Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/draw/engines/eevee_next/shaders/eevee_depth_of_field_accumulator_lib.glsl')
-rw-r--r--source/blender/draw/engines/eevee_next/shaders/eevee_depth_of_field_accumulator_lib.glsl680
1 files changed, 680 insertions, 0 deletions
diff --git a/source/blender/draw/engines/eevee_next/shaders/eevee_depth_of_field_accumulator_lib.glsl b/source/blender/draw/engines/eevee_next/shaders/eevee_depth_of_field_accumulator_lib.glsl
new file mode 100644
index 00000000000..99a47c541e9
--- /dev/null
+++ b/source/blender/draw/engines/eevee_next/shaders/eevee_depth_of_field_accumulator_lib.glsl
@@ -0,0 +1,680 @@
+
+/**
+ * Depth of Field Gather accumulator.
+ * We currently have only 2 which are very similar.
+ * One is for the halfres gather passes and the other one for slight in focus regions.
+ **/
+
+#pragma BLENDER_REQUIRE(common_view_lib.glsl)
+#pragma BLENDER_REQUIRE(eevee_colorspace_lib.glsl)
+#pragma BLENDER_REQUIRE(eevee_sampling_lib.glsl)
+#pragma BLENDER_REQUIRE(eevee_depth_of_field_lib.glsl)
+
+/* -------------------------------------------------------------------- */
+/** \name Options.
+ * \{ */
+
+/* Quality options */
+#ifdef DOF_HOLEFILL_PASS
+/* No need for very high density for hole_fill. */
+const int gather_ring_count = 3;
+const int gather_ring_density = 3;
+const int gather_max_density_change = 0;
+const int gather_density_change_ring = 1;
+#else
+const int gather_ring_count = DOF_GATHER_RING_COUNT;
+const int gather_ring_density = 3;
+const int gather_max_density_change = 50; /* Dictates the maximum good quality blur. */
+const int gather_density_change_ring = 1;
+#endif
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name Constants.
+ * \{ */
+
+const float unit_ring_radius = 1.0 / float(gather_ring_count);
+const float unit_sample_radius = 1.0 / float(gather_ring_count + 0.5);
+const float large_kernel_radius = 0.5 + float(gather_ring_count);
+const float smaller_kernel_radius = 0.5 + float(gather_ring_count - gather_density_change_ring);
+/* NOTE(fclem) the bias is reducing issues with density change visible transition. */
+const float radius_downscale_factor = smaller_kernel_radius / large_kernel_radius;
+const int change_density_at_ring = (gather_ring_count - gather_density_change_ring + 1);
+const float coc_radius_error = 2.0;
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name Gather common.
+ * \{ */
+
+struct DofGatherData {
+ vec4 color;
+ float weight;
+ float dist; /* TODO remove */
+ /* For scatter occlusion. */
+ float coc;
+ float coc_sqr;
+ /* For ring bucket merging. */
+ float transparency;
+
+ float layer_opacity;
+};
+
+#define GATHER_DATA_INIT DofGatherData(vec4(0.0), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
+
+/* Intersection with the center of the kernel. */
+float dof_intersection_weight(float coc, float distance_from_center, float intersection_multiplier)
+{
+ if (no_smooth_intersection) {
+ return step(0.0, (abs(coc) - distance_from_center));
+ }
+ else {
+ /* (Slide 64). */
+ return saturate((abs(coc) - distance_from_center) * intersection_multiplier + 0.5);
+ }
+}
+
+/* Returns weight of the sample for the outer bucket (containing previous
+ * rings). */
+float dof_gather_accum_weight(float coc, float bordering_radius, bool first_ring)
+{
+ /* First ring has nothing to be mixed against. */
+ if (first_ring) {
+ return 0.0;
+ }
+ return saturate(coc - bordering_radius);
+}
+
+void dof_gather_ammend_weight(inout DofGatherData sample_data, float weight)
+{
