Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorbubnikv <bubnikv@gmail.com>2016-12-12 19:53:38 +0300
committerbubnikv <bubnikv@gmail.com>2016-12-12 19:53:38 +0300
commit1ea958158a9e0b7aee9a5ed006e81a7fa009d9ab (patch)
tree61c9d332ca8bb3f8ba1a9b7f2a7b749a619ade15
parent2ab86a4895e6bb219ee160be03e2b12c67a63b43 (diff)
Support for user definable variable layer thickness, the C++ backend.
-rw-r--r--xs/src/libslic3r/Print.hpp26
-rw-r--r--xs/src/libslic3r/PrintObject.cpp213
-rw-r--r--xs/src/libslic3r/Slicing.cpp585
-rw-r--r--xs/src/libslic3r/Slicing.hpp74
-rw-r--r--xs/src/libslic3r/SlicingAdaptive.cpp39
-rw-r--r--xs/src/libslic3r/SlicingAdaptive.hpp6
-rw-r--r--xs/xsp/Print.xsp25
7 files changed, 924 insertions, 44 deletions
diff --git a/xs/src/libslic3r/Print.hpp b/xs/src/libslic3r/Print.hpp
index 3a5d38ec3..f97f888cd 100644
--- a/xs/src/libslic3r/Print.hpp
+++ b/xs/src/libslic3r/Print.hpp
@@ -3,9 +3,8 @@
#include "libslic3r.h"
#include <set>
-#include <string>
#include <vector>
-#include <boost/thread.hpp>
+#include <string>
#include "BoundingBox.hpp"
#include "Flow.hpp"
#include "PrintConfig.hpp"
@@ -13,7 +12,7 @@
#include "Layer.hpp"
#include "Model.hpp"
#include "PlaceholderParser.hpp"
-
+#include "Slicing.hpp"
namespace Slic3r {
@@ -79,6 +78,10 @@ public:
std::map< size_t,std::vector<int> > region_volumes;
PrintObjectConfig config;
t_layer_height_ranges layer_height_ranges;
+
+ // Profile of increasing z to a layer height, to be linearly interpolated when calculating the layers.
+ // The pairs of <z, layer_height> are packed into a 1D array to simplify handling by the Perl XS.
+ std::vector<coordf_t> layer_height_profile;
// this is set to true when LayerRegion->slices is split in top/internal/bottom
// so that next call to make_perimeters() performs a union() before computing loops
@@ -137,7 +140,18 @@ public:
bool invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys);
bool invalidate_step(PrintObjectStep step);
bool invalidate_all_steps();
-
+
+ // Process layer_height_ranges, the raft layers and first layer thickness into layer_height_profile.
+ // The layer_height_profile may be later modified interactively by the user to refine layers at sloping surfaces.
+ void update_layer_height_profile();
+
+ // Collect the slicing parameters, to be used by variable layer thickness algorithm,
+ // by the interactive layer height editor and by the printing process itself.
+ // The slicing parameters are dependent on various configuration values
+ // (layer height, first layer height, raft settings, print nozzle diameter etc).
+ SlicingParameters slicing_parameters() const;
+
+ void _slice();
bool has_support_material() const;
void detect_surfaces_type();
void process_external_surfaces();
@@ -145,7 +159,7 @@ public:
void bridge_over_infill();
void _make_perimeters();
void _infill();
-
+
private:
Print* _print;
ModelObject* _model_object;
@@ -155,6 +169,8 @@ private:
// parameter
PrintObject(Print* print, ModelObject* model_object, const BoundingBoxf3 &modobj_bbox);
~PrintObject() {}
+
+ std::vector<ExPolygons> _slice_region(size_t region_id, const std::vector<float> &z, bool modifier);
};
typedef std::vector<PrintObject*> PrintObjectPtrs;
diff --git a/xs/src/libslic3r/PrintObject.cpp b/xs/src/libslic3r/PrintObject.cpp
index 7b5014414..90449d64f 100644
--- a/xs/src/libslic3r/PrintObject.cpp
+++ b/xs/src/libslic3r/PrintObject.cpp
@@ -2,12 +2,23 @@
#include "BoundingBox.hpp"
#include "ClipperUtils.hpp"
#include "Geometry.hpp"
-#include "SVG.hpp"
#include <boost/log/trivial.hpp>
#include <Shiny/Shiny.h>
+// #define SLIC3R_DEBUG
+
+// Make assert active if SLIC3R_DEBUG
+#ifdef SLIC3R_DEBUG
+ #undef NDEBUG
+ #define DEBUG
+ #define _DEBUG
+ #include "SVG.hpp"
+ #undef assert
+ #include <cassert>
+#endif
+
namespace Slic3r {
PrintObject::PrintObject(Print* print, ModelObject* model_object, const BoundingBoxf3 &modobj_bbox)
@@ -760,9 +771,9 @@ PrintObject::discover_vertical_shells()
// Assign resulting internal surfaces to layer.
const SurfaceType surfaceTypesKeep[] = { stTop, stBottom, stBottomBridge };
layerm->fill_surfaces.keep_types(surfaceTypesKeep, sizeof(surfaceTypesKeep)/sizeof(SurfaceType));
- layerm->fill_surfaces.append(stInternal , new_internal);
- layerm->fill_surfaces.append(stInternalVoid , new_internal_void);
- layerm->fill_surfaces.append(stInternalSolid, new_internal_solid);
+ layerm->fill_surfaces.append(new_internal, stInternal);
+ layerm->fill_surfaces.append(new_internal_void, stInternalVoid);
+ layerm->fill_surfaces.append(new_internal_solid, stInternalSolid);
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_slices_to_svg_debug("4_discover_vertical_shells");
@@ -910,6 +921,194 @@ PrintObject::bridge_over_infill()
}
}
+SlicingParameters PrintObject::slicing_parameters() const
+{
+ return SlicingParameters::create_from_config(
+ this->print()->config, this->config,
+ unscale(this->size.z), this->print()->object_extruders());
+}
+
+void PrintObject::update_layer_height_profile()
+{
+ if (this->layer_height_profile.empty()) {
+ if (0)
+// if (this->layer_height_profile.empty())
+ this->layer_height_profile = layer_height_profile_adaptive(this->slicing_parameters(), this->layer_height_ranges,
+ this->model_object()->volumes);
+ else
+ this->layer_height_profile = layer_height_profile_from_ranges(this->slicing_parameters(), this->layer_height_ranges);
+ }
+}
+
+// 1) Decides Z positions of the layers,
+// 2) Initializes layers and their regions
+// 3) Slices the object meshes
+// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
+// 5) Applies size compensation (offsets the slices in XY plane)
+// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
+// Resulting expolygons of layer regions are marked as Internal.
+//
+// this should be idempotent
+void PrintObject::_slice()
+{
+ SlicingParameters slicing_params = this->slicing_parameters();
+
+ // 1) Initialize layers and their slice heights.
+ std::vector<float> slice_zs;
+ {
+ this->clear_layers();
+ // Object layers (pairs of bottom/top Z coordinate), without the raft.
+ this->update_layer_height_profile();
+ std::vector<coordf_t> object_layers = generate_object_layers(slicing_params, this->layer_height_profile);
+ // Reserve object layers for the raft. Last layer of the raft is the contact layer.
