const std::array<float, 4> SLA_PAD_COLOR;
    static const std::array<float, 4> NEUTRAL_COLOR;
    static const std::array<std::array<float, 4>, 4> MODEL_COLOR;

    enum EHoverState : unsigned char
    {
        HS_None,
        HS_Hover,
        HS_Select,
        HS_Deselect
    };

    GLVolume(float r = 1.f, float g = 1.f, float b = 1.f, float a = 1.f);
    GLVolume(const std::array<float, 4>& rgba) : GLVolume(rgba[0], rgba[1], rgba[2], rgba[3]) {}

private:
    Geometry::Transformation m_instance_transformation;
    Geometry::Transformation m_volume_transformation;

    // Shift in z required by sla supports+pad
    double        m_sla_shift_z;
    // Bounding box of this volume, in unscaled coordinates.
    std::optional<BoundingBoxf3> m_transformed_bounding_box;
    // Convex hull of the volume, if any.
    std::shared_ptr<const TriangleMesh> m_convex_hull;
    // Bounding box of this volume, in unscaled coordinates.
    std::optional<BoundingBoxf3> m_transformed_convex_hull_bounding_box;
    // Bounding box of the non sinking part of this volume, in unscaled coordinates.
    std::optional<BoundingBoxf3> m_transformed_non_sinking_bounding_box;

    class SinkingContours
    {
        static const float HalfWidth;
        GLVolume& m_parent;
        GUI::GLModel m_model;
        BoundingBoxf3 m_old_box;
        Vec3d m_shift{ Vec3d::Zero() };

    public:
        SinkingContours(GLVolume& volume) : m_parent(volume) {}
        void render();

    private:
        void update();
    };

    SinkingContours m_sinking_contours;

public:
    // Color of the triangles / quads held by this volume.
    std::array<float, 4> color;
    // Color used to render this volume.
    std::array<float, 4> render_color;

    struct CompositeID {
        CompositeID(int object_id, int volume_id, int instance_id) : object_id(object_id), volume_id(volume_id), instance_id(instance_id) {}
        CompositeID() : object_id(-1), volume_id(-1), instance_id(-1) {}
        // Object ID, which is equal to the index of the respective ModelObject in Model.objects array.
        int             object_id;
        // Volume ID, which is equal to the index of the respective ModelVolume in ModelObject.volumes array.
        // If negative, it is an index of a geometry produced by the PrintObject for the respective ModelObject,
        // and which has no associated ModelVolume in ModelObject.volumes. For example, SLA supports.
        // Volume with a negative volume_id cannot be picked independently, it will pick the associated instance.
        int             volume_id;
        // Instance ID, which is equal to the index of the respective ModelInstance in ModelObject.instances array.
        int             instance_id;
		bool operator==(const CompositeID &rhs) const { return object_id == rhs.object_id && volume_id == rhs.volume_id && instance_id == rhs.instance_id; }
		bool operator!=(const CompositeID &rhs) const { return ! (*this == rhs); }
		bool operator< (const CompositeID &rhs) const 
			{ return object_id < rhs.object_id || (object_id == rhs.object_id && (volume_id < rhs.volume_id || (volume_id == rhs.volume_id && instance_id < rhs.instance_id))); }
    };
    CompositeID         composite_id;
    // Fingerprint of the source geometry. For ModelVolumes, it is the ModelVolume::ID and ModelInstanceID, 
    // for generated volumes it is the timestamp generated by PrintState::invalidate() or PrintState::set_done(),
    // and the associated ModelInstanceID.
    // Valid geometry_id should always be positive.
    std::pair<size_t, size_t> geometry_id;
    // An ID containing the extruder ID (used to select color).
    int                 	extruder_id;