+ sample_data.color *= weight;
+ sample_data.coc *= weight;
+ sample_data.coc_sqr *= weight;
+ sample_data.weight *= weight;
+}
+
+void dof_gather_accumulate_sample(DofGatherData sample_data,
+ float weight,
+ inout DofGatherData accum_data)
+{
+ accum_data.color += sample_data.color * weight;
+ accum_data.coc += sample_data.coc * weight;
+ accum_data.coc_sqr += sample_data.coc * (sample_data.coc * weight);
+ accum_data.weight += weight;
+}
+
+void dof_gather_accumulate_sample_pair(DofGatherData pair_data[2],
+ float bordering_radius,
+ float intersection_multiplier,
+ bool first_ring,
+ const bool do_fast_gather,
+ const bool is_foreground,
+ inout DofGatherData ring_data,
+ inout DofGatherData accum_data)
+{
+ if (do_fast_gather) {
+ for (int i = 0; i < 2; i++) {
+ dof_gather_accumulate_sample(pair_data[i], 1.0, accum_data);
+ accum_data.layer_opacity += 1.0;
+ }
+ return;
+ }
+
+#if 0
+ const float mirroring_threshold = -dof_layer_threshold - dof_layer_offset;
+ /* TODO(fclem) Promote to parameter? dither with Noise? */
+ const float mirroring_min_distance = 15.0;
+ if (pair_data[0].coc < mirroring_threshold &&
+ (pair_data[1].coc - mirroring_min_distance) > pair_data[0].coc) {
+ pair_data[1].coc = pair_data[0].coc;
+ }
+ else if (pair_data[1].coc < mirroring_threshold &&
+ (pair_data[0].coc - mirroring_min_distance) > pair_data[1].coc) {
+ pair_data[0].coc = pair_data[1].coc;
+ }
+#endif
+
+ for (int i = 0; i < 2; i++) {
+ float sample_weight = dof_sample_weight(pair_data[i].coc);
+ float layer_weight = dof_layer_weight(pair_data[i].coc, is_foreground);
+ float inter_weight = dof_intersection_weight(
+ pair_data[i].coc, pair_data[i].dist, intersection_multiplier);
+ float weight = inter_weight * layer_weight * sample_weight;
+
+ /**
+ * If a CoC is larger than bordering radius we accumulate it to the general accumulator.
+ * If not, we accumulate to the ring bucket. This is to have more consistent sample occlusion.
+ **/
+ float accum_weight = dof_gather_accum_weight(pair_data[i].coc, bordering_radius, first_ring);
+ dof_gather_accumulate_sample(pair_data[i], weight * accum_weight, accum_data);
+ dof_gather_accumulate_sample(pair_data[i], weight * (1.0 - accum_weight), ring_data);
+
+ accum_data.layer_opacity += layer_weight;
+
+ if (is_foreground) {
+ ring_data.transparency += 1.0 - inter_weight * layer_weight;
+ }
+ else {
+ float coc = is_foreground ? -pair_data[i].coc : pair_data[i].coc;
+ ring_data.transparency += saturate(coc - bordering_radius);
+ }
+ }
+}
+
+void dof_gather_accumulate_sample_ring(DofGatherData ring_data,
+ int sample_count,
+ bool first_ring,
+ const bool do_fast_gather,
+ /* accum_data occludes the ring_data if true. */
+ const bool reversed_occlusion,
+ inout DofGatherData accum_data)
+{
+ if (do_fast_gather) {
+ /* Do nothing as ring_data contains nothing. All samples are already in
+ * accum_data. */
+ return;
+ }
+
+ if (first_ring) {
+ /* Layer opacity is directly accumulated into accum_data data. */
+ accum_data.color = ring_data.color;
+ accum_data.coc = ring_data.coc;
+ accum_data.coc_sqr = ring_data.coc_sqr;
+ accum_data.weight = ring_data.weight;
+
+ accum_data.transparency = ring_data.transparency / float(sample_count);
+ return;
+ }
+
+ if (ring_data.weight == 0.0) {
+ return;
+ }
+
+ float ring_avg_coc = ring_data.coc / ring_data.weight;
+ float accum_avg_coc = accum_data.coc / accum_data.weight;
+
+ /* Smooth test to set opacity to see if the ring average coc occludes the
+ * accumulation. Test is reversed to be multiplied against opacity. */