+ int id = int(slicing_params.raft_layers());
+ slice_zs.reserve(object_layers.size());
+ Layer *prev = nullptr;
+ for (size_t i_layer = 0; i_layer < object_layers.size(); i_layer += 2) {
+ coordf_t lo = object_layers[i_layer];
+ coordf_t hi = object_layers[i_layer + 1];
+ coordf_t slice_z = 0.5 * (lo + hi);
+ Layer *layer = this->add_layer(id ++, hi - lo, hi + slicing_params.object_print_z_min, slice_z);
+ slice_zs.push_back(float(slice_z));
+ if (prev != nullptr) {
+ prev->upper_layer = layer;
+ layer->lower_layer = prev;
+ }
+ // Make sure all layers contain layer region objects for all regions.
+ for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id)
+ layer->add_region(this->print()->regions[region_id]);
+ prev = layer;
+ }
+ }
+
+ if (this->print()->regions.size() == 1) {
+ // Optimized for a single region. Slice the single non-modifier mesh.
+ std::vector<ExPolygons> expolygons_by_layer = this->_slice_region(0, slice_zs, false);
+ for (size_t layer_id = 0; layer_id < expolygons_by_layer.size(); ++ layer_id)
+ this->layers[layer_id]->regions.front()->slices.append(std::move(expolygons_by_layer[layer_id]), stInternal);
+ } else {
+ // Slice all non-modifier volumes.
+ for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id) {
+ std::vector<ExPolygons> expolygons_by_layer = this->_slice_region(region_id, slice_zs, false);
+ for (size_t layer_id = 0; layer_id < expolygons_by_layer.size(); ++ layer_id)
+ this->layers[layer_id]->regions[region_id]->slices.append(std::move(expolygons_by_layer[layer_id]), stInternal);
+ }
+ // Slice all modifier volumes.
+ for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id) {
+ std::vector<ExPolygons> expolygons_by_layer = this->_slice_region(region_id, slice_zs, true);
+ // loop through the other regions and 'steal' the slices belonging to this one
+ for (size_t other_region_id = 0; other_region_id < this->print()->regions.size(); ++ other_region_id) {
+ if (region_id == other_region_id)
+ continue;
+ for (size_t layer_id = 0; layer_id < expolygons_by_layer.size(); ++ layer_id) {
+ Layer *layer = layers[layer_id];
+ LayerRegion *layerm = layer->regions[region_id];
+ LayerRegion *other_layerm = layer->regions[other_region_id];
+ if (layerm == nullptr || other_layerm == nullptr)
+ continue;
+ Polygons other_slices = to_polygons(other_layerm->slices);
+ ExPolygons my_parts = intersection_ex(other_slices, to_polygons(expolygons_by_layer[layer_id]));
+ if (my_parts.empty())
+ continue;
+ // Remove such parts from original region.
+ other_layerm->slices.set(diff_ex(other_slices, my_parts), stInternal);
+ // Append new parts to our region.
+ layerm->slices.append(std::move(my_parts), stInternal);
+ }
+ }
+ }
+ }
+
+ // remove last layer(s) if empty
+ while (! this->layers.empty()) {
+ const Layer *layer = this->layers.back();
+ for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id)
+ if (layer->regions[region_id] != nullptr && ! layer->regions[region_id]->slices.empty())
+ // Non empty layer.
+ goto end;
+ this->delete_layer(int(this->layers.size()) - 1);
+ }
+end:
+ ;
+
+ for (size_t layer_id = 0; layer_id < layers.size(); ++ layer_id) {
+ Layer *layer = this->layers[layer_id];
+ // apply size compensation
+ if (this->config.xy_size_compensation.value != 0.) {
+ float delta = float(scale_(this->config.xy_size_compensation.value));
+ if (layer->regions.size() == 1) {
+ // single region
+ LayerRegion *layerm = layer->regions.front();
+ layerm->slices.set(offset_ex(to_polygons(std::move(layerm->slices.surfaces)), delta), stInternal);
+ } else {
+ if (delta < 0) {
+ // multiple regions, shrinking
+ // we apply the offset to the combined shape, then intersect it
+ // with the original slices for each region
+ Polygons region_slices;
+ for (size_t region_id = 0; region_id < layer->regions.size(); ++ region_id)
+ polygons_append(region_slices, layer->regions[region_id]->slices.surfaces);
+ Polygons slices = offset(union_(region_slices), delta);
+ for (size_t region_id = 0; region_id < layer->regions.size(); ++ region_id) {
+ LayerRegion *layerm = layer->regions[region_id];
+ layerm->slices.set(std::move(intersection_ex(slices, to_polygons(std::move(layerm->slices.surfaces)))), stInternal);
+ }
+ } else {
+ // multiple regions, growing
+ // this is an ambiguous case, since it's not clear how to grow regions where they are going to overlap
+ // so we give priority to the first one and so on
+ Polygons processed;
+ for (size_t region_id = 0;; ++ region_id) {
+ LayerRegion *layerm = layer->regions[region_id];
+ ExPolygons slices = offset_ex(to_polygons(layerm->slices.surfaces), delta);
+ if (region_id > 0)
+ // Trim by the slices of already processed regions.
+ slices = diff_ex(to_polygons(std::move(slices)), processed);
+ if (region_id + 1 == layer->regions.size()) {
+ layerm->slices.set(std::move(slices), stInternal);
+ break;
+ }
+ polygons_append(processed, slices);
+ layerm->slices.set(std::move(slices), stInternal);
+ }
+ }
+ }
+ }
+
+ // Merge all regions' slices to get islands, chain them by a shortest path.
+ layer->make_slices();
+ }
+}
+
+std::vector<ExPolygons> PrintObject::_slice_region(size_t region_id, const std::vector<float> &z, bool modifier)
+{
+ std::vector<ExPolygons> layers;
+ assert(region_id < this->region_volumes.size());
+ std::vector<int> &volumes = this->region_volumes[region_id];
+ if (! volumes.empty()) {
+ // Compose mesh.
+ //FIXME better to perform slicing over each volume separately and then to use a Boolean operation to merge them.
