Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Geometry.cpp « libslic3r « src « xs - github.com/supermerill/SuperSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 6d864f6313319bbdb5d523410411fe70e38c9057 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
#include "Geometry.hpp"
#include "ClipperUtils.hpp"
#include "ExPolygon.hpp"
#include "Line.hpp"
#include "PolylineCollection.hpp"
#include "clipper.hpp"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <list>
#include <map>
#include <set>
#include <utility>
#include <vector>

#ifdef SLIC3R_DEBUG
#include "SVG.hpp"
#endif

using namespace boost::polygon;  // provides also high() and low()

namespace Slic3r { namespace Geometry {

static bool
sort_points (Point a, Point b)
{
    return (a.x < b.x) || (a.x == b.x && a.y < b.y);
}

/* This implementation is based on Andrew's monotone chain 2D convex hull algorithm */
Polygon
convex_hull(Points points)
{
    assert(points.size() >= 3);
    // sort input points
    std::sort(points.begin(), points.end(), sort_points);
    
    int n = points.size(), k = 0;
    Polygon hull;
    hull.points.resize(2*n);

    // Build lower hull
    for (int i = 0; i < n; i++) {
        while (k >= 2 && points[i].ccw(hull.points[k-2], hull.points[k-1]) <= 0) k--;
        hull.points[k++] = points[i];
    }

    // Build upper hull
    for (int i = n-2, t = k+1; i >= 0; i--) {
        while (k >= t && points[i].ccw(hull.points[k-2], hull.points[k-1]) <= 0) k--;
        hull.points[k++] = points[i];
    }

    hull.points.resize(k);
    
    assert( hull.points.front().coincides_with(hull.points.back()) );
    hull.points.pop_back();
    
    return hull;
}

Polygon
convex_hull(const Polygons &polygons)
{
    Points pp;
    for (Polygons::const_iterator p = polygons.begin(); p != polygons.end(); ++p) {
        pp.insert(pp.end(), p->points.begin(), p->points.end());
    }
    return convex_hull(pp);
}

/* accepts an arrayref of points and returns a list of indices
   according to a nearest-neighbor walk */
void
chained_path(const Points &points, std::vector<Points::size_type> &retval, Point start_near)
{
    PointConstPtrs my_points;
    std::map<const Point*,Points::size_type> indices;
    my_points.reserve(points.size());
    for (Points::const_iterator it = points.begin(); it != points.end(); ++it) {
        my_points.push_back(&*it);
        indices[&*it] = it - points.begin();
    }
    
    retval.reserve(points.size());
    while (!my_points.empty()) {
        Points::size_type idx = start_near.nearest_point_index(my_points);
        start_near = *my_points[idx];
        retval.push_back(indices[ my_points[idx] ]);
        my_points.erase(my_points.begin() + idx);
    }
}

void
chained_path(const Points &points, std::vector<Points::size_type> &retval)
{
    if (points.empty()) return;  // can't call front() on empty vector
    chained_path(points, retval, points.front());
}

/* retval and items must be different containers */
template<class T>
void
chained_path_items(Points &points, T &items, T &retval)
{
    std::vector<Points::size_type> indices;
    chained_path(points, indices);
    for (std::vector<Points::size_type>::const_iterator it = indices.begin(); it != indices.end(); ++it)
        retval.push_back(items[*it]);
}
template void chained_path_items(Points &points, ClipperLib::PolyNodes &items, ClipperLib::PolyNodes &retval);

bool
directions_parallel(double angle1, double angle2, double max_diff)
{
    double diff = fabs(angle1 - angle2);
    max_diff += EPSILON;
    return diff < max_diff || fabs(diff - PI) < max_diff;
}

template<class T>
bool
contains(const std::vector<T> &vector, const Point &point)
{
    for (typename std::vector<T>::const_iterator it = vector.begin(); it != vector.end(); ++it) {
        if (it->contains(point)) return true;
    }
    return false;
}
template bool contains(const ExPolygons &vector, const Point &point);

double
rad2deg(double angle)
{
    return angle / PI * 180.0;
}

double
rad2deg_dir(double angle)
{
    angle = (angle < PI) ? (-angle + PI/2.0) : (angle + PI/2.0);
    if (angle < 0) angle += PI;
    return rad2deg(angle);
}

double
deg2rad(double angle)
{
    return PI * angle / 180.0;
}

void
simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval)
{
    Polygons pp;
    for (Polygons::const_iterator it = polygons.begin(); it != polygons.end(); ++it) {
        Polygon p = *it;
        p.points.push_back(p.points.front());
        p.points = MultiPoint::_douglas_peucker(p.points, tolerance);
        p.points.pop_back();
        pp.push_back(p);
    }
    Slic3r::simplify_polygons(pp, retval);
}

double
linint(double value, double oldmin, double oldmax, double newmin, double newmax)
{
    return (value - oldmin) * (newmax - newmin) / (oldmax - oldmin) + newmin;
}