+ float ring_occlu = saturate(accum_avg_coc - ring_avg_coc);
+ /* The bias here is arbitrary. Seems to avoid weird looking foreground in most
+ * cases. We might need to make it a parameter or find a relative bias. */
+ float accum_occlu = saturate((ring_avg_coc - accum_avg_coc) * 0.1 - 1.0);
+
+ if (is_resolve) {
+ ring_occlu = accum_occlu = 0.0;
+ }
+
+ if (no_gather_occlusion) {
+ ring_occlu = 0.0;
+ accum_occlu = 0.0;
+ }
+
+ /* (Slide 40) */
+ float ring_opacity = saturate(1.0 - ring_data.transparency / float(sample_count));
+ float accum_opacity = 1.0 - accum_data.transparency;
+
+ if (reversed_occlusion) {
+ /* Accum_data occludes the ring. */
+ float alpha = (accum_data.weight == 0.0) ? 0.0 : accum_opacity * accum_occlu;
+ float one_minus_alpha = 1.0 - alpha;
+
+ accum_data.color += ring_data.color * one_minus_alpha;
+ accum_data.coc += ring_data.coc * one_minus_alpha;
+ accum_data.coc_sqr += ring_data.coc_sqr * one_minus_alpha;
+ accum_data.weight += ring_data.weight * one_minus_alpha;
+
+ accum_data.transparency *= 1.0 - ring_opacity;
+ }
+ else {
+ /* Ring occludes the accum_data (Same as reference). */
+ float alpha = (accum_data.weight == 0.0) ? 1.0 : (ring_opacity * ring_occlu);
+ float one_minus_alpha = 1.0 - alpha;
+
+ accum_data.color = accum_data.color * one_minus_alpha + ring_data.color;
+ accum_data.coc = accum_data.coc * one_minus_alpha + ring_data.coc;
+ accum_data.coc_sqr = accum_data.coc_sqr * one_minus_alpha + ring_data.coc_sqr;
+ accum_data.weight = accum_data.weight * one_minus_alpha + ring_data.weight;
+ }
+}
+
+/* FIXME(fclem) Seems to be wrong since it needs ringcount+1 as input for
+ * slightfocus gather. */
+/* This should be replaced by web_sample_count_get() but doing so is breaking other things. */
+int dof_gather_total_sample_count(const int ring_count, const int ring_density)
+{
+ return (ring_count * ring_count - ring_count) * ring_density + 1;
+}
+
+void dof_gather_accumulate_center_sample(DofGatherData center_data,
+ float bordering_radius,
+ int i_radius,
+ const bool do_fast_gather,
+ const bool is_foreground,
+ const bool is_resolve,
+ inout DofGatherData accum_data)
+{
+ float layer_weight = dof_layer_weight(center_data.coc, is_foreground);
+ float sample_weight = dof_sample_weight(center_data.coc);
+ float weight = layer_weight * sample_weight;
+ float accum_weight = dof_gather_accum_weight(center_data.coc, bordering_radius, false);
+
+ if (do_fast_gather) {
+ /* Hope for the compiler to optimize the above. */
+ layer_weight = 1.0;
+ sample_weight = 1.0;
+ accum_weight = 1.0;
+ weight = 1.0;
+ }
+
+ center_data.transparency = 1.0 - weight;
+
+ dof_gather_accumulate_sample(center_data, weight * accum_weight, accum_data);
+
+ if (!do_fast_gather) {
+ if (is_resolve) {
+ /* NOTE(fclem): Hack to smooth transition to full in-focus opacity. */
+ int total_sample_count = dof_gather_total_sample_count(i_radius + 1,
+ DOF_SLIGHT_FOCUS_DENSITY);
+ float fac = saturate(1.0 - abs(center_data.coc) / float(dof_layer_threshold));
+ accum_data.layer_opacity += float(total_sample_count) * fac * fac;
+ }
+ accum_data.layer_opacity += layer_weight;
+
+ /* Logic of dof_gather_accumulate_sample(). */
+ weight *= (1.0 - accum_weight);
+ center_data.coc_sqr = center_data.coc * (center_data.coc * weight);
+ center_data.color *= weight;
+ center_data.coc *= weight;
+ center_data.weight = weight;
+
+ if (is_foreground && !is_resolve) {
+ /* Reduce issue with closer foreground over distant foreground. */
+ float ring_area = sqr(bordering_radius);