+ TriangleMesh mesh;
+ for (std::vector<int>::const_iterator it_volume = volumes.begin(); it_volume != volumes.end(); ++ it_volume) {
+ ModelVolume *volume = this->model_object()->volumes[*it_volume];
+ if (volume->modifier == modifier)
+ mesh.merge(volume->mesh);
+ }
+ if (mesh.stl.stats.number_of_facets > 0) {
+ // transform mesh
+ // we ignore the per-instance transformations currently and only
+ // consider the first one
+ this->model_object()->instances.front()->transform_mesh(&mesh, true);
+ // align mesh to Z = 0 (it should be already aligned actually) and apply XY shift
+ mesh.translate(- unscale(this->_copies_shift.x), - unscale(this->_copies_shift.y), -this->model_object()->bounding_box().min.z);
+ // perform actual slicing
+ TriangleMeshSlicer mslicer(&mesh);
+ mslicer.slice(z, &layers);
+ }
+ }
+ return layers;
+}
+
void
PrintObject::_make_perimeters()
{
@@ -930,7 +1129,7 @@ PrintObject::_make_perimeters()
// this algorithm makes sure that at least one perimeter is overlapping
// but we don't generate any extra perimeter if fill density is zero, as they would be floating
// inside the object - infill_only_where_needed should be the method of choice for printing
- // hollow objects
+ // hollow objects
FOREACH_REGION(this->_print, region_it) {
size_t region_id = region_it - this->_print->regions.begin();
const PrintRegion &region = **region_it;
@@ -941,7 +1140,7 @@ PrintObject::_make_perimeters()
|| region.config.fill_density == 0
|| this->layer_count() < 2) continue;
- for (size_t i = 0; i <= (this->layer_count()-2); ++i) {
+ for (int i = 0; i < int(this->layer_count()) - 1; ++i) {
LayerRegion &layerm = *this->get_layer(i)->get_region(region_id);
const LayerRegion &upper_layerm = *this->get_layer(i+1)->get_region(region_id);
const Polygons upper_layerm_polygons = upper_layerm.slices;
@@ -1044,4 +1243,4 @@ PrintObject::_infill()
this->state.set_done(posInfill);
}
-}
+} // namespace Slic3r
diff --git a/xs/src/libslic3r/Slicing.cpp b/xs/src/libslic3r/Slicing.cpp
new file mode 100644
index 000000000..82813770f
--- /dev/null
+++ b/xs/src/libslic3r/Slicing.cpp
@@ -0,0 +1,585 @@
+#include "Slicing.hpp"
+#include "SlicingAdaptive.hpp"
+#include "PrintConfig.hpp"
+#include "Model.hpp"
+
+// #define SLIC3R_DEBUG
+
+// Make assert active if SLIC3R_DEBUG
+#ifdef SLIC3R_DEBUG
+ #undef NDEBUG
+ #define DEBUG
+ #define _DEBUG
+ #include "SVG.hpp"
+ #undef assert
+ #include <cassert>
+#endif
+
+namespace Slic3r
+{
+
+SlicingParameters create_from_config(
+ const PrintConfig &print_config,
+ const PrintObjectConfig &object_config,
+ coordf_t object_height,
+ const std::set<size_t> &object_extruders)
+{
+ coordf_t first_layer_height = (object_config.first_layer_height.value <= 0) ?
+ object_config.layer_height.value :
+ object_config.first_layer_height.get_abs_value(object_config.layer_height.value);
+ coordf_t support_material_extruder_dmr = print_config.nozzle_diameter.get_at(object_config.support_material_extruder.value - 1);
+ coordf_t support_material_interface_extruder_dmr = print_config.nozzle_diameter.get_at(object_config.support_material_interface_extruder.value - 1);
+ bool soluble_interface = object_config.support_material_contact_distance.value == 0.;
+
+ SlicingParameters params;
+ params.layer_height = object_config.layer_height.value;
+ params.first_object_layer_height = first_layer_height;
+ params.object_print_z_min = 0.;
+ params.object_print_z_max = object_height;
+ params.base_raft_layers = object_config.raft_layers.value;
+
+ if (params.base_raft_layers > 0) {
+ params.interface_raft_layers = (params.base_raft_layers + 1) / 2;
+ params.base_raft_layers -= params.interface_raft_layers;
+ // Use as large as possible layer height for the intermediate raft layers.
+ params.base_raft_layer_height = std::max(params.layer_height, 0.75 * support_material_extruder_dmr);
+ params.interface_raft_layer_height = std::max(params.layer_height, 0.75 * support_material_interface_extruder_dmr);
+ params.contact_raft_layer_height_bridging = false;
+ params.first_object_layer_bridging = false;
+ #if 1
+ params.contact_raft_layer_height = std::max(params.layer_height, 0.75 * support_material_interface_extruder_dmr);
+ if (! soluble_interface) {
+ // Compute the average of all nozzles used for printing the object over a raft.
+ //FIXME It is expected, that the 1st layer of the object is printed with a bridging flow over a full raft. Shall it not be vice versa?
+ coordf_t average_object_extruder_dmr = 0.;
+ if (! object_extruders.empty()) {
+ for (std::set<size_t>::const_iterator it_extruder = object_extruders.begin(); it_extruder != object_extruders.end(); ++ it_extruder)
+ average_object_extruder_dmr += print_config.nozzle_diameter.get_at(*it_extruder);
+ average_object_extruder_dmr /= coordf_t(object_extruders.size());
+ }
+ params.first_object_layer_height = average_object_extruder_dmr;
+ params.first_object_layer_bridging = true;
+ }
+ #else
+ params.contact_raft_layer_height = soluble_interface ? support_material_interface_extruder_dmr : 0.75 * support_material_interface_extruder_dmr;
+ params.contact_raft_layer_height_bridging = ! soluble_interface;
+ ...
+ #endif
+ }
+
+ if (params.has_raft()) {
+ // Raise first object layer Z by the thickness of the raft itself plus the extra distance required by the support material logic.
+ //FIXME The last raft layer is the contact layer, which shall be printed with a bridging flow for ease of separation. Currently it is not the case.
+ coordf_t print_z = first_layer_height + object_config.support_material_contact_distance.value;
+ if (params.raft_layers() == 1) {
+ params.contact_raft_layer_height = first_layer_height;
+ } else {
+ print_z +=
+ // Number of the base raft layers is decreased by the first layer, which has already been added to print_z.
+ coordf_t(params.base_raft_layers - 1) * params.base_raft_layer_height +
+ // Number of the interface raft layers is decreased by the contact layer.
+ coordf_t(params.interface_raft_layers - 1) * params.interface_raft_layer_height +
+ params.contact_raft_layer_height;
+ }
+ params.object_print_z_min = print_z;
+ params.object_print_z_max += print_z;
+ }
+
+ params.min_layer_height = std::min(params.layer_height, first_layer_height);
+ params.max_layer_height = std::max(params.layer_height, first_layer_height);
+
+ //FIXME add it to the print configuration
+ params.min_layer_height = 0.05;
+
+ // Calculate the maximum layer height as 0.75 from the minimum nozzle diameter.
+ if (! object_extruders.empty()) {
+ coordf_t min_object_extruder_dmr = 1000000.;
+ for (std::set<size_t>::const_iterator it_extruder = object_extruders.begin(); it_extruder != object_extruders.end(); ++ it_extruder)
+ min_object_extruder_dmr = std::min(min_object_extruder_dmr, print_config.nozzle_diameter.get_at(*it_extruder));
+ // Allow excessive maximum layer height higher than 0.75 * min_object_extruder_dmr
+ params.max_layer_height = std::max(std::max(params.layer_height, first_layer_height), 0.75 * min_object_extruder_dmr);
+ }
+
+ return params;
+}
+
+// Convert layer_height_ranges to layer_height_profile. Both are referenced to z=0, meaning the raft layers are not accounted for
+// in the height profile and the printed object may be lifted by the raft thickness at the time of the G-code generation.
+std::vector<coordf_t> layer_height_profile_from_ranges(
+ const SlicingParameters &slicing_params,
+ const t_layer_height_ranges &layer_height_ranges)
+{
+ // 1) If there are any height ranges, trim one by the other to make them non-overlapping. Insert the 1st layer if fixed.
