Welcome to mirror list, hosted at ThFree Co, Russian Federation.

gitlab.xiph.org/xiph/opus.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorKoen Vos <koen.vos@skype.net>2011-10-29 03:44:26 +0400
committerJean-Marc Valin <jmvalin@jmvalin.ca>2011-10-29 03:44:26 +0400
commitacc7a6c78b266e3ef0e1f91ee405af92a0989dec (patch)
treed3e32cc66cf96fecdaffc924ff0d051028b72f31 /silk/SigProc_FIX.h
parent2d4f61409186c7efa831387bf14e2164607a805a (diff)
Reformatting changes with an update to the MSVC project files
Diffstat (limited to 'silk/SigProc_FIX.h')
-rw-r--r--silk/SigProc_FIX.h480
1 files changed, 238 insertions, 242 deletions
diff --git a/silk/SigProc_FIX.h b/silk/SigProc_FIX.h
index d24eac6f..a80ac97e 100644
--- a/silk/SigProc_FIX.h
+++ b/silk/SigProc_FIX.h
@@ -35,10 +35,10 @@ extern "C"
/*#define silk_MACRO_COUNT */ /* Used to enable WMOPS counting */
-#define SILK_MAX_ORDER_LPC 16 /* max order of the LPC analysis in schur() and k2a() */
+#define SILK_MAX_ORDER_LPC 16 /* max order of the LPC analysis in schur() and k2a() */
-#include <stdlib.h> /* for abs() */
-#include <string.h> /* for memset(), memcpy(), memmove() */
+#include <stdlib.h> /* for abs() */
+#include <string.h> /* for memset(), memcpy(), memmove() */
#include "typedef.h"
#include "resampler_structs.h"
#include "macros.h"
@@ -52,39 +52,39 @@ extern "C"
* Initialize/reset the resampler state for a given pair of input/output sampling rates
*/
opus_int silk_resampler_init(
- silk_resampler_state_struct *S, /* I/O: Resampler state */
- opus_int32 Fs_Hz_in, /* I: Input sampling rate (Hz) */
- opus_int32 Fs_Hz_out /* I: Output sampling rate (Hz) */
+ silk_resampler_state_struct *S, /* I/O Resampler state */
+ opus_int32 Fs_Hz_in, /* I Input sampling rate (Hz) */
+ opus_int32 Fs_Hz_out /* I Output sampling rate (Hz) */
);
/*!
* Resampler: convert from one sampling rate to another
*/
opus_int silk_resampler(
- silk_resampler_state_struct *S, /* I/O: Resampler state */
- opus_int16 out[], /* O: Output signal */
- const opus_int16 in[], /* I: Input signal */
- opus_int32 inLen /* I: Number of input samples */
+ silk_resampler_state_struct *S, /* I/O Resampler state */
+ opus_int16 out[], /* O Output signal */
+ const opus_int16 in[], /* I Input signal */
+ opus_int32 inLen /* I Number of input samples */
);
/*!
* Downsample 2x, mediocre quality
*/
void silk_resampler_down2(
- opus_int32 *S, /* I/O: State vector [ 2 ] */
- opus_int16 *out, /* O: Output signal [ len ] */
- const opus_int16 *in, /* I: Input signal [ floor(len/2) ] */
- opus_int32 inLen /* I: Number of input samples */
+ opus_int32 *S, /* I/O State vector [ 2 ] */
+ opus_int16 *out, /* O Output signal [ len ] */
+ const opus_int16 *in, /* I Input signal [ floor(len/2) ] */
+ opus_int32 inLen /* I Number of input samples */
);
/*!
* Downsample by a factor 2/3, low quality
*/
void silk_resampler_down2_3(
- opus_int32 *S, /* I/O: State vector [ 6 ] */
- opus_int16 *out, /* O: Output signal [ floor(2*inLen/3) ] */
- const opus_int16 *in, /* I: Input signal [ inLen ] */
- opus_int32 inLen /* I: Number of input samples */
+ opus_int32 *S, /* I/O State vector [ 6 ] */
+ opus_int16 *out, /* O Output signal [ floor(2*inLen/3) ] */
+ const opus_int16 *in, /* I Input signal [ inLen ] */
+ opus_int32 inLen /* I Number of input samples */
);
/*!