    // Various boolean flags.
    struct {
	    // Is this object selected?
	    bool                selected : 1;
	    // Is this object disabled from selection?
	    bool                disabled : 1;
	    // Is this object printable?
	    bool                printable : 1;
	    // Whether or not this volume is active for rendering
	    bool                is_active : 1;
	    // Whether or not to use this volume when applying zoom_to_volumes()
	    bool                zoom_to_volumes : 1;
	    // Wheter or not this volume is enabled for outside print volume detection in shader.
	    bool                shader_outside_printer_detection_enabled : 1;
	    // Wheter or not this volume is outside print volume.
	    bool                is_outside : 1;
	    // Wheter or not this volume has been generated from a modifier
	    bool                is_modifier : 1;
	    // Wheter or not this volume has been generated from the wipe tower
	    bool                is_wipe_tower : 1;
	    // Wheter or not this volume has been generated from an extrusion path
	    bool                is_extrusion_path : 1;
	    // Wheter or not to always render this volume using its own alpha 
	    bool                force_transparent : 1;
	    // Whether or not always use the volume's own color (not using SELECTED/HOVER/DISABLED/OUTSIDE)
	    bool                force_native_color : 1;
        // Whether or not render this volume in neutral
        bool                force_neutral_color : 1;
        // Whether or not to force rendering of sinking contours
        bool                force_sinking_contours : 1;
    };

    // Is mouse or rectangle selection over this object to select/deselect it ?
    EHoverState         	hover;

    // Interleaved triangles & normals with indexed triangles & quads.
    GLIndexedVertexArray        indexed_vertex_array;
    // Ranges of triangle and quad indices to be rendered.
    std::pair<size_t, size_t>   tverts_range;
    std::pair<size_t, size_t>   qverts_range;

    // If the qverts or tverts contain thick extrusions, then offsets keeps pointers of the starts
    // of the extrusions per layer.
    std::vector<coordf_t>       print_zs;
    // Offset into qverts & tverts, or offsets into indices stored into an OpenGL name_index_buffer.
    std::vector<size_t>         offsets;

    // Bounding box of this volume, in unscaled coordinates.
    BoundingBoxf3 bounding_box() const { 
        BoundingBoxf3 out;
        if (! this->indexed_vertex_array.bounding_box().isEmpty()) {
            out.min = this->indexed_vertex_array.bounding_box().min().cast<double>();
            out.max = this->indexed_vertex_array.bounding_box().max().cast<double>();
            out.defined = true;
        };
        return out;
    }

    void set_color(const std::array<float, 4>& rgba);
    void set_render_color(float r, float g, float b, float a);
    void set_render_color(const std::array<float, 4>& rgba);
    // Sets render color in dependence of current state
    void set_render_color();
    // set color according to model volume
    void set_color_from_model_volume(const ModelVolume& model_volume);

    const Geometry::Transformation& get_instance_transformation() const { return m_instance_transformation; }
    void set_instance_transformation(const Geometry::Transformation& transformation) { m_instance_transformation = transformation; set_bounding_boxes_as_dirty(); }

    const Vec3d& get_instance_offset() const { return m_instance_transformation.get_offset(); }
    double get_instance_offset(Axis axis) const { return m_instance_transformation.get_offset(axis); }

    void set_instance_offset(const Vec3d& offset) { m_instance_transformation.set_offset(offset); set_bounding_boxes_as_dirty(); }
    void set_instance_offset(Axis axis, double offset) { m_instance_transformation.set_offset(axis, offset); set_bounding_boxes_as_dirty(); }

    const Vec3d& get_instance_rotation() const { return m_instance_transformation.get_rotation(); }
    double get_instance_rotation(Axis axis) const { return m_instance_transformation.get_rotation(axis); }

    void set_instance_rotation(const Vec3d& rotation) { m_instance_transformation.set_rotation(rotation); set_bounding_boxes_as_dirty(); }
    void set_instance_rotation(Axis axis, double rotation) { m_instance_transformation.set_rotation(axis, rotation); set_bounding_boxes_as_dirty(); }

    Vec3d get_instance_scaling_factor() const { return m_instance_transformation.get_scaling_factor(); }
    double get_instance_scaling_factor(Axis axis) const { return m_instance_transformation.get_scaling_factor(axis); }

    void set_instance_scaling_factor(const Vec3d& scaling_factor) { m_instance_transformation.set_scaling_factor(scaling_factor); set_bounding_boxes_as_dirty(); }
    void set_instance_scaling_factor(Axis axis, double scaling_factor) { m_instance_transformation.set_scaling_factor(axis, scaling_factor); set_bounding_boxes_as_dirty(); }

    const Vec3d& get_instance_mirror() const { return m_instance_transformation.get_mirror(); }
    double get_instance_mirror(Axis axis) const { return m_instance_transformation.get_mirror(axis); }