+ std::vector<std::pair<t_layer_height_range,coordf_t>> ranges_non_overlapping;
+ ranges_non_overlapping.reserve(layer_height_ranges.size() * 4);
+ if (slicing_params.first_object_layer_height_fixed())
+ ranges_non_overlapping.push_back(std::pair<t_layer_height_range,coordf_t>(
+ t_layer_height_range(0., slicing_params.first_object_layer_height),
+ slicing_params.first_object_layer_height));
+ // The height ranges are sorted lexicographically by low / high layer boundaries.
+ for (t_layer_height_ranges::const_iterator it_range = layer_height_ranges.begin(); it_range != layer_height_ranges.end(); ++ it_range) {
+ coordf_t lo = it_range->first.first;
+ coordf_t hi = std::min(it_range->first.second, slicing_params.object_print_z_height());
+ coordf_t height = it_range->second;
+ if (! ranges_non_overlapping.empty())
+ // Trim current low with the last high.
+ lo = std::max(lo, ranges_non_overlapping.back().first.second);
+ if (lo + EPSILON < hi)
+ // Ignore too narrow ranges.
+ ranges_non_overlapping.push_back(std::pair<t_layer_height_range,coordf_t>(t_layer_height_range(lo, hi), height));
+ }
+
+ // 2) Convert the trimmed ranges to a height profile, fill in the undefined intervals between z=0 and z=slicing_params.object_print_z_max()
+ // with slicing_params.layer_height
+ std::vector<coordf_t> layer_height_profile;
+ for (std::vector<std::pair<t_layer_height_range,coordf_t>>::const_iterator it_range = ranges_non_overlapping.begin(); it_range != ranges_non_overlapping.end(); ++ it_range) {
+ coordf_t lo = it_range->first.first;
+ coordf_t hi = it_range->first.second;
+ coordf_t height = it_range->second;
+ coordf_t last_z = layer_height_profile.empty() ? 0. : layer_height_profile[layer_height_profile.size() - 2];
+ coordf_t last_height = layer_height_profile.empty() ? 0. : layer_height_profile[layer_height_profile.size() - 1];
+ if (lo > last_z + EPSILON) {
+ // Insert a step of normal layer height.
+ layer_height_profile.push_back(last_z);
+ layer_height_profile.push_back(slicing_params.layer_height);
+ layer_height_profile.push_back(lo);
+ layer_height_profile.push_back(slicing_params.layer_height);
+ }
+ // Insert a step of the overriden layer height.
+ layer_height_profile.push_back(lo);
+ layer_height_profile.push_back(height);
+ layer_height_profile.push_back(hi);
+ layer_height_profile.push_back(height);
+ }
+
+ coordf_t last_z = layer_height_profile.empty() ? 0. : layer_height_profile[layer_height_profile.size() - 2];
+ coordf_t last_height = layer_height_profile.empty() ? 0. : layer_height_profile[layer_height_profile.size() - 1];
+ if (last_z < slicing_params.object_print_z_height()) {
+ // Insert a step of normal layer height up to the object top.
+ layer_height_profile.push_back(last_z);
+ layer_height_profile.push_back(slicing_params.layer_height);
+ layer_height_profile.push_back(slicing_params.object_print_z_height());
+ layer_height_profile.push_back(slicing_params.layer_height);
+ }
+
+ return layer_height_profile;
+}
+
+// Based on the work of @platsch
+// Fill layer_height_profile by heights ensuring a prescribed maximum cusp height.
+std::vector<coordf_t> layer_height_profile_adaptive(
+ const SlicingParameters &slicing_params,
+ const t_layer_height_ranges &layer_height_ranges,
+ const ModelVolumePtrs &volumes)
+{
+ // 1) Initialize the SlicingAdaptive class with the object meshes.
+ SlicingAdaptive as;
+ as.set_slicing_parameters(slicing_params);
+ for (ModelVolumePtrs::const_iterator it = volumes.begin(); it != volumes.end(); ++ it)
+ if (! (*it)->modifier)
+ as.add_mesh(&(*it)->mesh);
+ as.prepare();
+
+ // 2) Generate layers using the algorithm of @platsch
+ // loop until we have at least one layer and the max slice_z reaches the object height
+ //FIXME make it configurable
+ // Cusp value: A maximum allowed distance from a corner of a rectangular extrusion to a chrodal line, in mm.
+ const coordf_t cusp_value = 0.2; // $self->config->get_value('cusp_value');
+
+ std::vector<coordf_t> layer_height_profile;
+ layer_height_profile.push_back(0.);
+ layer_height_profile.push_back(slicing_params.first_object_layer_height);
+ if (slicing_params.first_object_layer_height_fixed()) {
+ layer_height_profile.push_back(slicing_params.first_object_layer_height);
+ layer_height_profile.push_back(slicing_params.first_object_layer_height);
+ }
+ coordf_t slice_z = slicing_params.first_object_layer_height;
+ coordf_t height = slicing_params.first_object_layer_height;
+ coordf_t cusp_height = 0.;
+ int current_facet = 0;
+ while ((slice_z - height) <= slicing_params.object_print_z_height()) {
+ height = 999;
+ // Slic3r::debugf "\n Slice layer: %d\n", $id;
+ // determine next layer height
+ coordf_t cusp_height = as.cusp_height(slice_z, cusp_value, current_facet);
+ // check for horizontal features and object size
+ /*
+ if($self->config->get_value('match_horizontal_surfaces')) {
+ my $horizontal_dist = $adaptive_slicing[$region_id]->horizontal_facet_distance(scale $slice_z+$cusp_height, $min_height);
+ if(($horizontal_dist < $min_height) && ($horizontal_dist > 0)) {
+ Slic3r::debugf "Horizontal feature ahead, distance: %f\n", $horizontal_dist;
+ # can we shrink the current layer a bit?
+ if($cusp_height-($min_height-$horizontal_dist) > $min_height) {
+ # yes we can
+ $cusp_height = $cusp_height-($min_height-$horizontal_dist);
+ Slic3r::debugf "Shrink layer height to %f\n", $cusp_height;
+ }else{
+ # no, current layer would become too thin
+ $cusp_height = $cusp_height+$horizontal_dist;
+ Slic3r::debugf "Widen layer height to %f\n", $cusp_height;
+ }
+ }
+ }
+ */
+ height = std::min(cusp_height, height);
+
+ // apply z-gradation
+ /*
+ my $gradation = $self->config->get_value('adaptive_slicing_z_gradation');
+ if($gradation > 0) {
+ $height = $height - unscale((scale($height)) % (scale($gradation)));
+ }
+ */
+
+ // look for an applicable custom range
+ /*
+ if (my $range = first { $_->[0] <= $slice_z && $_->[1] > $slice_z } @{$self->layer_height_ranges}) {
+ $height = $range->[2];
+
+ # if user set custom height to zero we should just skip the range and resume slicing over it
+ if ($height == 0) {
+ $slice_z += $range->[1] - $range->[0];
+ next;
+ }
+ }
+ */
+
+ layer_height_profile.push_back(slice_z);
+ layer_height_profile.push_back(height);
+ slice_z += height;
+ layer_height_profile.push_back(slice_z);
+ layer_height_profile.push_back(height);
+ }
+
+ coordf_t last = std::max(slicing_params.first_object_layer_height, layer_height_profile[layer_height_profile.size() - 2]);
+ layer_height_profile.push_back(last);
+ layer_height_profile.push_back(slicing_params.first_object_layer_height);
+ layer_height_profile.push_back(slicing_params.object_print_z_height());
+ layer_height_profile.push_back(slicing_params.first_object_layer_height);
+
+ return layer_height_profile;
+}
+
+template <typename T>
+static inline T clamp(const T low, const T high, const T value)
+{
+ return std::max(low, std::min(high, value));
+}
+
+template <typename T>
+static inline T lerp(const T a, const T b, const T t)
+{
+ assert(t >= T(-EPSILON) && t <= T(1.+EPSILON));
+ return (1. - t) * a + t * b;
+}
+
+void adjust_layer_height_profile(
+ const SlicingParameters &slicing_params,
+ std::vector<coordf_t> &layer_height_profile,
+ coordf_t z,
+ coordf_t layer_thickness_delta,
+ coordf_t band_width,
+ int action)
+{
+ // Constrain the profile variability by the 1st layer height.