@@ -93,268 +93,269 @@ void silk_resampler_down2_3(
* can handle (slowly) varying coefficients
*/
void silk_biquad_alt(
- const opus_int16 *in, /* I: input signal */
- const opus_int32 *B_Q28, /* I: MA coefficients [3] */
- const opus_int32 *A_Q28, /* I: AR coefficients [2] */
- opus_int32 *S, /* I/O: State vector [2] */
- opus_int16 *out, /* O: output signal */
- const opus_int32 len, /* I: signal length (must be even) */
- opus_int stride /* I: Operate on interleaved signal if > 1 */
+ const opus_int16 *in, /* I input signal */
+ const opus_int32 *B_Q28, /* I MA coefficients [3] */
+ const opus_int32 *A_Q28, /* I AR coefficients [2] */
+ opus_int32 *S, /* I/O State vector [2] */
+ opus_int16 *out, /* O output signal */
+ const opus_int32 len, /* I signal length (must be even) */
+ opus_int stride /* I Operate on interleaved signal if > 1 */
);
/* Variable order MA prediction error filter. */
void silk_LPC_analysis_filter(
- opus_int16 *out, /* O: Output signal */
- const opus_int16 *in, /* I: Input signal */
- const opus_int16 *B, /* I: MA prediction coefficients, Q12 [order] */
- const opus_int32 len, /* I: Signal length */
- const opus_int32 Order /* I: Filter order */
+ opus_int16 *out, /* O Output signal */
+ const opus_int16 *in, /* I Input signal */
+ const opus_int16 *B, /* I MA prediction coefficients, Q12 [order] */
+ const opus_int32 len, /* I Signal length */
+ const opus_int32 d /* I Filter order */
);
/* Chirp (bandwidth expand) LP AR filter */
void silk_bwexpander(
- opus_int16 *ar, /* I/O AR filter to be expanded (without leading 1) */
- const opus_int d, /* I Length of ar */
- opus_int32 chirp_Q16 /* I Chirp factor (typically in the range 0 to 1) */
+ opus_int16 *ar, /* I/O AR filter to be expanded (without leading 1) */
+ const opus_int d, /* I Length of ar */
+ opus_int32 chirp_Q16 /* I Chirp factor (typically in the range 0 to 1) */
);
/* Chirp (bandwidth expand) LP AR filter */
void silk_bwexpander_32(
- opus_int32 *ar, /* I/O AR filter to be expanded (without leading 1) */
- const opus_int d, /* I Length of ar */
- opus_int32 chirp_Q16 /* I Chirp factor in Q16 */
+ opus_int32 *ar, /* I/O AR filter to be expanded (without leading 1) */
+ const opus_int d, /* I Length of ar */
+ opus_int32 chirp_Q16 /* I Chirp factor in Q16 */
);
/* Compute inverse of LPC prediction gain, and */
/* test if LPC coefficients are stable (all poles within unit circle) */
-opus_int silk_LPC_inverse_pred_gain( /* O: Returns 1 if unstable, otherwise 0 */
- opus_int32 *invGain_Q30, /* O: Inverse prediction gain, Q30 energy domain */
- const opus_int16 *A_Q12, /* I: Prediction coefficients, Q12 [order] */
- const opus_int order /* I: Prediction order */
+opus_int silk_LPC_inverse_pred_gain( /* O Returns 1 if unstable, otherwise 0 */
+ opus_int32 *invGain_Q30, /* O Inverse prediction gain, Q30 energy domain */
+ const opus_int16 *A_Q12, /* I Prediction coefficients, Q12 [order] */
+ const opus_int order /* I Prediction order */
);
-opus_int silk_LPC_inverse_pred_gain_Q24( /* O: Returns 1 if unstable, otherwise 0 */
- opus_int32 *invGain_Q30, /* O: Inverse prediction gain, Q30 energy domain */
- const opus_int32 *A_Q24, /* I: Prediction coefficients, Q24 [order] */
- const opus_int order /* I: Prediction order */
+opus_int silk_LPC_inverse_pred_gain_Q24( /* O Returns 1 if unstable, otherwise 0 */
+ opus_int32 *invGain_Q30, /* O Inverse prediction gain, Q30 energy domain */
+ const opus_int32 *A_Q24, /* I Prediction coefficients, Q24 [order] */
+ const opus_int order /* I Prediction order */
);
-/* split signal in two decimated bands using first-order allpass filters */
+/* Split signal in two decimated bands using first-order allpass filters */
void silk_ana_filt_bank_1(
- const opus_int16 *in, /* I: Input signal [N] */
- opus_int32 *S, /* I/O: State vector [2] */
- opus_int16 *outL, /* O: Low band [N/2] */
- opus_int16 *outH, /* O: High band [N/2] */
- const opus_int32 N /* I: Number of input samples */
+ const opus_int16 *in, /* I Input signal [N] */
+ opus_int32 *S, /* I/O State vector [2] */
+ opus_int16 *outL, /* O Low band [N/2] */
+ opus_int16 *outH, /* O High band [N/2] */
+ const opus_int32 N /* I Number of input samples */
);
/********************************************************************/
/* SCALAR FUNCTIONS */
/********************************************************************/
-/* approximation of 128 * log2() (exact inverse of approx 2^() below) */
-/* convert input to a log scale */
-opus_int32 silk_lin2log(const opus_int32 inLin); /* I: input in linear scale */
+/* Approximation of 128 * log2() (exact inverse of approx 2^() below) */
+/* Convert input to a log scale */
+opus_int32 silk_lin2log(
+ const opus_int32 inLin /* I input in linear scale */