+ dof_gather_ammend_weight(center_data, ring_area);
+ }
+
+ /* Accumulate center as its own ring. */
+ dof_gather_accumulate_sample_ring(
+ center_data, 1, false, do_fast_gather, is_foreground, accum_data);
+ }
+}
+
+int dof_gather_total_sample_count_with_density_change(const int ring_count,
+ const int ring_density,
+ int density_change)
+{
+ int sample_count_per_density_change = dof_gather_total_sample_count(ring_count, ring_density) -
+ dof_gather_total_sample_count(
+ ring_count - gather_density_change_ring, ring_density);
+
+ return dof_gather_total_sample_count(ring_count, ring_density) +
+ sample_count_per_density_change * density_change;
+}
+
+void dof_gather_accumulate_resolve(int total_sample_count,
+ DofGatherData accum_data,
+ out vec4 out_col,
+ out float out_weight,
+ out vec2 out_occlusion)
+{
+ float weight_inv = safe_rcp(accum_data.weight);
+ out_col = accum_data.color * weight_inv;
+ out_occlusion = vec2(abs(accum_data.coc), accum_data.coc_sqr) * weight_inv;
+
+ if (is_foreground) {
+ out_weight = 1.0 - accum_data.transparency;
+ }
+ else if (accum_data.weight > 0.0) {
+ out_weight = accum_data.layer_opacity / float(total_sample_count);
+ }
+ else {
+ out_weight = 0.0;
+ }
+ /* Gathering may not accumulate to 1.0 alpha because of float precision. */
+ if (out_weight > 0.99) {
+ out_weight = 1.0;
+ }
+ else if (out_weight < 0.01) {
+ out_weight = 0.0;
+ }
+ /* Same thing for alpha channel. */
+ if (out_col.a > 0.993) {
+ out_col.a = 1.0;
+ }
+ else if (out_col.a < 0.003) {
+ out_col.a = 0.0;
+ }
+}
+
+float dof_load_gather_coc(sampler2D gather_input_coc_tx, vec2 uv, float lod)
+{
+ float coc = textureLod(gather_input_coc_tx, uv, lod).r;
+ /* We gather at halfres. CoC must be divided by 2 to be compared against radii. */
+ return coc * 0.5;
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name Common Gather accumulator.
+ * \{ */
+
+/* Radii needs to be halfres CoC sizes. */
+bool dof_do_density_change(float base_radius, float min_intersectable_radius)
+{
+ /* Reduce artifact for very large blur. */
+ min_intersectable_radius *= 0.1;
+
+ bool need_new_density = (base_radius * unit_ring_radius > min_intersectable_radius);
+ bool larger_than_min_density = (base_radius * radius_downscale_factor >
+ float(gather_ring_count));
+
+ return need_new_density && larger_than_min_density;
+}
+
+void dof_gather_init(float base_radius,
+ vec2 noise,
+ out vec2 center_co,
+ out float lod,
+ out float intersection_multiplier)
+{
+ /* Jitter center half a ring to reduce undersampling. */
+ vec2 jitter_ofs = 0.499 * sample_disk(noise);
+ if (DOF_BOKEH_TEXTURE) {
+ jitter_ofs *= dof_buf.bokeh_anisotropic_scale;
+ }
+ vec2 frag_coord = vec2(gl_GlobalInvocationID.xy) + 0.5;
+ center_co = frag_coord + jitter_ofs * base_radius * unit_sample_radius;
+
+ /* TODO(fclem) Seems like the default lod selection is too big. Bias to avoid blocky moving out
+ * of focus shapes. */
+ const float lod_bias = -2.0;
+ lod = max(floor(log2(base_radius * unit_sample_radius) + 0.5) + lod_bias, 0.0);
+
+ if (no_gather_mipmaps) {
+ lod = 0.0;
+ }
+ /* (Slide 64). */
+ intersection_multiplier = pow(0.5, lod);
+}
+
+void dof_gather_accumulator(sampler2D color_tx,
+ sampler2D color_bilinear_tx,
+ sampler2D coc_tx,
+ sampler2D bkh_lut_tx, /* Renamed because of ugly macro. */
+ float base_radius,
+ float min_intersectable_radius,
+ const bool do_fast_gather,
+ const bool do_density_change,
+ out vec4 out_color,
+ out float out_weight,
+ out vec2 out_occlusion)
+{