+ std::pair<coordf_t, coordf_t> z_span_variable =
+ std::pair<coordf_t, coordf_t>(
+ slicing_params.first_object_layer_height_fixed() ? slicing_params.first_object_layer_height : 0.,
+ slicing_params.object_print_z_height());
+ if (z < z_span_variable.first || z > z_span_variable.second)
+ return;
+
+ assert(layer_height_profile.size() >= 2);
+
+ // 1) Get the current layer thickness at z.
+ coordf_t current_layer_height = slicing_params.layer_height;
+ for (size_t i = 0; i < layer_height_profile.size(); i += 2) {
+ if (i + 2 == layer_height_profile.size()) {
+ current_layer_height = layer_height_profile[i + 1];
+ break;
+ } else if (layer_height_profile[i + 2] > z) {
+ coordf_t z1 = layer_height_profile[i];
+ coordf_t h1 = layer_height_profile[i + 1];
+ coordf_t z2 = layer_height_profile[i + 2];
+ coordf_t h2 = layer_height_profile[i + 3];
+ current_layer_height = lerp(h1, h2, (z - z1) / (z2 - z1));
+ break;
+ }
+ }
+
+ // 2) Is it possible to apply the delta?
+ switch (action) {
+ case 0:
+ default:
+ if (layer_thickness_delta > 0) {
+ if (current_layer_height >= slicing_params.max_layer_height - EPSILON)
+ return;
+ layer_thickness_delta = std::min(layer_thickness_delta, slicing_params.max_layer_height - current_layer_height);
+ } else {
+ if (current_layer_height <= slicing_params.min_layer_height + EPSILON)
+ return;
+ layer_thickness_delta = std::max(layer_thickness_delta, slicing_params.min_layer_height - current_layer_height);
+ }
+ break;
+ case 1:
+ layer_thickness_delta = std::abs(layer_thickness_delta);
+ layer_thickness_delta = std::min(layer_thickness_delta, std::abs(slicing_params.layer_height - current_layer_height));
+ if (layer_thickness_delta < EPSILON)
+ return;
+ break;
+ }
+
+ // 3) Densify the profile inside z +- band_width/2, remove duplicate Zs from the height profile inside the band.
+ coordf_t lo = std::max(z_span_variable.first, z - 0.5 * band_width);
+ coordf_t hi = std::min(z_span_variable.second, z + 0.5 * band_width);
+ coordf_t z_step = 0.1;
+ size_t i = 0;
+ while (i < layer_height_profile.size() && layer_height_profile[i] < lo)
+ i += 2;
+ i -= 2;
+
+ std::vector<double> profile_new;
+ profile_new.reserve(layer_height_profile.size());
+ assert(i >= 0 && i + 1 < layer_height_profile.size());
+ profile_new.insert(profile_new.end(), layer_height_profile.begin(), layer_height_profile.begin() + i + 2);
+ coordf_t zz = lo;
+ while (zz < hi) {
+ size_t next = i + 2;
+ coordf_t z1 = layer_height_profile[i];
+ coordf_t h1 = layer_height_profile[i + 1];
+ coordf_t height = h1;
+ if (next < layer_height_profile.size()) {
+ coordf_t z2 = layer_height_profile[next];
+ coordf_t h2 = layer_height_profile[next + 1];
+ height = lerp(h1, h2, (zz - z1) / (z2 - z1));
+ }
+ // Adjust height by layer_thickness_delta.
+ coordf_t weight = std::abs(zz - z) < 0.5 * band_width ? (0.5 + 0.5 * cos(2. * M_PI * (zz - z) / band_width)) : 0.;
+ coordf_t height_new = height;
+ switch (action) {
+ case 0:
+ default:
+ height += weight * layer_thickness_delta;
+ break;
+ case 1:
+ {
+ coordf_t delta = height - slicing_params.layer_height;
+ coordf_t step = weight * layer_thickness_delta;
+ step = (std::abs(delta) > step) ?
+ (delta > 0) ? -step : step :
+ -delta;
+ height += step;
+ break;
+ }
+ }
+ // Avoid entering a too short segment.
+ if (profile_new[profile_new.size() - 2] + EPSILON < zz) {
+ profile_new.push_back(zz);
+ profile_new.push_back(clamp(slicing_params.min_layer_height, slicing_params.max_layer_height, height));
+ }
+ zz += z_step;
+ i = next;
+ while (i < layer_height_profile.size() && layer_height_profile[i] < zz)
+ i += 2;
+ i -= 2;
+ }
+
+ i += 2;
+ if (i < layer_height_profile.size()) {
+ if (profile_new[profile_new.size() - 2] + z_step < layer_height_profile[i]) {
+ profile_new.push_back(profile_new[profile_new.size() - 2] + z_step);
+ profile_new.push_back(layer_height_profile[i + 1]);
+ }
+ profile_new.insert(profile_new.end(), layer_height_profile.begin() + i, layer_height_profile.end());
+ }
+ layer_height_profile = std::move(profile_new);
+
+ assert(layer_height_profile.size() > 2);
+ assert(layer_height_profile.size() % 2 == 0);
+ assert(layer_height_profile[0] == 0.);
+#ifdef _DEBUG
+ for (size_t i = 2; i < layer_height_profile.size(); i += 2)
+ assert(layer_height_profile[i - 2] <= layer_height_profile[i]);
+ for (size_t i = 1; i < layer_height_profile.size(); i += 2) {
+ assert(layer_height_profile[i] > slicing_params.min_layer_height - EPSILON);
+ assert(layer_height_profile[i] < slicing_params.max_layer_height + EPSILON);
+ }
+#endif /* _DEBUG */
+}
+
+// Produce object layers as pairs of low / high layer boundaries, stored into a linear vector.