+);
/* Approximation of a sigmoid function */
-opus_int silk_sigm_Q15(opus_int in_Q5);
+opus_int silk_sigm_Q15(
+ opus_int in_Q5 /* I */
+);
-/* approximation of 2^() (exact inverse of approx log2() above) */
-/* convert input to a linear scale */
-opus_int32 silk_log2lin(const opus_int32 inLog_Q7); /* I: input on log scale */
+/* Approximation of 2^() (exact inverse of approx log2() above) */
+/* Convert input to a linear scale */
+opus_int32 silk_log2lin(
+ const opus_int32 inLog_Q7 /* I input on log scale */
+);
/* Function that returns the maximum absolut value of the input vector */
-opus_int16 silk_int16_array_maxabs( /* O Maximum absolute value, max: 2^15-1 */
- const opus_int16 *vec, /* I Input vector [len] */
- const opus_int32 len /* I Length of input vector */
+opus_int16 silk_int16_array_maxabs( /* O Maximum absolute value, max: 2^15-1 */
+ const opus_int16 *vec, /* I Input vector [len] */
+ const opus_int32 len /* I Length of input vector */
);
/* Compute number of bits to right shift the sum of squares of a vector */
/* of int16s to make it fit in an int32 */
void silk_sum_sqr_shift(
- opus_int32 *energy, /* O Energy of x, after shifting to the right */
- opus_int *shift, /* O Number of bits right shift applied to energy */
- const opus_int16 *x, /* I Input vector */
- opus_int len /* I Length of input vector */
+ opus_int32 *energy, /* O Energy of x, after shifting to the right */
+ opus_int *shift, /* O Number of bits right shift applied to energy */
+ const opus_int16 *x, /* I Input vector */
+ opus_int len /* I Length of input vector */
);
/* Calculates the reflection coefficients from the correlation sequence */
/* Faster than schur64(), but much less accurate. */
/* uses SMLAWB(), requiring armv5E and higher. */
-opus_int32 silk_schur( /* O: Returns residual energy */
- opus_int16 *rc_Q15, /* O: reflection coefficients [order] Q15 */
- const opus_int32 *c, /* I: correlations [order+1] */
- const opus_int32 order /* I: prediction order */
+opus_int32 silk_schur( /* O Returns residual energy */
+ opus_int16 *rc_Q15, /* O reflection coefficients [order] Q15 */
+ const opus_int32 *c, /* I correlations [order+1] */
+ const opus_int32 order /* I prediction order */
);
/* Calculates the reflection coefficients from the correlation sequence */
/* Slower than schur(), but more accurate. */
/* Uses SMULL(), available on armv4 */
-opus_int32 silk_schur64( /* O: returns residual energy */
- opus_int32 rc_Q16[], /* O: Reflection coefficients [order] Q16 */
- const opus_int32 c[], /* I: Correlations [order+1] */
- opus_int32 order /* I: Prediction order */
+opus_int32 silk_schur64( /* O returns residual energy */
+ opus_int32 rc_Q16[], /* O Reflection coefficients [order] Q16 */
+ const opus_int32 c[], /* I Correlations [order+1] */
+ opus_int32 order /* I Prediction order */
);
/* Step up function, converts reflection coefficients to prediction coefficients */
void silk_k2a(
- opus_int32 *A_Q24, /* O: Prediction coefficients [order] Q24 */
- const opus_int16 *rc_Q15, /* I: Reflection coefficients [order] Q15 */
- const opus_int32 order /* I: Prediction order */
+ opus_int32 *A_Q24, /* O Prediction coefficients [order] Q24 */
+ const opus_int16 *rc_Q15, /* I Reflection coefficients [order] Q15 */
+ const opus_int32 order /* I Prediction order */
);
/* Step up function, converts reflection coefficients to prediction coefficients */
void silk_k2a_Q16(
- opus_int32 *A_Q24, /* O: Prediction coefficients [order] Q24 */
- const opus_int32 *rc_Q16, /* I: Reflection coefficients [order] Q16 */
- const opus_int32 order /* I: Prediction order */
+ opus_int32 *A_Q24, /* O Prediction coefficients [order] Q24 */
+ const opus_int32 *rc_Q16, /* I Reflection coefficients [order] Q16 */
+ const opus_int32 order /* I Prediction order */
);
-/* Apply sine window to signal vector. */
-/* Window types: */
-/* 1 -> sine window from 0 to pi/2 */
-/* 2 -> sine window from pi/2 to pi */
-/* every other sample of window is linearly interpolated, for speed */
+/* Apply sine window to signal vector. */
+/* Window types: */
+/* 1 -> sine window from 0 to pi/2 */
+/* 2 -> sine window from pi/2 to pi */
+/* every other sample of window is linearly interpolated, for speed */
void silk_apply_sine_window(
- opus_int16 px_win[], /* O Pointer to windowed signal */
- const opus_int16 px[], /* I Pointer to input signal */
- const opus_int win_type, /* I Selects a window type */
- const opus_int length /* I Window length, multiple of 4 */
+ opus_int16 px_win[], /* O Pointer to windowed signal */
+ const opus_int16 px[], /* I Pointer to input signal */
+ const opus_int win_type, /* I Selects a window type */
+ const opus_int length /* I Window length, multiple of 4 */
);