Pointfs
arrange(size_t total_parts, Pointf part, coordf_t dist, const BoundingBoxf* bb)
{
    // use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm
    part.x += dist;
    part.y += dist;
    
    Pointf area;
    if (bb != NULL && bb->defined) {
        area = bb->size();
    } else {
        // bogus area size, large enough not to trigger the error below
        area.x = part.x * total_parts;
        area.y = part.y * total_parts;
    }
    
    // this is how many cells we have available into which to put parts
    size_t cellw = floor((area.x + dist) / part.x);
    size_t cellh = floor((area.y + dist) / part.y);
    if (total_parts > (cellw * cellh))
        CONFESS("%zu parts won't fit in your print area!\n", total_parts);
    
    // total space used by cells
    Pointf cells(cellw * part.x, cellh * part.y);
    
    // bounding box of total space used by cells
    BoundingBoxf cells_bb;
    cells_bb.merge(Pointf(0,0)); // min
    cells_bb.merge(cells);  // max
    
    // center bounding box to area
    cells_bb.translate(
        (area.x - cells.x) / 2,
        (area.y - cells.y) / 2
    );
    
    // list of cells, sorted by distance from center
    std::vector<ArrangeItemIndex> cellsorder;
    
    // work out distance for all cells, sort into list
    for (size_t i = 0; i <= cellw-1; ++i) {
        for (size_t j = 0; j <= cellh-1; ++j) {
            coordf_t cx = linint(i + 0.5, 0, cellw, cells_bb.min.x, cells_bb.max.x);
            coordf_t cy = linint(j + 0.5, 0, cellh, cells_bb.min.y, cells_bb.max.y);
            
            coordf_t xd = fabs((area.x / 2) - cx);
            coordf_t yd = fabs((area.y / 2) - cy);
            
            ArrangeItem c;
            c.pos.x = cx;
            c.pos.y = cy;
            c.index_x = i;
            c.index_y = j;
            c.dist = xd * xd + yd * yd - fabs((cellw / 2) - (i + 0.5));
            
            // binary insertion sort
            {
                coordf_t index = c.dist;
                size_t low = 0;
                size_t high = cellsorder.size();
                while (low < high) {
                    size_t mid = (low + ((high - low) / 2)) | 0;
                    coordf_t midval = cellsorder[mid].index;
                    
                    if (midval < index) {
                        low = mid + 1;
                    } else if (midval > index) {
                        high = mid;
                    } else {
                        cellsorder.insert(cellsorder.begin() + mid, ArrangeItemIndex(index, c));
                        goto ENDSORT;
                    }
                }
                cellsorder.insert(cellsorder.begin() + low, ArrangeItemIndex(index, c));
            }
            ENDSORT: true;
        }
    }
    
    // the extents of cells actually used by objects
    coordf_t lx = 0;
    coordf_t ty = 0;
    coordf_t rx = 0;
    coordf_t by = 0;

    // now find cells actually used by objects, map out the extents so we can position correctly
    for (size_t i = 1; i <= total_parts; ++i) {
        ArrangeItemIndex c = cellsorder[i - 1];
        coordf_t cx = c.item.index_x;
        coordf_t cy = c.item.index_y;
        if (i == 1) {
            lx = rx = cx;
            ty = by = cy;
        } else {
            if (cx > rx) rx = cx;
            if (cx < lx) lx = cx;
            if (cy > by) by = cy;
            if (cy < ty) ty = cy;
        }
    }
    // now we actually place objects into cells, positioned such that the left and bottom borders are at 0
    Pointfs positions;
    for (size_t i = 1; i <= total_parts; ++i) {
        ArrangeItemIndex c = cellsorder.front();
        cellsorder.erase(cellsorder.begin());
        coordf_t cx = c.item.index_x - lx;
        coordf_t cy = c.item.index_y - ty;
        
        positions.push_back(Pointf(cx * part.x, cy * part.y));
    }
    
    if (bb != NULL && bb->defined) {
        for (Pointfs::iterator p = positions.begin(); p != positions.end(); ++p) {
            p->x += bb->min.x;
            p->y += bb->min.y;
        }
    }
    
    return positions;
}

void
MedialAxis::build(ThickPolylines* polylines)
{
    construct_voronoi(this->lines.begin(), this->lines.end(), &this->vd);
    