+std::vector<coordf_t> generate_object_layers(
+ const SlicingParameters &slicing_params,
+ const std::vector<coordf_t> &layer_height_profile)
+{
+ coordf_t print_z = 0;
+ coordf_t height = 0;
+
+ std::vector<coordf_t> out;
+
+ if (slicing_params.first_object_layer_height_fixed()) {
+ out.push_back(0);
+ print_z = slicing_params.first_object_layer_height;
+ out.push_back(print_z);
+ }
+
+ size_t idx_layer_height_profile = 0;
+ // loop until we have at least one layer and the max slice_z reaches the object height
+ coordf_t slice_z = print_z + 0.5 * slicing_params.min_layer_height;
+ while (slice_z < slicing_params.object_print_z_height()) {
+ height = slicing_params.min_layer_height;
+ if (idx_layer_height_profile < layer_height_profile.size()) {
+ size_t next = idx_layer_height_profile + 2;
+ for (;;) {
+ if (next >= layer_height_profile.size() || slice_z < layer_height_profile[next])
+ break;
+ idx_layer_height_profile = next;
+ next += 2;
+ }
+ coordf_t z1 = layer_height_profile[idx_layer_height_profile];
+ coordf_t h1 = layer_height_profile[idx_layer_height_profile + 1];
+ height = h1;
+ if (next < layer_height_profile.size()) {
+ coordf_t z2 = layer_height_profile[next];
+ coordf_t h2 = layer_height_profile[next + 1];
+ height = lerp(h1, h2, (slice_z - z1) / (z2 - z1));
+ assert(height >= slicing_params.min_layer_height - EPSILON && height <= slicing_params.max_layer_height + EPSILON);
+ }
+ }
+ slice_z = print_z + 0.5 * height;
+ if (slice_z >= slicing_params.object_print_z_height())
+ break;
+ assert(height > slicing_params.min_layer_height - EPSILON);
+ assert(height < slicing_params.max_layer_height + EPSILON);
+ out.push_back(print_z);
+ print_z += height;
+ slice_z = print_z + 0.5 * slicing_params.min_layer_height;
+ out.push_back(print_z);
+ }
+
+ //FIXME Adjust the last layer to align with the top object layer exactly?
+ return out;
+}
+
+int generate_layer_height_texture(
+ const SlicingParameters &slicing_params,
+ const std::vector<coordf_t> &layers,
+ void *data, int rows, int cols, bool level_of_detail_2nd_level)
+{
+// https://github.com/aschn/gnuplot-colorbrewer
+ std::vector<Point3> palette_raw;
+ palette_raw.push_back(Point3(0x0B2, 0x018, 0x02B));
+ palette_raw.push_back(Point3(0x0D6, 0x060, 0x04D));
+ palette_raw.push_back(Point3(0x0F4, 0x0A5, 0x082));
+ palette_raw.push_back(Point3(0x0FD, 0x0DB, 0x0C7));
+ palette_raw.push_back(Point3(0x0D1, 0x0E5, 0x0F0));
+ palette_raw.push_back(Point3(0x092, 0x0C5, 0x0DE));
+ palette_raw.push_back(Point3(0x043, 0x093, 0x0C3));
+ palette_raw.push_back(Point3(0x021, 0x066, 0x0AC));
+
+ // Clear the main texture and the 2nd LOD level.
+ memset(data, 0, rows * cols * 5);
+ // 2nd LOD level data start
+ unsigned char *data1 = reinterpret_cast<unsigned char*>(data) + rows * cols * 4;
+ int ncells = std::min((cols-1) * rows, int(ceil(16. * (slicing_params.object_print_z_height() / slicing_params.min_layer_height))));
+ int ncells1 = ncells / 2;
+ int cols1 = cols / 2;
+ coordf_t z_to_cell = coordf_t(ncells-1) / slicing_params.object_print_z_height();
+ coordf_t cell_to_z = slicing_params.object_print_z_height() / coordf_t(ncells-1);
+ coordf_t z_to_cell1 = coordf_t(ncells1-1) / slicing_params.object_print_z_height();
+ coordf_t cell_to_z1 = slicing_params.object_print_z_height() / coordf_t(ncells1-1);
+ // for color scaling
+ coordf_t hscale = 2.f * std::max(slicing_params.max_layer_height - slicing_params.layer_height, slicing_params.layer_height - slicing_params.min_layer_height);
+ if (hscale == 0)
+ // All layers have the same height. Provide some height scale to avoid division by zero.
+ hscale = slicing_params.layer_height;
+ for (size_t idx_layer = 0; idx_layer < layers.size(); idx_layer += 2) {
+ coordf_t lo = layers[idx_layer];
+ coordf_t hi = layers[idx_layer + 1];
+ coordf_t mid = 0.5f * (lo + hi);
+ assert(mid <= slicing_params.object_print_z_height());
+ coordf_t h = hi - lo;
+ hi = std::min(hi, slicing_params.object_print_z_height());
+ int cell_first = clamp(0, ncells-1, int(ceil(lo * z_to_cell)));
+ int cell_last = clamp(0, ncells-1, int(floor(hi * z_to_cell)));
+ for (int cell = cell_first; cell <= cell_last; ++ cell) {
+ coordf_t idxf = (0.5 * hscale + (h - slicing_params.layer_height)) * coordf_t(palette_raw.size()) / hscale;
+ int idx1 = clamp(0, int(palette_raw.size() - 1), int(floor(idxf)));
+ int idx2 = std::min(int(palette_raw.size() - 1), idx1 + 1);
+ coordf_t t = idxf - coordf_t(idx1);
+ const Point3 &color1 = palette_raw[idx1];
+ const Point3 &color2 = palette_raw[idx2];
+
+ coordf_t z = cell_to_z * coordf_t(cell);
+ assert(z >= lo && z <= hi);
+ // Intensity profile to visualize the layers.
+ coordf_t intensity = cos(M_PI * 0.7 * (mid - z) / h);
+
+ // Color mapping from layer height to RGB.
+ Pointf3 color(
+ intensity * lerp(coordf_t(color1.x), coordf_t(color2.x), t),
+ intensity * lerp(coordf_t(color1.y), coordf_t(color2.y), t),
+ intensity * lerp(coordf_t(color1.z), coordf_t(color2.z), t));
+
+ int row = cell / (cols - 1);
+ int col = cell - row * (cols - 1);
+ assert(row >= 0 && row < rows);
+ assert(col >= 0 && col < cols);
+ unsigned char *ptr = (unsigned char*)data + (row * cols + col) * 4;
+ ptr[0] = clamp<int>(0, 255, int(floor(color.x + 0.5)));
+ ptr[1] = clamp<int>(0, 255, int(floor(color.y + 0.5)));
+ ptr[2] = clamp<int>(0, 255, int(floor(color.z + 0.5)));
+ ptr[3] = 255;
+ if (col == 0 && row > 0) {
+ // Duplicate the first value in a row as a last value of the preceding row.
+ ptr[-4] = ptr[0];
+ ptr[-3] = ptr[1];
+ ptr[-2] = ptr[2];
+ ptr[-1] = ptr[3];
+ }
+ }
+ if (level_of_detail_2nd_level) {
+ cell_first = clamp(0, ncells1-1, int(ceil(lo * z_to_cell1)));
+ cell_last = clamp(0, ncells1-1, int(floor(hi * z_to_cell1)));
+ for (int cell = cell_first; cell <= cell_last; ++ cell) {
+ coordf_t idxf = (0.5 * hscale + (h - slicing_params.layer_height)) * coordf_t(palette_raw.size()) / hscale;
+ int idx1 = clamp(0, int(palette_raw.size() - 1), int(floor(idxf)));
+ int idx2 = std::min(int(palette_raw.size() - 1), idx1 + 1);
+ coordf_t t = idxf - coordf_t(idx1);
+ const Point3 &color1 = palette_raw[idx1];
+ const Point3 &color2 = palette_raw[idx2];
+
+ coordf_t z = cell_to_z1 * coordf_t(cell);
+ assert(z >= lo && z <= hi);
+
+ // Color mapping from layer height to RGB.