+ vec2 frag_coord = vec2(gl_GlobalInvocationID.xy);
+ vec2 noise_offset = sampling_rng_2D_get(SAMPLING_LENS_U);
+ vec2 noise = no_gather_random ? vec2(0.0, 0.0) :
+ vec2(interlieved_gradient_noise(frag_coord, 0, noise_offset.x),
+ interlieved_gradient_noise(frag_coord, 1, noise_offset.y));
+
+ if (!do_fast_gather) {
+ /* Jitter the radius to reduce noticeable density changes. */
+ base_radius += noise.x * unit_ring_radius * base_radius;
+ }
+ else {
+ /* Jittering the radius more than we need means we are going to feather the bokeh shape half a
+ * ring. So we need to compensate for fast gather that does not check CoC intersection. */
+ base_radius += (0.5 - noise.x) * 1.5 * unit_ring_radius * base_radius;
+ }
+ /* TODO(fclem) another seed? For now Cranly-Partterson rotation with golden ratio. */
+ noise.x = fract(noise.x * 6.1803398875);
+
+ float lod, isect_mul;
+ vec2 center_co;
+ dof_gather_init(base_radius, noise, center_co, lod, isect_mul);
+
+ bool first_ring = true;
+
+ DofGatherData accum_data = GATHER_DATA_INIT;
+
+ int density_change = 0;
+ for (int ring = gather_ring_count; ring > 0; ring--) {
+ int sample_pair_count = gather_ring_density * ring;
+
+ float step_rot = M_PI / float(sample_pair_count);
+ mat2 step_rot_mat = rot2_from_angle(step_rot);
+
+ float angle_offset = noise.y * step_rot;
+ vec2 offset = vec2(cos(angle_offset), sin(angle_offset));
+
+ float ring_radius = float(ring) * unit_sample_radius * base_radius;
+
+ /* Slide 38. */
+ float bordering_radius = ring_radius +
+ (0.5 + coc_radius_error) * base_radius * unit_sample_radius;
+ DofGatherData ring_data = GATHER_DATA_INIT;
+ for (int sample_pair = 0; sample_pair < sample_pair_count; sample_pair++) {
+ offset = step_rot_mat * offset;
+
+ DofGatherData pair_data[2];
+ for (int i = 0; i < 2; i++) {
+ vec2 offset_co = ((i == 0) ? offset : -offset);
+ if (DOF_BOKEH_TEXTURE) {
+ /* Scaling to 0.25 for speed. Improves texture cache hit. */
+ offset_co = texture(bkh_lut_tx, offset_co * 0.25 + 0.5).rg;
+ offset_co *= (is_foreground) ? -dof_buf.bokeh_anisotropic_scale :
+ dof_buf.bokeh_anisotropic_scale;
+ }
+ vec2 sample_co = center_co + offset_co * ring_radius;
+ vec2 sample_uv = sample_co * dof_buf.gather_uv_fac;
+ if (do_fast_gather) {
+ pair_data[i].color = textureLod(color_bilinear_tx, sample_uv, lod);
+ }
+ else {
+ pair_data[i].color = textureLod(color_tx, sample_uv, lod);
+ }
+ pair_data[i].coc = dof_load_gather_coc(coc_tx, sample_uv, lod);
+ pair_data[i].dist = ring_radius;
+ }
+
+ dof_gather_accumulate_sample_pair(pair_data,
+ bordering_radius,
+ isect_mul,
+ first_ring,
+ do_fast_gather,
+ is_foreground,
+ ring_data,
+ accum_data);
+ }
+
+ if (is_foreground) {
+ /* Reduce issue with closer foreground over distant foreground. */
+ /* TODO(fclem) this seems to not be completely correct as the issue remains. */
+ float ring_area = (sqr(float(ring) + 0.5 + coc_radius_error) -
+ sqr(float(ring) - 0.5 + coc_radius_error)) *
+ sqr(base_radius * unit_sample_radius);
+ dof_gather_ammend_weight(ring_data, ring_area);
+ }
+
+ dof_gather_accumulate_sample_ring(
+ ring_data, sample_pair_count * 2, first_ring, do_fast_gather, is_foreground, accum_data);
+
+ first_ring = false;
+
+ if (do_density_change && (ring == change_density_at_ring) &&
+ (density_change < gather_max_density_change)) {
+ if (dof_do_density_change(base_radius, min_intersectable_radius)) {
+ base_radius *= radius_downscale_factor;
+ ring += gather_density_change_ring;
+ /* We need to account for the density change in the weights (slide 62).