/* Compute autocorrelation */
void silk_autocorr(
- opus_int32 *results, /* O Result (length correlationCount) */
- opus_int *scale, /* O Scaling of the correlation vector */
- const opus_int16 *inputData, /* I Input data to correlate */
- const opus_int inputDataSize, /* I Length of input */
- const opus_int correlationCount /* I Number of correlation taps to compute */
+ opus_int32 *results, /* O Result (length correlationCount) */
+ opus_int *scale, /* O Scaling of the correlation vector */
+ const opus_int16 *inputData, /* I Input data to correlate */
+ const opus_int inputDataSize, /* I Length of input */
+ const opus_int correlationCount /* I Number of correlation taps to compute */
);
-/* Pitch estimator */
-#define SILK_PE_MIN_COMPLEX 0
-#define SILK_PE_MID_COMPLEX 1
-#define SILK_PE_MAX_COMPLEX 2
-
void silk_decode_pitch(
- opus_int16 lagIndex, /* I */
- opus_int8 contourIndex, /* O */
- opus_int pitch_lags[], /* O 4 pitch values */
- const opus_int Fs_kHz, /* I sampling frequency (kHz) */
- const opus_int nb_subfr /* I number of sub frames */
-);
-
-opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 voiced, 1 unvoiced */
- const opus_int16 *signal, /* I Signal of length PE_FRAME_LENGTH_MS*Fs_kHz */
- opus_int *pitch_out, /* O 4 pitch lag values */
- opus_int16 *lagIndex, /* O Lag Index */
- opus_int8 *contourIndex, /* O Pitch contour Index */
- opus_int *LTPCorr_Q15, /* I/O Normalized correlation; input: value from previous frame */
- opus_int prevLag, /* I Last lag of previous frame; set to zero is unvoiced */
- const opus_int32 search_thres1_Q16, /* I First stage threshold for lag candidates 0 - 1 */
- const opus_int search_thres2_Q15, /* I Final threshold for lag candidates 0 - 1 */
- const opus_int Fs_kHz, /* I Sample frequency (kHz) */
- const opus_int complexity, /* I Complexity setting, 0-2, where 2 is highest */
- const opus_int nb_subfr /* I number of 5 ms subframes */
+ opus_int16 lagIndex, /* I */
+ opus_int8 contourIndex, /* O */
+ opus_int pitch_lags[], /* O 4 pitch values */
+ const opus_int Fs_kHz, /* I sampling frequency (kHz) */
+ const opus_int nb_subfr /* I number of sub frames */
+);
+
+opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 voiced, 1 unvoiced */
+ const opus_int16 *frame, /* I Signal of length PE_FRAME_LENGTH_MS*Fs_kHz */
+ opus_int *pitch_out, /* O 4 pitch lag values */
+ opus_int16 *lagIndex, /* O Lag Index */
+ opus_int8 *contourIndex, /* O Pitch contour Index */
+ opus_int *LTPCorr_Q15, /* I/O Normalized correlation; input: value from previous frame */
+ opus_int prevLag, /* I Last lag of previous frame; set to zero is unvoiced */
+ const opus_int32 search_thres1_Q16, /* I First stage threshold for lag candidates 0 - 1 */
+ const opus_int search_thres2_Q15, /* I Final threshold for lag candidates 0 - 1 */
+ const opus_int Fs_kHz, /* I Sample frequency (kHz) */
+ const opus_int complexity, /* I Complexity setting, 0-2, where 2 is highest */
+ const opus_int nb_subfr /* I number of 5 ms subframes */
);
/* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients */
/* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */
void silk_A2NLSF(
- opus_int16 *NLSF, /* O Normalized Line Spectral Frequencies, Q15 (0 - (2^15-1)), [d] */
- opus_int32 *a_Q16, /* I/O Monic whitening filter coefficients in Q16 [d] */
- const opus_int d /* I Filter order (must be even) */
+ opus_int16 *NLSF, /* O Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */
+ opus_int32 *a_Q16, /* I/O Monic whitening filter coefficients in Q16 [d] */
+ const opus_int d /* I Filter order (must be even) */
);
/* compute whitening filter coefficients from normalized line spectral frequencies */
void silk_NLSF2A(
- opus_int16 *a_Q12, /* O monic whitening filter coefficients in Q12, [ d ] */
- const opus_int16 *NLSF, /* I normalized line spectral frequencies in Q15, [ d ] */
- const opus_int d /* I filter order (should be even) */
+ opus_int16 *a_Q12, /* O monic whitening filter coefficients in Q12, [ d ] */
+ const opus_int16 *NLSF, /* I normalized line spectral frequencies in Q15, [ d ] */
+ const opus_int d /* I filter order (should be even) */
);
void silk_insertion_sort_increasing(
- opus_int32 *a, /* I/O Unsorted / Sorted vector */
- opus_int *idx, /* O: Index vector for the sorted elements */
- const opus_int L, /* I: Vector length */
- const opus_int K /* I: Number of correctly sorted positions */
+ opus_int32 *a, /* I/O Unsorted / Sorted vector */
+ opus_int *idx, /* O Index vector for the sorted elements */
+ const opus_int L, /* I Vector length */
+ const opus_int K /* I Number of correctly sorted positions */
);
void silk_insertion_sort_decreasing_int16(
- opus_int16 *a, /* I/O: Unsorted / Sorted vector */