    void set_instance_mirror(const Vec3d& mirror) { m_instance_transformation.set_mirror(mirror); set_bounding_boxes_as_dirty(); }
    void set_instance_mirror(Axis axis, double mirror) { m_instance_transformation.set_mirror(axis, mirror); set_bounding_boxes_as_dirty(); }

    const Geometry::Transformation& get_volume_transformation() const { return m_volume_transformation; }
    void set_volume_transformation(const Geometry::Transformation& transformation) { m_volume_transformation = transformation; set_bounding_boxes_as_dirty(); }

    const Vec3d& get_volume_offset() const { return m_volume_transformation.get_offset(); }
    double get_volume_offset(Axis axis) const { return m_volume_transformation.get_offset(axis); }

    void set_volume_offset(const Vec3d& offset) { m_volume_transformation.set_offset(offset); set_bounding_boxes_as_dirty(); }
    void set_volume_offset(Axis axis, double offset) { m_volume_transformation.set_offset(axis, offset); set_bounding_boxes_as_dirty(); }

    const Vec3d& get_volume_rotation() const { return m_volume_transformation.get_rotation(); }
    double get_volume_rotation(Axis axis) const { return m_volume_transformation.get_rotation(axis); }

    void set_volume_rotation(const Vec3d& rotation) { m_volume_transformation.set_rotation(rotation); set_bounding_boxes_as_dirty(); }
    void set_volume_rotation(Axis axis, double rotation) { m_volume_transformation.set_rotation(axis, rotation); set_bounding_boxes_as_dirty(); }

    const Vec3d& get_volume_scaling_factor() const { return m_volume_transformation.get_scaling_factor(); }
    double get_volume_scaling_factor(Axis axis) const { return m_volume_transformation.get_scaling_factor(axis); }

    void set_volume_scaling_factor(const Vec3d& scaling_factor) { m_volume_transformation.set_scaling_factor(scaling_factor); set_bounding_boxes_as_dirty(); }
    void set_volume_scaling_factor(Axis axis, double scaling_factor) { m_volume_transformation.set_scaling_factor(axis, scaling_factor); set_bounding_boxes_as_dirty(); }

    const Vec3d& get_volume_mirror() const { return m_volume_transformation.get_mirror(); }
    double get_volume_mirror(Axis axis) const { return m_volume_transformation.get_mirror(axis); }

    void set_volume_mirror(const Vec3d& mirror) { m_volume_transformation.set_mirror(mirror); set_bounding_boxes_as_dirty(); }
    void set_volume_mirror(Axis axis, double mirror) { m_volume_transformation.set_mirror(axis, mirror); set_bounding_boxes_as_dirty(); }
     
    double get_sla_shift_z() const { return m_sla_shift_z; }
    void set_sla_shift_z(double z) { m_sla_shift_z = z; }

    void set_convex_hull(std::shared_ptr<const TriangleMesh> convex_hull) { m_convex_hull = std::move(convex_hull); }
    void set_convex_hull(const TriangleMesh &convex_hull) { m_convex_hull = std::make_shared<const TriangleMesh>(convex_hull); }
    void set_convex_hull(TriangleMesh &&convex_hull) { m_convex_hull = std::make_shared<const TriangleMesh>(std::move(convex_hull)); }

    int                 object_idx() const { return this->composite_id.object_id; }
    int                 volume_idx() const { return this->composite_id.volume_id; }
    int                 instance_idx() const { return this->composite_id.instance_id; }

    Transform3d         world_matrix() const;
    bool                is_left_handed() const;

    const BoundingBoxf3& transformed_bounding_box() const;
    // non-caching variant
    BoundingBoxf3        transformed_convex_hull_bounding_box(const Transform3d &trafo) const;
    // caching variant
    const BoundingBoxf3& transformed_convex_hull_bounding_box() const;
    // non-caching variant
    BoundingBoxf3        transformed_non_sinking_bounding_box(const Transform3d& trafo) const;
    // caching variant
    const BoundingBoxf3& transformed_non_sinking_bounding_box() const;
    // convex hull
    const TriangleMesh*  convex_hull() const { return m_convex_hull.get(); }

    bool                empty() const { return this->indexed_vertex_array.empty(); }

    void                set_range(double low, double high);