    /*
    // DEBUG: dump all Voronoi edges
    {
        for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
            if (edge->is_infinite()) continue;
            
            ThickPolyline polyline;
            polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() ));
            polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() ));
            polylines->push_back(polyline);
        }
        return;
    }
    */
    
    typedef const VD::vertex_type vert_t;
    typedef const VD::edge_type   edge_t;
    
    // collect valid edges (i.e. prune those not belonging to MAT)
    // note: this keeps twins, so it inserts twice the number of the valid edges
    this->valid_edges.clear();
    {
        std::set<const VD::edge_type*> seen_edges;
        for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
            // if we only process segments representing closed loops, none if the
            // infinite edges (if any) would be part of our MAT anyway
            if (edge->is_secondary() || edge->is_infinite()) continue;
        
            // don't re-validate twins
            if (seen_edges.find(&*edge) != seen_edges.end()) continue;  // TODO: is this needed?
            seen_edges.insert(&*edge);
            seen_edges.insert(edge->twin());
            
            if (!this->validate_edge(&*edge)) continue;
            this->valid_edges.insert(&*edge);
            this->valid_edges.insert(edge->twin());
        }
    }
    this->edges = this->valid_edges;
    
    // iterate through the valid edges to build polylines
    while (!this->edges.empty()) {
        const edge_t* edge = *this->edges.begin();
        
        // start a polyline
        ThickPolyline polyline;
        polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() ));
        polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() ));
        polyline.width.push_back(this->thickness[edge].first);
        polyline.width.push_back(this->thickness[edge].second);
        
        // remove this edge and its twin from the available edges
        (void)this->edges.erase(edge);
        (void)this->edges.erase(edge->twin());
        
        // get next points
        this->process_edge_neighbors(edge, &polyline);
        
        // get previous points
        {
            ThickPolyline rpolyline;
            this->process_edge_neighbors(edge->twin(), &rpolyline);
            polyline.points.insert(polyline.points.begin(), rpolyline.points.rbegin(), rpolyline.points.rend());
            polyline.width.insert(polyline.width.begin(), rpolyline.width.rbegin(), rpolyline.width.rend());
            polyline.endpoints.first = rpolyline.endpoints.second;
        }
        
        assert(polyline.width.size() == polyline.points.size()*2 - 2);
        
        // prevent loop endpoints from being extended
        if (polyline.first_point().coincides_with(polyline.last_point())) {
            polyline.endpoints.first = false;
            polyline.endpoints.second = false;
        }
        
        // append polyline to result
        polylines->push_back(polyline);
    }
}

void
MedialAxis::build(Polylines* polylines)
{
    ThickPolylines tp;
    this->build(&tp);
    polylines->insert(polylines->end(), tp.begin(), tp.end());
}

void
MedialAxis::process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline)
{
    while (true) {
        // Since rot_next() works on the edge starting point but we want
        // to find neighbors on the ending point, we just swap edge with
        // its twin.
        const VD::edge_type* twin = edge->twin();
    
        // count neighbors for this edge
        std::vector<const VD::edge_type*> neighbors;
        for (const VD::edge_type* neighbor = twin->rot_next(); neighbor != twin;
            neighbor = neighbor->rot_next()) {
            if (this->valid_edges.count(neighbor) > 0) neighbors.push_back(neighbor);
        }
    
        // if we have a single neighbor then we can continue recursively
        if (neighbors.size() == 1) {
            const VD::edge_type* neighbor = neighbors.front();
            
            // break if this is a closed loop
            if (this->edges.count(neighbor) == 0) return;
            