- opus_int *idx, /* O: Index vector for the sorted elements */
- const opus_int L, /* I: Vector length */
- const opus_int K /* I: Number of correctly sorted positions */
+ opus_int16 *a, /* I/O Unsorted / Sorted vector */
+ opus_int *idx, /* O Index vector for the sorted elements */
+ const opus_int L, /* I Vector length */
+ const opus_int K /* I Number of correctly sorted positions */
);
void silk_insertion_sort_increasing_all_values_int16(
- opus_int16 *a, /* I/O: Unsorted / Sorted vector */
- const opus_int L /* I: Vector length */
+ opus_int16 *a, /* I/O Unsorted / Sorted vector */
+ const opus_int L /* I Vector length */
);
/* NLSF stabilizer, for a single input data vector */
void silk_NLSF_stabilize(
- opus_int16 *NLSF_Q15, /* I/O: Unstable/stabilized normalized LSF vector in Q15 [L] */
- const opus_int16 *NDeltaMin_Q15, /* I: Normalized delta min vector in Q15, NDeltaMin_Q15[L] must be >= 1 [L+1] */
- const opus_int L /* I: Number of NLSF parameters in the input vector */
+ opus_int16 *NLSF_Q15, /* I/O Unstable/stabilized normalized LSF vector in Q15 [L] */
+ const opus_int16 *NDeltaMin_Q15, /* I Min distance vector, NDeltaMin_Q15[L] must be >= 1 [L+1] */
+ const opus_int L /* I Number of NLSF parameters in the input vector */
);
/* Laroia low complexity NLSF weights */
void silk_NLSF_VQ_weights_laroia(
- opus_int16 *pNLSFW_Q_OUT, /* O: Pointer to input vector weights [D x 1] */
- const opus_int16 *pNLSF_Q15, /* I: Pointer to input vector [D x 1] */
- const opus_int D /* I: Input vector dimension (even) */
+ opus_int16 *pNLSFW_Q_OUT, /* O Pointer to input vector weights [D] */
+ const opus_int16 *pNLSF_Q15, /* I Pointer to input vector [D] */
+ const opus_int D /* I Input vector dimension (even) */
);
/* Compute reflection coefficients from input signal */
void silk_burg_modified(
- opus_int32 *res_nrg, /* O residual energy */
- opus_int *res_nrgQ, /* O residual energy Q value */
- opus_int32 A_Q16[], /* O prediction coefficients (length order) */
- const opus_int16 x[], /* I input signal, length: nb_subfr * ( D + subfr_length ) */
- const opus_int subfr_length, /* I input signal subframe length (including D preceeding samples) */
- const opus_int nb_subfr, /* I number of subframes stacked in x */
- const opus_int32 WhiteNoiseFrac_Q32, /* I fraction added to zero-lag autocorrelation */
- const opus_int D /* I order */
+ opus_int32 *res_nrg, /* O Residual energy */
+ opus_int *res_nrg_Q, /* O Residual energy Q value */
+ opus_int32 A_Q16[], /* O Prediction coefficients (length order) */
+ const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */
+ const opus_int subfr_length, /* I Input signal subframe length (incl. D preceeding samples) */
+ const opus_int nb_subfr, /* I Number of subframes stacked in x */
+ const opus_int32 WhiteNoiseFrac_Q32, /* I Fraction added to zero-lag autocorrelation */
+ const opus_int D /* I Order */
);
/* Copy and multiply a vector by a constant */
void silk_scale_copy_vector16(
- opus_int16 *data_out,
- const opus_int16 *data_in,
- opus_int32 gain_Q16, /* I: gain in Q16 */
- const opus_int dataSize /* I: length */
+ opus_int16 *data_out,
+ const opus_int16 *data_in,
+ opus_int32 gain_Q16, /* I Gain in Q16 */
+ const opus_int dataSize /* I Length */
);
/* Some for the LTP related function requires Q26 to work.*/
void silk_scale_vector32_Q26_lshift_18(
- opus_int32 *data1, /* I/O: Q0/Q18 */
- opus_int32 gain_Q26, /* I: Q26 */
- opus_int dataSize /* I: length */
+ opus_int32 *data1, /* I/O Q0/Q18 */
+ opus_int32 gain_Q26, /* I Q26 */
+ opus_int dataSize /* I length */
);
/********************************************************************/
-/* INLINE ARM MATH */
+/* INLINE ARM MATH */
/********************************************************************/
-/* return sum(inVec1[i]*inVec2[i]) */
+/* return sum( inVec1[i] * inVec2[i] ) */
opus_int32 silk_inner_prod_aligned(
- const opus_int16 *const inVec1, /* I input vector 1 */
- const opus_int16 *const inVec2, /* I input vector 2 */
- const opus_int len /* I vector lengths */
+ const opus_int16 *const inVec1, /* I input vector 1 */
+ const opus_int16 *const inVec2, /* I input vector 2 */
+ const opus_int len /* I vector lengths */
);
opus_int32 silk_inner_prod_aligned_scale(
- const opus_int16 *const inVec1, /* I input vector 1 */
- const opus_int16 *const inVec2, /* I input vector 2 */
- const opus_int scale, /* I number of bits to shift */
- const opus_int len /* I vector lengths */
+ const opus_int16 *const inVec1, /* I input vector 1 */
+ const opus_int16 *const inVec2, /* I input vector 2 */
+ const opus_int scale, /* I number of bits to shift */
+ const opus_int len /* I vector lengths */
);
opus_int64 silk_inner_prod16_aligned_64(
- const opus_int16 *inVec1, /* I input vector 1 */