    void                render() const;

    void                finalize_geometry(bool opengl_initialized) { this->indexed_vertex_array.finalize_geometry(opengl_initialized); }
    void                release_geometry() { this->indexed_vertex_array.release_geometry(); }

    void                set_bounding_boxes_as_dirty() {
        m_transformed_bounding_box.reset();
        m_transformed_convex_hull_bounding_box.reset();
        m_transformed_non_sinking_bounding_box.reset();
    }

    bool                is_sla_support() const;
    bool                is_sla_pad() const;

    bool                is_sinking() const;
    bool                is_below_printbed() const;
    void                render_sinking_contours();

    // Return an estimate of the memory consumed by this class.
    size_t 				cpu_memory_used() const { 
    	//FIXME what to do wih m_convex_hull?
    	return sizeof(*this) - sizeof(this->indexed_vertex_array) + this->indexed_vertex_array.cpu_memory_used() + this->print_zs.capacity() * sizeof(coordf_t) + this->offsets.capacity() * sizeof(size_t);
    }
    // Return an estimate of the memory held by GPU vertex buffers.
    size_t 				gpu_memory_used() const { return this->indexed_vertex_array.gpu_memory_used(); }
    size_t 				total_memory_used() const { return this->cpu_memory_used() + this->gpu_memory_used(); }
};

typedef std::vector<GLVolume*> GLVolumePtrs;
typedef std::pair<GLVolume*, std::pair<unsigned int, double>> GLVolumeWithIdAndZ;
typedef std::vector<GLVolumeWithIdAndZ> GLVolumeWithIdAndZList;

class GLVolumeCollection
{
public:
    enum class ERenderType : unsigned char
    {
        Opaque,
        Transparent,
        All
    };

    struct PrintVolume
    {
        // see: Bed3D::EShapeType
        int type{ 0 };
        // data contains:
        // Rectangle:
        //   [0] = min.x, [1] = min.y, [2] = max.x, [3] = max.y
        // Circle:
        //   [0] = center.x, [1] = center.y, [3] = radius
        std::array<float, 4> data;
        //   [0] = min z, [1] = max z
        std::array<float, 2> zs;
    };

private:
    PrintVolume m_print_volume;

    // z range for clipping in shaders
    float m_z_range[2];

    // plane coeffs for clipping in shaders
    float m_clipping_plane[4];

    struct Slope
    {
        // toggle for slope rendering 
        bool active{ false };
        float normal_z;
    };

    Slope m_slope;
    bool m_show_sinking_contours = false;

public:
    GLVolumePtrs volumes;

    GLVolumeCollection() { set_default_slope_normal_z(); }
    ~GLVolumeCollection() { clear(); }

    std::vector<int> load_object(
        const ModelObject 		*model_object,
        int                      obj_idx,
        const std::vector<int>	&instance_idxs,
        const std::string 		&color_by,
        bool 					 opengl_initialized);

    int load_object_volume(
        const ModelObject *model_object,
        int                obj_idx,
        int                volume_idx,
        int                instance_idx,
        const std::string &color_by,
        bool 			   opengl_initialized);

    // Load SLA auxiliary GLVolumes (for support trees or pad).
    void load_object_auxiliary(
        const SLAPrintObject           *print_object,
        int                             obj_idx,
        // pairs of <instance_idx, print_instance_idx>
        const std::vector<std::pair<size_t, size_t>>& instances,
        SLAPrintObjectStep              milestone,
        // Timestamp of the last change of the milestone
        size_t                          timestamp,
        bool 			   				opengl_initialized);

    int load_wipe_tower_preview(
        int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool size_unknown, float brim_width, bool opengl_initialized);

    GLVolume* new_toolpath_volume(const std::array<float, 4>& rgba, size_t reserve_vbo_floats = 0);
    GLVolume* new_nontoolpath_volume(const std::array<float, 4>& rgba, size_t reserve_vbo_floats = 0);

    // Render the volumes by OpenGL.
    void render(ERenderType type, bool disable_cullface, const Transform3d& view_matrix, std::function<bool(const GLVolume&)> filter_func = std::function<bool(const GLVolume&)>()) const;