+ Pointf3 color(
+ lerp(coordf_t(color1.x), coordf_t(color2.x), t),
+ lerp(coordf_t(color1.y), coordf_t(color2.y), t),
+ lerp(coordf_t(color1.z), coordf_t(color2.z), t));
+
+ int row = cell / (cols1 - 1);
+ int col = cell - row * (cols1 - 1);
+ assert(row >= 0 && row < rows/2);
+ assert(col >= 0 && col < cols/2);
+ unsigned char *ptr = data1 + (row * cols1 + col) * 4;
+ ptr[0] = clamp<int>(0, 255, int(floor(color.x + 0.5)));
+ ptr[1] = clamp<int>(0, 255, int(floor(color.y + 0.5)));
+ ptr[2] = clamp<int>(0, 255, int(floor(color.z + 0.5)));
+ ptr[3] = 255;
+ if (col == 0 && row > 0) {
+ // Duplicate the first value in a row as a last value of the preceding row.
+ ptr[-4] = ptr[0];
+ ptr[-3] = ptr[1];
+ ptr[-2] = ptr[2];
+ ptr[-1] = ptr[3];
+ }
+ }
+ }
+ }
+
+ // Returns number of cells of the 0th LOD level.
+ return ncells;
+}
+
+}; // namespace Slic3r
diff --git a/xs/src/libslic3r/Slicing.hpp b/xs/src/libslic3r/Slicing.hpp
index 5e910c672..349be2e4a 100644
--- a/xs/src/libslic3r/Slicing.hpp
+++ b/xs/src/libslic3r/Slicing.hpp
@@ -3,15 +3,52 @@
#ifndef slic3r_Slicing_hpp_
#define slic3r_Slicing_hpp_
-#include "libslic3r.h"
+#include <set>
+#include <vector>
+#include "libslic3r.h"
namespace Slic3r
{
+class PrintConfig;
+class PrintObjectConfig;
+class ModelVolume;
+typedef std::vector<ModelVolume*> ModelVolumePtrs;
+
+// Parameters to guide object slicing and support generation.
+// The slicing parameters account for a raft and whether the 1st object layer is printed with a normal or a bridging flow
+// (using a normal flow over a soluble support, using a bridging flow over a non-soluble support).
struct SlicingParameters
{
SlicingParameters() { memset(this, 0, sizeof(SlicingParameters)); }
+ static SlicingParameters create_from_config(
+ const PrintConfig &print_config,
+ const PrintObjectConfig &object_config,
+ coordf_t object_height,
+ const std::set<size_t> &object_extruders);
+
+ // Has any raft layers?
+ bool has_raft() const { return raft_layers() > 0; }
+ size_t raft_layers() const { return base_raft_layers + interface_raft_layers; }
+
+ // Is the 1st object layer height fixed, or could it be varied?
+ bool first_object_layer_height_fixed() const { return ! has_raft() || first_object_layer_bridging; }
+
+ // Height of the object to be printed. This value does not contain the raft height.
+ coordf_t object_print_z_height() const { return object_print_z_max - object_print_z_min; }
+
+ // Number of raft layers.
+ size_t base_raft_layers;
+ // Number of interface layers including the contact layer.
+ size_t interface_raft_layers;
+
+ // Layer heights of the raft (base, interface and a contact layer).
+ coordf_t base_raft_layer_height;
+ coordf_t interface_raft_layer_height;
+ coordf_t contact_raft_layer_height;
+ bool contact_raft_layer_height_bridging;
+
// The regular layer height, applied for all but the first layer, if not overridden by layer ranges
// or by the variable layer thickness table.
coordf_t layer_height;
@@ -19,10 +56,10 @@ struct SlicingParameters
// Thickness of the first layer. This is either the first print layer thickness if printed without a raft,
// or a bridging flow thickness if printed over a non-soluble raft,
// or a normal layer height if printed over a soluble raft.
- coordf_t first_layer_height;
+ coordf_t first_object_layer_height;
// If the object is printed over a non-soluble raft, the first layer may be printed with a briding flow.
- bool first_layer_bridging;
+ bool first_object_layer_bridging;
// Minimum / maximum layer height, to be used for the automatic adaptive layer height algorithm,
// or by an interactive layer height editor.
@@ -39,6 +76,37 @@ struct SlicingParameters
typedef std::pair<coordf_t,coordf_t> t_layer_height_range;
typedef std::map<t_layer_height_range,coordf_t> t_layer_height_ranges;
+extern std::vector<coordf_t> layer_height_profile_from_ranges(
+ const SlicingParameters &slicing_params,
+ const t_layer_height_ranges &layer_height_ranges);
+
+extern std::vector<coordf_t> layer_height_profile_adaptive(
+ const SlicingParameters &slicing_params,
+ const t_layer_height_ranges &layer_height_ranges,
+ const ModelVolumePtrs &volumes);
+
+extern void adjust_layer_height_profile(
+ const SlicingParameters &slicing_params,
+ std::vector<coordf_t> &layer_height_profile,
+ coordf_t z,
+ coordf_t layer_thickness_delta,
+ coordf_t band_width,
+ int action);
+
+// Produce object layers as pairs of low / high layer boundaries, stored into a linear vector.
+// The object layers are based at z=0, ignoring the raft layers.
+extern std::vector<coordf_t> generate_object_layers(
+ const SlicingParameters &slicing_params,
+ const std::vector<coordf_t> &layer_height_profile);
+
+// Produce a 1D texture packed into a 2D texture describing in the RGBA format
+// the planned object layers.
+// Returns number of cells used by the texture of the 0th LOD level.
+extern int generate_layer_height_texture(
+ const SlicingParameters &slicing_params,
+ const std::vector<coordf_t> &layers,
+ void *data, int rows, int cols, bool level_of_detail_2nd_level);
+
}; // namespace Slic3r
#endif /* slic3r_Slicing_hpp_ */
diff --git a/xs/src/libslic3r/SlicingAdaptive.cpp b/xs/src/libslic3r/SlicingAdaptive.cpp
index b7f116770..d501d6f62 100644
--- a/xs/src/libslic3r/SlicingAdaptive.cpp
+++ b/xs/src/libslic3r/SlicingAdaptive.cpp
@@ -22,22 +22,13 @@ std::pair<float, float> face_z_span(const stl_facet *f)
void SlicingAdaptive::prepare()
{
// 1) Collect faces of all meshes.