- const opus_int16 *inVec2, /* I input vector 2 */
- const opus_int len /* I vector lengths */
+ const opus_int16 *inVec1, /* I input vector 1 */
+ const opus_int16 *inVec2, /* I input vector 2 */
+ const opus_int len /* I vector lengths */
);
/********************************************************************/
@@ -370,12 +371,13 @@ static inline opus_int32 silk_ROR32( opus_int32 a32, opus_int rot )
opus_uint32 x = (opus_uint32) a32;
opus_uint32 r = (opus_uint32) rot;
opus_uint32 m = (opus_uint32) -rot;
- if (rot==0)
- return a32;
- else if(rot < 0)
+ if( rot == 0 ) {
+ return a32;
+ } else if( rot < 0 ) {
return (opus_int32) ((x << m) | (x >> (32 - m)));
- else
+ } else {
return (opus_int32) ((x << (32 - r)) | (x >> r));
+ }
}
/* Allocate opus_int16 alligned to 4-byte memory address */
@@ -386,10 +388,11 @@ static inline opus_int32 silk_ROR32( opus_int32 a32, opus_int rot )
#endif
/* Useful Macros that can be adjusted to other platforms */
-#define silk_memcpy(a, b, c) memcpy((a), (b), (c)) /* Dest, Src, ByteCount */
-#define silk_memset(a, b, c) memset((a), (b), (c)) /* Dest, value, ByteCount */
-#define silk_memmove(a, b, c) memmove((a), (b), (c)) /* Dest, Src, ByteCount */
-/* fixed point macros */
+#define silk_memcpy(a, b, c) memcpy((a), (b), (c)) /* Dest, Src, ByteCount */
+#define silk_memset(a, b, c) memset((a), (b), (c)) /* Dest, value, ByteCount */
+#define silk_memmove(a, b, c) memmove((a), (b), (c)) /* Dest, Src, ByteCount */
+
+/* Fixed point macros */
/* (a32 * b32) output have to be 32bit int */
#define silk_MUL(a32, b32) ((a32) * (b32))
@@ -421,14 +424,9 @@ static inline opus_int32 silk_ROR32( opus_int32 a32, opus_int rot )
(just standard two's complement implementation-specific behaviour) */
#define silk_SUB32_ovflw(a, b) ((opus_int32)((opus_uint32)(a) - (opus_uint32)(b)))
-/* a32 + (opus_int32)((opus_int16)(b32)) * (opus_int32)((opus_int16)(c32)) output have to be 32bit int */
-#define silk_SMLABB_ovflw(a32, b32, c32) (silk_ADD32_ovflw((a32) , ((opus_int32)((opus_int16)(b32))) * (opus_int32)((opus_int16)(c32))))
-
-/* Multiply-accumulate macros that allow overflow in the addition (ie, no asserts in debug mode)*/
+/* Multiply-accumulate macros that allow overflow in the addition (ie, no asserts in debug mode) */
#define silk_MLA_ovflw(a32, b32, c32) silk_ADD32_ovflw((a32), (opus_uint32)(b32) * (opus_uint32)(c32))
-#ifndef silk_SMLABB_ovflw
-# define silk_SMLABB_ovflw(a32, b32, c32) silk_ADD32_ovflw((a32), (opus_int32)((opus_int16)(b32)) * (opus_int32)((opus_int16)(c32)))
-#endif
+#define silk_SMLABB_ovflw(a32, b32, c32) (silk_ADD32_ovflw((a32) , ((opus_int32)((opus_int16)(b32))) * (opus_int32)((opus_int16)(c32))))
#define silk_DIV32_16(a32, b16) ((opus_int32)((a32) / (b16)))
#define silk_DIV32(a32, b32) ((opus_int32)((a32) / (b32)))
@@ -442,12 +440,12 @@ static inline opus_int32 silk_ROR32( opus_int32 a32, opus_int rot )
#define silk_SUB32(a, b) ((a) - (b))
#define silk_SUB64(a, b) ((a) - (b))
-#define silk_SAT8(a) ((a) > silk_int8_MAX ? silk_int8_MAX : \
- ((a) < silk_int8_MIN ? silk_int8_MIN : (a)))
-#define silk_SAT16(a) ((a) > silk_int16_MAX ? silk_int16_MAX : \
- ((a) < silk_int16_MIN ? silk_int16_MIN : (a)))
-#define silk_SAT32(a) ((a) > silk_int32_MAX ? silk_int32_MAX : \
- ((a) < silk_int32_MIN ? silk_int32_MIN : (a)))
+#define silk_SAT8(a) ((a) > silk_int8_MAX ? silk_int8_MAX : \
+ ((a) < silk_int8_MIN ? silk_int8_MIN : (a)))
+#define silk_SAT16(a) ((a) > silk_int16_MAX ? silk_int16_MAX : \
+ ((a) < silk_int16_MIN ? silk_int16_MIN : (a)))
+#define silk_SAT32(a) ((a) > silk_int32_MAX ? silk_int32_MAX : \
+ ((a) < silk_int32_MIN ? silk_int32_MIN : (a)))
#define silk_CHECK_FIT8(a) (a)
#define silk_CHECK_FIT16(a) (a)
@@ -455,13 +453,13 @@ static inline opus_int32 silk_ROR32( opus_int32 a32, opus_int rot )
#define silk_ADD_SAT16(a, b) (opus_int16)silk_SAT16( silk_ADD32( (opus_int32)(a), (b) ) )
#define silk_ADD_SAT64(a, b) ((((a) + (b)) & 0x8000000000000000LL) == 0 ? \
- ((((a) & (b)) & 0x8000000000000000LL) != 0 ? silk_int64_MIN : (a)+(b)) : \
- ((((a) | (b)) & 0x8000000000000000LL) == 0 ? silk_int64_MAX : (a)+(b)) )
+ ((((a) & (b)) & 0x8000000000000000LL) != 0 ? silk_int64_MIN : (a)+(b)) : \
+ ((((a) | (b)) & 0x8000000000000000LL) == 0 ? silk_int64_MAX : (a)+(b)) )
#define silk_SUB_SAT16(a, b) (opus_int16)silk_SAT16( silk_SUB32( (opus_int32)(a), (b) ) )
-#define silk_SUB_SAT64(a, b) ((((a)-(b)) & 0x8000000000000000LL) == 0 ? \
- (( (a) & ((b)^0x8000000000000000LL) & 0x8000000000000000LL) ? silk_int64_MIN : (a)-(b)) : \
- ((((a)^0x8000000000000000LL) & (b) & 0x8000000000000000LL) ? silk_int64_MAX : (a)-(b)) )
+#define silk_SUB_SAT64(a, b) ((((a)-(b)) & 0x8000000000000000LL) == 0 ? \
+ (( (a) & ((b)^0x8000000000000000LL) & 0x8000000000000000LL) ? silk_int64_MIN : (a)-(b)) : \