+ * For that multiply old kernel data by its area divided by the new kernel area. */
+ const float outer_rings_weight = 1.0 / (radius_downscale_factor * radius_downscale_factor);
+ /* Samples are already weighted per ring in foreground pass. */
+ if (!is_foreground) {
+ dof_gather_ammend_weight(accum_data, outer_rings_weight);
+ }
+ /* Re-init kernel position & sampling parameters. */
+ dof_gather_init(base_radius, noise, center_co, lod, isect_mul);
+ density_change++;
+ }
+ }
+ }
+
+ {
+ /* Center sample. */
+ vec2 sample_uv = center_co * dof_buf.gather_uv_fac;
+ DofGatherData center_data;
+ if (do_fast_gather) {
+ center_data.color = textureLod(color_bilinear_tx, sample_uv, lod);
+ }
+ else {
+ center_data.color = textureLod(color_tx, sample_uv, lod);
+ }
+ center_data.coc = dof_load_gather_coc(coc_tx, sample_uv, lod);
+ center_data.dist = 0.0;
+
+ /* Slide 38. */
+ float bordering_radius = (0.5 + coc_radius_error) * base_radius * unit_sample_radius;
+
+ dof_gather_accumulate_center_sample(
+ center_data, bordering_radius, 0, do_fast_gather, is_foreground, false, accum_data);
+ }
+
+ int total_sample_count = dof_gather_total_sample_count_with_density_change(
+ gather_ring_count, gather_ring_density, density_change);
+ dof_gather_accumulate_resolve(
+ total_sample_count, accum_data, out_color, out_weight, out_occlusion);
+
+ if (debug_gather_perf && density_change > 0) {
+ float fac = saturate(float(density_change) / float(10.0));
+ out_color.rgb = avg(out_color.rgb) * neon_gradient(fac);
+ }
+ if (debug_gather_perf && do_fast_gather) {
+ out_color.rgb = avg(out_color.rgb) * vec3(0.0, 1.0, 0.0);
+ }
+ if (debug_scatter_perf) {
+ out_color.rgb = avg(out_color.rgb) * vec3(0.0, 1.0, 0.0);
+ }
+
+ /* Output premultiplied color so we can use bilinear sampler in resolve pass. */
+ out_color *= out_weight;
+}
+
+/** \} */
+
+/* -------------------------------------------------------------------- */
+/** \name Slight focus accumulator.
+ *
+ * The full pixel neighborhood is gathered.
+ * \{ */
+
+void dof_slight_focus_gather(sampler2D depth_tx,
+ sampler2D color_tx,
+ sampler2D bkh_lut_tx, /* Renamed because of ugly macro job. */
+ float radius,
+ out vec4 out_color,
+ out float out_weight,
+ out float out_center_coc)
+{
+ vec2 frag_coord = vec2(gl_GlobalInvocationID.xy) + 0.5;
+ vec2 noise_offset = sampling_rng_2D_get(SAMPLING_LENS_U);
+ vec2 noise = no_gather_random ? vec2(0.0) :
+ vec2(interlieved_gradient_noise(frag_coord, 3, noise_offset.x),
+ interlieved_gradient_noise(frag_coord, 5, noise_offset.y));
+
+ DofGatherData fg_accum = GATHER_DATA_INIT;
+ DofGatherData bg_accum = GATHER_DATA_INIT;
+
+ int i_radius = clamp(int(radius), 0, int(dof_layer_threshold));
+
+ const float sample_count_max = float(DOF_SLIGHT_FOCUS_SAMPLE_MAX);
+ /* Scale by search area. */
+ float sample_count = sample_count_max * saturate(sqr(radius) / sqr(dof_layer_threshold));
+
+ bool first_ring = true;
+
+ for (float s = 0.0; s < sample_count; s++) {
+ vec2 rand2 = fract(hammersley_2d(s, sample_count) + noise);
+ vec2 offset = sample_disk(rand2);
+ float ring_dist = sqrt(rand2.y);