- {
- int nfaces_total = 0;
- for (std::vector<const TriangleMesh*>::const_iterator it_mesh = m_meshes.begin(); it_mesh != m_meshes.end(); ++ it_mesh)
- nfaces_total += (*it_mesh)->stl.stats.number_of_facets;
- m_faces.reserve(nfaces_total);
- }
- m_max_z = 0;
- for (std::vector<const TriangleMesh*>::const_iterator it_mesh = m_meshes.begin(); it_mesh != m_meshes.end(); ++ it_mesh) {
- const stl_facet *faces = (*it_mesh)->stl.facet_start;
- int nfaces = (*it_mesh)->stl.stats.number_of_facets;
- for (int i = 0; i < nfaces; ++ i) {
- const stl_facet *facet = faces + i;
- m_faces.push_back(facet);
- m_max_z = std::max(std::max(m_max_z, facet->vertex[0].z), std::max(facet->vertex[1].z, facet->vertex[2].z));
- }
- }
+ int nfaces_total = 0;
+ for (std::vector<const TriangleMesh*>::const_iterator it_mesh = m_meshes.begin(); it_mesh != m_meshes.end(); ++ it_mesh)
+ nfaces_total += (*it_mesh)->stl.stats.number_of_facets;
+ m_faces.reserve(nfaces_total);
+ for (std::vector<const TriangleMesh*>::const_iterator it_mesh = m_meshes.begin(); it_mesh != m_meshes.end(); ++ it_mesh)
+ for (int i = 0; i < (*it_mesh)->stl.stats.number_of_facets; ++ i)
+ m_faces.push_back((*it_mesh)->stl.facet_start + i);
// 2) Sort faces lexicographically by their Z span.
std::sort(m_faces.begin(), m_faces.end(), [](const stl_facet *f1, const stl_facet *f2) {
@@ -54,7 +45,7 @@ void SlicingAdaptive::prepare()
float SlicingAdaptive::cusp_height(float z, float cusp_value, int &current_facet)
{
- float height = m_layer_height_max;
+ float height = m_slicing_params.max_layer_height;
bool first_hit = false;
// find all facets intersecting the slice-layer
@@ -81,10 +72,10 @@ float SlicingAdaptive::cusp_height(float z, float cusp_value, int &current_facet
}
// lower height limit due to printer capabilities
- height = std::max(height, m_layer_height_min);
+ height = std::max(height, float(m_slicing_params.min_layer_height));
// check for sloped facets inside the determined layer and correct height if necessary
- if (height > m_layer_height_min) {
+ if (height > m_slicing_params.min_layer_height) {
for (; ordered_id < int(m_faces.size()); ++ ordered_id) {
std::pair<float, float> zspan = face_z_span(m_faces[ordered_id]);
// facet's minimum is higher than slice_z + height -> end loop
@@ -119,7 +110,7 @@ float SlicingAdaptive::cusp_height(float z, float cusp_value, int &current_facet
}
}
// lower height limit due to printer capabilities again
- height = std::max(height, m_layer_height_min);
+ height = std::max(height, float(m_slicing_params.min_layer_height));
}
// Slic3r::debugf "cusp computation, layer-bottom at z:%f, cusp_value:%f, resulting layer height:%f\n", unscale $z, $cusp_value, $height;
@@ -133,7 +124,7 @@ float SlicingAdaptive::horizontal_facet_distance(float z)
for (size_t i = 0; i < m_faces.size(); ++ i) {
std::pair<float, float> zspan = face_z_span(m_faces[i]);
// facet's minimum is higher than max forward distance -> end loop
- if (zspan.first > z + m_layer_height_max)
+ if (zspan.first > z + m_slicing_params.max_layer_height)
break;
// min_z == max_z -> horizontal facet
if (zspan.first > z && zspan.first == zspan.second)
@@ -141,9 +132,9 @@ float SlicingAdaptive::horizontal_facet_distance(float z)
}
// objects maximum?
- return (z + m_layer_height_max > m_max_z) ?
- std::max<float>(m_max_z - z, 0.f) :
- m_layer_height_max;
+ return (z + m_slicing_params.max_layer_height > m_slicing_params.object_print_z_height()) ?
+ std::max<float>(m_slicing_params.object_print_z_height() - z, 0.f) :
+ m_slicing_params.max_layer_height;
}
}; // namespace Slic3r
diff --git a/xs/src/libslic3r/SlicingAdaptive.hpp b/xs/src/libslic3r/SlicingAdaptive.hpp
index 23e8f4b62..bfd081d81 100644
--- a/xs/src/libslic3r/SlicingAdaptive.hpp
+++ b/xs/src/libslic3r/SlicingAdaptive.hpp
@@ -15,16 +15,14 @@ class SlicingAdaptive
{
public:
void clear();
- void set_layer_height_range(float min, float max) { m_layer_height_min = min; m_layer_height_max = max; }
+ void set_slicing_parameters(SlicingParameters params) { m_slicing_params = params; }
void add_mesh(const TriangleMesh *mesh) { m_meshes.push_back(mesh); }
void prepare();
float cusp_height(float z, float cusp_value, int &current_facet);
float horizontal_facet_distance(float z);
protected:
- float m_layer_height_min;
- float m_layer_height_max;
- float m_max_z;
+ SlicingParameters m_slicing_params;
std::vector<const TriangleMesh*> m_meshes;
// Collected faces of all meshes, sorted by raising Z of the bottom most face.
diff --git a/xs/xsp/Print.xsp b/xs/xsp/Print.xsp
index d36134839..7461b9d91 100644
--- a/xs/xsp/Print.xsp
+++ b/xs/xsp/Print.xsp
@@ -3,6 +3,7 @@
%{
#include <xsinit.h>
#include "libslic3r/Print.hpp"
+#include "libslic3r/Slicing.hpp"
#include "libslic3r/PlaceholderParser.hpp"
%}
@@ -58,6 +59,8 @@ _constant()
Points copies();
t_layer_height_ranges layer_height_ranges()
%code%{ RETVAL = THIS->layer_height_ranges; %};
+ std::vector<double> layer_height_profile()
+ %code%{ RETVAL = THIS->layer_height_profile; %};
Ref<Point3> size()
%code%{ RETVAL = &THIS->size; %};
Clone<BoundingBox> bounding_box();
@@ -82,6 +85,8 @@ _constant()
bool reload_model_instances();
void set_layer_height_ranges(t_layer_height_ranges layer_height_ranges)
%code%{ THIS->layer_height_ranges = layer_height_ranges; %};
+ void set_layer_height_profile(std::vector<double> profile)
+ %code%{ THIS->layer_height_profile = profile; %};
size_t total_layer_count();
size_t layer_count();
@@ -106,13 +111,31 @@ _constant()
%code%{ THIS->state.set_done(step); %};
void set_step_started(PrintObjectStep step)
%code%{ THIS->state.set_started(step); %};
-
+
+ void _slice();
void detect_surfaces_type();
void process_external_surfaces();
void discover_vertical_shells();
void bridge_over_infill();
void _make_perimeters();
void _infill();
+
+ void adjust_layer_height_profile(coordf_t z, coordf_t layer_thickness_delta, coordf_t band_width, int action)
+ %code%{
+ THIS->update_layer_height_profile();
+ adjust_layer_height_profile(
+ THIS->slicing_parameters(), THIS->layer_height_profile, z, layer_thickness_delta, band_width, action);
+ %};
+
+ int generate_layer_height_texture(void *data, int rows, int cols, bool level_of_detail_2nd_level = true)
+ %code%{
+ THIS->update_layer_height_profile();
+ SlicingParameters slicing_params = THIS->slicing_parameters();
+ RETVAL = generate_layer_height_texture(
+ slicing_params,
+ generate_object_layers(slicing_params, THIS->layer_height_profile),
+ data, rows, cols, level_of_detail_2nd_level);
+ %};
int ptr()
%code%{ RETVAL = (int)(intptr_t)THIS; %};