+ ((((a)^0x8000000000000000LL) & (b) & 0x8000000000000000LL) ? silk_int64_MAX : (a)-(b)) )
/* Saturation for positive input values */
#define silk_POS_SAT32(a) ((a) > silk_int32_MAX ? silk_int32_MAX : (a))
@@ -472,51 +470,51 @@ static inline opus_int32 silk_ROR32( opus_int32 a32, opus_int rot )
#define silk_ADD_POS_SAT32(a, b) ((((a)+(b)) & 0x80000000) ? silk_int32_MAX : ((a)+(b)))
#define silk_ADD_POS_SAT64(a, b) ((((a)+(b)) & 0x8000000000000000LL) ? silk_int64_MAX : ((a)+(b)))
-#define silk_LSHIFT8(a, shift) ((opus_int8)((opus_uint8)(a)<<(shift))) /* shift >= 0, shift < 8 */
-#define silk_LSHIFT16(a, shift) ((opus_int16)((opus_uint16)(a)<<(shift))) /* shift >= 0, shift < 16 */
-#define silk_LSHIFT32(a, shift) ((opus_int32)((opus_uint32)(a)<<(shift))) /* shift >= 0, shift < 32 */
-#define silk_LSHIFT64(a, shift) ((opus_int64)((opus_uint64)(a)<<(shift))) /* shift >= 0, shift < 64 */
-#define silk_LSHIFT(a, shift) silk_LSHIFT32(a, shift) /* shift >= 0, shift < 32 */
+#define silk_LSHIFT8(a, shift) ((opus_int8)((opus_uint8)(a)<<(shift))) /* shift >= 0, shift < 8 */
+#define silk_LSHIFT16(a, shift) ((opus_int16)((opus_uint16)(a)<<(shift))) /* shift >= 0, shift < 16 */
+#define silk_LSHIFT32(a, shift) ((opus_int32)((opus_uint32)(a)<<(shift))) /* shift >= 0, shift < 32 */
+#define silk_LSHIFT64(a, shift) ((opus_int64)((opus_uint64)(a)<<(shift))) /* shift >= 0, shift < 64 */
+#define silk_LSHIFT(a, shift) silk_LSHIFT32(a, shift) /* shift >= 0, shift < 32 */
-#define silk_RSHIFT8(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 8 */
-#define silk_RSHIFT16(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 16 */
-#define silk_RSHIFT32(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 32 */
-#define silk_RSHIFT64(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 64 */
-#define silk_RSHIFT(a, shift) silk_RSHIFT32(a, shift) /* shift >= 0, shift < 32 */
+#define silk_RSHIFT8(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 8 */
+#define silk_RSHIFT16(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 16 */
+#define silk_RSHIFT32(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 32 */
+#define silk_RSHIFT64(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 64 */
+#define silk_RSHIFT(a, shift) silk_RSHIFT32(a, shift) /* shift >= 0, shift < 32 */
/* saturates before shifting */
-#define silk_LSHIFT_SAT16(a, shift) (silk_LSHIFT16( silk_LIMIT( (a), silk_RSHIFT16( silk_int16_MIN, (shift) ), \
- silk_RSHIFT16( silk_int16_MAX, (shift) ) ), (shift) ))
-#define silk_LSHIFT_SAT32(a, shift) (silk_LSHIFT32( silk_LIMIT( (a), silk_RSHIFT32( silk_int32_MIN, (shift) ), \
- silk_RSHIFT32( silk_int32_MAX, (shift) ) ), (shift) ))
-
-#define silk_LSHIFT_ovflw(a, shift) ((opus_int32)((opus_uint32)(a)<<(shift))) /* shift >= 0, allowed to overflow */
-#define silk_LSHIFT_uint(a, shift) ((a)<<(shift)) /* shift >= 0 */
-#define silk_RSHIFT_uint(a, shift) ((a)>>(shift)) /* shift >= 0 */
-
-#define silk_ADD_LSHIFT(a, b, shift) ((a) + silk_LSHIFT((b), (shift))) /* shift >= 0 */
-#define silk_ADD_LSHIFT32(a, b, shift) silk_ADD32((a), silk_LSHIFT32((b), (shift))) /* shift >= 0 */
-#define silk_ADD_LSHIFT_uint(a, b, shift) ((a) + silk_LSHIFT_uint((b), (shift))) /* shift >= 0 */
-#define silk_ADD_RSHIFT(a, b, shift) ((a) + silk_RSHIFT((b), (shift))) /* shift >= 0 */
-#define silk_ADD_RSHIFT32(a, b, shift) silk_ADD32((a), silk_RSHIFT32((b), (shift))) /* shift >= 0 */
-#define silk_ADD_RSHIFT_uint(a, b, shift) ((a) + silk_RSHIFT_uint((b), (shift))) /* shift >= 0 */
-#define silk_SUB_LSHIFT32(a, b, shift) silk_SUB32((a), silk_LSHIFT32((b), (shift))) /* shift >= 0 */
-#define silk_SUB_RSHIFT32(a, b, shift) silk_SUB32((a), silk_RSHIFT32((b), (shift))) /* shift >= 0 */
+#define silk_LSHIFT_SAT16(a, shift) (silk_LSHIFT16( silk_LIMIT( (a), silk_RSHIFT16( silk_int16_MIN, (shift) ), \
+ silk_RSHIFT16( silk_int16_MAX, (shift) ) ), (shift) ))
+#define silk_LSHIFT_SAT32(a, shift) (silk_LSHIFT32( silk_LIMIT( (a), silk_RSHIFT32( silk_int32_MIN, (shift) ), \
+ silk_RSHIFT32( silk_int32_MAX, (shift) ) ), (shift) ))
+
+#define silk_LSHIFT_ovflw(a, shift) ((opus_int32)((opus_uint32)(a) << (shift))) /* shift >= 0, allowed to overflow */
+#define silk_LSHIFT_uint(a, shift) ((a) << (shift)) /* shift >= 0 */
+#define silk_RSHIFT_uint(a, shift) ((a) >> (shift)) /* shift >= 0 */
+
+#define silk_ADD_LSHIFT(a, b, shift) ((a) + silk_LSHIFT((b), (shift))) /* shift >= 0 */
+#define silk_ADD_LSHIFT32(a, b, shift) silk_ADD32((a), silk_LSHIFT32((b), (shift))) /* shift >= 0 */
+#define silk_ADD_LSHIFT_uint(a, b, shift) ((a) + silk_LSHIFT_uint((b), (shift))) /* shift >= 0 */
+#define silk_ADD_RSHIFT(a, b, shift) ((a) + silk_RSHIFT((b), (shift))) /* shift >= 0 */