            Point new_point(neighbor->vertex1()->x(), neighbor->vertex1()->y());
            polyline->points.push_back(new_point);
            polyline->width.push_back(this->thickness[neighbor].first);
            polyline->width.push_back(this->thickness[neighbor].second);
            (void)this->edges.erase(neighbor);
            (void)this->edges.erase(neighbor->twin());
            edge = neighbor;
        } else if (neighbors.size() == 0) {
            polyline->endpoints.second = true;
            return;
        } else {
            // T-shaped or star-shaped joint
            return;
        }
    }
}

bool
MedialAxis::validate_edge(const VD::edge_type* edge)
{
    // construct the line representing this edge of the Voronoi diagram
    const Line line(
        Point( edge->vertex0()->x(), edge->vertex0()->y() ),
        Point( edge->vertex1()->x(), edge->vertex1()->y() )
    );
    
    // discard edge if it lies outside the supplied shape
    // this could maybe be optimized (checking inclusion of the endpoints
    // might give false positives as they might belong to the contour itself)
    if (this->expolygon != NULL) {
        if (line.a.coincides_with(line.b)) {
            // in this case, contains(line) returns a false positive
            if (!this->expolygon->contains(line.a)) return false;
        } else {
            if (!this->expolygon->contains(line)) return false;
        }
    }
    
    // retrieve the original line segments which generated the edge we're checking
    const VD::cell_type* cell_l = edge->cell();
    const VD::cell_type* cell_r = edge->twin()->cell();
    const Line &segment_l = this->retrieve_segment(cell_l);
    const Line &segment_r = this->retrieve_segment(cell_r);
    
    /*
    SVG svg("edge.svg");
    svg.draw(*this->expolygon);
    svg.draw(line);
    svg.draw(segment_l, "red");
    svg.draw(segment_r, "blue");
    svg.Close();
    */
    
    /*  Calculate thickness of the cross-section at both the endpoints of this edge.
        Our Voronoi edge is part of a CCW sequence going around its Voronoi cell 
        located on the left side. (segment_l).
        This edge's twin goes around segment_r. Thus, segment_r is 
        oriented in the same direction as our main edge, and segment_l is oriented
        in the same direction as our twin edge.
        We used to only consider the (half-)distances to segment_r, and that works
        whenever segment_l and segment_r are almost specular and facing. However, 
        at curves they are staggered and they only face for a very little length
        (our very short edge represents such visibility).
        Both w0 and w1 can be calculated either towards cell_l or cell_r with equal
        results by Voronoi definition.
        When cell_l or cell_r don't refer to the segment but only to an endpoint, we
        calculate the distance to that endpoint instead.  */
    
    coordf_t w0 = cell_r->contains_segment()
        ? line.a.distance_to(segment_r)*2
        : line.a.distance_to(this->retrieve_endpoint(cell_r))*2;
    
    coordf_t w1 = cell_l->contains_segment()
        ? line.b.distance_to(segment_l)*2
        : line.b.distance_to(this->retrieve_endpoint(cell_l))*2;
    
    if (cell_l->contains_segment() && cell_r->contains_segment()) {
        // calculate the relative angle between the two boundary segments
        double angle = fabs(segment_r.orientation() - segment_l.orientation());
        if (angle > PI) angle = 2*PI - angle;
        assert(angle >= 0 && angle <= PI);
        
        // fabs(angle) ranges from 0 (collinear, same direction) to PI (collinear, opposite direction)
        // we're interested only in segments close to the second case (facing segments)
        // so we allow some tolerance.
        // this filter ensures that we're dealing with a narrow/oriented area (longer than thick)
        // we don't run it on edges not generated by two segments (thus generated by one segment
        // and the endpoint of another segment), since their orientation would not be meaningful
        if (PI - angle > PI/8) {
            // angle is not narrow enough
            
            // only apply this filter to segments that are not too short otherwise their 
            // angle could possibly be not meaningful
            if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON || line.length() >= this->min_width)
                return false;
        }
    } else {
        if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON)
            return false;
    }
    
    if (w0 < this->min_width && w1 < this->min_width)
        return false;
    
    if (w0 > this->max_width && w1 > this->max_width)
        return false;
    
    this->thickness[edge]         = std::make_pair(w0, w1);
    this->thickness[edge->twin()] = std::make_pair(w1, w0);
    
    return true;
}

const Line&
MedialAxis::retrieve_segment(const VD::cell_type* cell) const
{
    return this->lines[cell->source_index()];
}

const Point&
MedialAxis::retrieve_endpoint(const VD::cell_type* cell) const
{
    const Line& line = this->retrieve_segment(cell);
    if (cell->source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) {
        return line.a;
    } else {
        return line.b;
    }
}

} }