    // Finalize the initialization of the geometry & indices,
    // upload the geometry and indices to OpenGL VBO objects
    // and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs.
    void finalize_geometry(bool opengl_initialized) { for (auto* v : volumes) v->finalize_geometry(opengl_initialized); }
    // Release the geometry data assigned to the volumes.
    // If OpenGL VBOs were allocated, an OpenGL context has to be active to release them.
    void release_geometry() { for (auto *v : volumes) v->release_geometry(); }
    // Clear the geometry
    void clear() { for (auto *v : volumes) delete v; volumes.clear(); }

    bool empty() const { return volumes.empty(); }
    void set_range(double low, double high) { for (GLVolume *vol : this->volumes) vol->set_range(low, high); }

    void set_print_volume(const PrintVolume& print_volume) { m_print_volume = print_volume; }

    void set_z_range(float min_z, float max_z) { m_z_range[0] = min_z; m_z_range[1] = max_z; }
    void set_clipping_plane(const double* coeffs) { m_clipping_plane[0] = coeffs[0]; m_clipping_plane[1] = coeffs[1]; m_clipping_plane[2] = coeffs[2]; m_clipping_plane[3] = coeffs[3]; }

    bool is_slope_active() const { return m_slope.active; }
    void set_slope_active(bool active) { m_slope.active = active; }

    float get_slope_normal_z() const { return m_slope.normal_z; }
    void set_slope_normal_z(float normal_z) { m_slope.normal_z = normal_z; }
    void set_default_slope_normal_z() { m_slope.normal_z = -::cos(Geometry::deg2rad(90.0f - 45.0f)); }
    void set_show_sinking_contours(bool show) { m_show_sinking_contours = show; }

    // returns true if all the volumes are completely contained in the print volume
    // returns the containment state in the given out_state, if non-null
    bool check_outside_state(const Slic3r::BuildVolume& build_volume, ModelInstanceEPrintVolumeState* out_state) const;
    void reset_outside_state();

    void update_colors_by_extruder(const DynamicPrintConfig* config);

    // Returns a vector containing the sorted list of all the print_zs of the volumes contained in this collection
    std::vector<double> get_current_print_zs(bool active_only) const;

    // Return an estimate of the memory consumed by this class.
    size_t 				cpu_memory_used() const;
    // Return an estimate of the memory held by GPU vertex buffers.
    size_t 				gpu_memory_used() const;
    size_t 				total_memory_used() const { return this->cpu_memory_used() + this->gpu_memory_used(); }
    // Return CPU, GPU and total memory log line.
    std::string         log_memory_info() const;

private:
    GLVolumeCollection(const GLVolumeCollection &other);
    GLVolumeCollection& operator=(const GLVolumeCollection &);
};

GLVolumeWithIdAndZList volumes_to_render(const GLVolumePtrs& volumes, GLVolumeCollection::ERenderType type, const Transform3d& view_matrix, std::function<bool(const GLVolume&)> filter_func = nullptr);

struct _3DScene
{
    static void thick_lines_to_verts(const Lines& lines, const std::vector<double>& widths, const std::vector<double>& heights, bool closed, double top_z, GLVolume& volume);
    static void thick_lines_to_verts(const Lines3& lines, const std::vector<double>& widths, const std::vector<double>& heights, bool closed, GLVolume& volume);
	static void extrusionentity_to_verts(const Polyline &polyline, float width, float height, float print_z, GLVolume& volume);
    static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, GLVolume& volume);
    static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, const Point& copy, GLVolume& volume);
    static void extrusionentity_to_verts(const ExtrusionLoop& extrusion_loop, float print_z, const Point& copy, GLVolume& volume);
    static void extrusionentity_to_verts(const ExtrusionMultiPath& extrusion_multi_path, float print_z, const Point& copy, GLVolume& volume);
    static void extrusionentity_to_verts(const ExtrusionEntityCollection& extrusion_entity_collection, float print_z, const Point& copy, GLVolume& volume);
    static void extrusionentity_to_verts(const ExtrusionEntity* extrusion_entity, float print_z, const Point& copy, GLVolume& volume);
    static void polyline3_to_verts(const Polyline3& polyline, double width, double height, GLVolume& volume);
    static void point3_to_verts(const Vec3crd& point, double width, double height, GLVolume& volume);
};

}

#endif