+#define silk_ADD_RSHIFT32(a, b, shift) silk_ADD32((a), silk_RSHIFT32((b), (shift))) /* shift >= 0 */
+#define silk_ADD_RSHIFT_uint(a, b, shift) ((a) + silk_RSHIFT_uint((b), (shift))) /* shift >= 0 */
+#define silk_SUB_LSHIFT32(a, b, shift) silk_SUB32((a), silk_LSHIFT32((b), (shift))) /* shift >= 0 */
+#define silk_SUB_RSHIFT32(a, b, shift) silk_SUB32((a), silk_RSHIFT32((b), (shift))) /* shift >= 0 */
/* Requires that shift > 0 */
-#define silk_RSHIFT_ROUND(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
-#define silk_RSHIFT_ROUND64(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
+#define silk_RSHIFT_ROUND(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
+#define silk_RSHIFT_ROUND64(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
/* Number of rightshift required to fit the multiplication */
-#define silk_NSHIFT_MUL_32_32(a, b) ( -(31- (32-silk_CLZ32(silk_abs(a)) + (32-silk_CLZ32(silk_abs(b))))) )
-#define silk_NSHIFT_MUL_16_16(a, b) ( -(15- (16-silk_CLZ16(silk_abs(a)) + (16-silk_CLZ16(silk_abs(b))))) )
+#define silk_NSHIFT_MUL_32_32(a, b) ( -(31- (32-silk_CLZ32(silk_abs(a)) + (32-silk_CLZ32(silk_abs(b))))) )
+#define silk_NSHIFT_MUL_16_16(a, b) ( -(15- (16-silk_CLZ16(silk_abs(a)) + (16-silk_CLZ16(silk_abs(b))))) )
-#define silk_min(a, b) (((a) < (b)) ? (a) : (b))
-#define silk_max(a, b) (((a) > (b)) ? (a) : (b))
+#define silk_min(a, b) (((a) < (b)) ? (a) : (b))
+#define silk_max(a, b) (((a) > (b)) ? (a) : (b))
/* Macro to convert floating-point constants to fixed-point */
-#define SILK_FIX_CONST( C, Q ) ((opus_int32)((C) * ((opus_int64)1 << (Q)) + 0.5))
+#define SILK_FIX_CONST( C, Q ) ((opus_int32)((C) * ((opus_int64)1 << (Q)) + 0.5))
/* silk_min() versions with typecast in the function call */
static inline opus_int silk_min_int(opus_int a, opus_int b)
@@ -554,38 +552,36 @@ static inline opus_int64 silk_max_64(opus_int64 a, opus_int64 b)
return (((a) > (b)) ? (a) : (b));
}
-#define silk_LIMIT( a, limit1, limit2) ((limit1) > (limit2) ? ((a) > (limit1) ? (limit1) : ((a) < (limit2) ? (limit2) : (a))) \
- : ((a) > (limit2) ? (limit2) : ((a) < (limit1) ? (limit1) : (a))))
-
-#define silk_LIMIT_int silk_LIMIT
-#define silk_LIMIT_16 silk_LIMIT
-#define silk_LIMIT_32 silk_LIMIT
+#define silk_LIMIT( a, limit1, limit2) ((limit1) > (limit2) ? ((a) > (limit1) ? (limit1) : ((a) < (limit2) ? (limit2) : (a))) \
+ : ((a) > (limit2) ? (limit2) : ((a) < (limit1) ? (limit1) : (a))))
-/*#define silk_non_neg(a) ((a) & ((-(a)) >> (8 * sizeof(a) - 1)))*/ /* doesn't seem faster than silk_max(0, a);*/
+#define silk_LIMIT_int silk_LIMIT
+#define silk_LIMIT_16 silk_LIMIT
+#define silk_LIMIT_32 silk_LIMIT
-#define silk_abs(a) (((a) > 0) ? (a) : -(a)) /* Be careful, silk_abs returns wrong when input equals to silk_intXX_MIN */
-#define silk_abs_int(a) (((a) ^ ((a) >> (8 * sizeof(a) - 1))) - ((a) >> (8 * sizeof(a) - 1)))
-#define silk_abs_int32(a) (((a) ^ ((a) >> 31)) - ((a) >> 31))
-#define silk_abs_int64(a) (((a) > 0) ? (a) : -(a))
+#define silk_abs(a) (((a) > 0) ? (a) : -(a)) /* Be careful, silk_abs returns wrong when input equals to silk_intXX_MIN */
+#define silk_abs_int(a) (((a) ^ ((a) >> (8 * sizeof(a) - 1))) - ((a) >> (8 * sizeof(a) - 1)))
+#define silk_abs_int32(a) (((a) ^ ((a) >> 31)) - ((a) >> 31))
+#define silk_abs_int64(a) (((a) > 0) ? (a) : -(a))
-#define silk_sign(a) ((a) > 0 ? 1 : ( (a) < 0 ? -1 : 0 ))
+#define silk_sign(a) ((a) > 0 ? 1 : ( (a) < 0 ? -1 : 0 ))
-#define silk_sqrt(a) (sqrt(a))
+#define silk_sqrt(a) (sqrt(a))
/* PSEUDO-RANDOM GENERATOR */
/* Make sure to store the result as the seed for the next call (also in between */
/* frames), otherwise result won't be random at all. When only using some of the */
/* bits, take the most significant bits by right-shifting. */
-#define silk_RAND(seed) (silk_MLA_ovflw(907633515, (seed), 196314165))
+#define silk_RAND(seed) (silk_MLA_ovflw(907633515, (seed), 196314165))
/* Add some multiplication functions that can be easily mapped to ARM. */
/* silk_SMMUL: Signed top word multiply.
ARMv6 2 instruction cycles.
- ARMv3M+ 3 instruction cycles. use SMULL and ignore LSB registers.(except xM)*/
-/*#define silk_SMMUL(a32, b32) (opus_int32)silk_RSHIFT(silk_SMLAL(silk_SMULWB((a32), (b32)), (a32), silk_RSHIFT_ROUND((b32), 16)), 16)*/
+ ARMv3M+ 3 instruction cycles. use SMULL and ignore LSB registers.(except xM)*/
+/*#define silk_SMMUL(a32, b32) (opus_int32)silk_RSHIFT(silk_SMLAL(silk_SMULWB((a32), (b32)), (a32), silk_RSHIFT_ROUND((b32), 16)), 16)*/
/* the following seems faster on x86 */
-#define silk_SMMUL(a32, b32) (opus_int32)silk_RSHIFT64(silk_SMULL((a32), (b32)), 32)
+#define silk_SMMUL(a32, b32) (opus_int32)silk_RSHIFT64(silk_SMULL((a32), (b32)), 32)
#include "Inlines.h"
#include "MacroCount.h"