+
+ DofGatherData pair_data[2];
+ for (int i = 0; i < 2; i++) {
+ vec2 sample_offset = ((i == 0) ? offset : -offset);
+ /* OPTI: could precompute the factor. */
+ vec2 sample_uv = (frag_coord + sample_offset) / vec2(textureSize(depth_tx, 0));
+ float depth = textureLod(depth_tx, sample_uv, 0.0).r;
+ pair_data[i].coc = dof_coc_from_depth(dof_buf, sample_uv, depth);
+ pair_data[i].color = safe_color(textureLod(color_tx, sample_uv, 0.0));
+ pair_data[i].dist = ring_dist;
+ if (DOF_BOKEH_TEXTURE) {
+ /* Contains subpixel distance to bokeh shape. */
+ ivec2 lut_texel = ivec2(round(sample_offset)) + dof_max_slight_focus_radius;
+ pair_data[i].dist = texelFetch(bkh_lut_tx, lut_texel, 0).r;
+ }
+ pair_data[i].coc = clamp(pair_data[i].coc, -dof_buf.coc_abs_max, dof_buf.coc_abs_max);
+ }
+
+ float bordering_radius = ring_dist + 0.5;
+ const float isect_mul = 1.0;
+ DofGatherData bg_ring = GATHER_DATA_INIT;
+ dof_gather_accumulate_sample_pair(
+ pair_data, bordering_radius, isect_mul, first_ring, false, false, bg_ring, bg_accum);
+ /* Treat each sample as a ring. */
+ dof_gather_accumulate_sample_ring(bg_ring, 2, first_ring, false, false, bg_accum);
+
+ if (DOF_BOKEH_TEXTURE) {
+ /* Swap distances in order to flip bokeh shape for foreground. */
+ float tmp = pair_data[0].dist;
+ pair_data[0].dist = pair_data[1].dist;
+ pair_data[1].dist = tmp;
+ }
+ DofGatherData fg_ring = GATHER_DATA_INIT;
+ dof_gather_accumulate_sample_pair(
+ pair_data, bordering_radius, isect_mul, first_ring, false, true, fg_ring, fg_accum);
+ /* Treat each sample as a ring. */
+ dof_gather_accumulate_sample_ring(fg_ring, 2, first_ring, false, true, fg_accum);
+
+ first_ring = false;
+ }
+
+ /* Center sample. */
+ vec2 sample_uv = frag_coord / vec2(textureSize(depth_tx, 0));
+ DofGatherData center_data;
+ center_data.color = safe_color(textureLod(color_tx, sample_uv, 0.0));
+ center_data.coc = dof_coc_from_depth(dof_buf, sample_uv, textureLod(depth_tx, sample_uv, 0.0).r);
+ center_data.coc = clamp(center_data.coc, -dof_buf.coc_abs_max, dof_buf.coc_abs_max);
+ center_data.dist = 0.0;
+
+ out_center_coc = center_data.coc;
+
+ /* Slide 38. */
+ float bordering_radius = 0.5;
+
+ dof_gather_accumulate_center_sample(
+ center_data, bordering_radius, i_radius, false, true, true, fg_accum);
+ dof_gather_accumulate_center_sample(
+ center_data, bordering_radius, i_radius, false, false, true, bg_accum);
+
+ vec4 bg_col, fg_col;
+ float bg_weight, fg_weight;
+ vec2 unused_occlusion;
+
+ int total_sample_count = int(sample_count) * 2 + 1;
+ dof_gather_accumulate_resolve(total_sample_count, bg_accum, bg_col, bg_weight, unused_occlusion);
+ dof_gather_accumulate_resolve(total_sample_count, fg_accum, fg_col, fg_weight, unused_occlusion);
+
+ /* Fix weighting issues on perfectly focus to slight focus transitioning areas. */
+ if (abs(center_data.coc) < 0.5) {
+ bg_col = center_data.color;
+ bg_weight = 1.0;
+ }
+
+ /* Alpha Over */
+ float alpha = 1.0 - fg_weight;
+ out_weight = bg_weight * alpha + fg_weight;
+ out_color = bg_col * bg_weight * alpha + fg_col * fg_weight;
+}
+
+/** \} */