Welcome to mirror list, hosted at ThFree Co, Russian Federation.

eevee_depth_of_field_accumulator_lib.glsl « shaders « eevee_next « engines « draw « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 99a47c541e96f58373af2db8db17d7dd2f1e7637 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680

/**
 * Depth of Field Gather accumulator.
 * We currently have only 2 which are very similar.
 * One is for the halfres gather passes and the other one for slight in focus regions.
 **/

#pragma BLENDER_REQUIRE(common_view_lib.glsl)
#pragma BLENDER_REQUIRE(eevee_colorspace_lib.glsl)
#pragma BLENDER_REQUIRE(eevee_sampling_lib.glsl)
#pragma BLENDER_REQUIRE(eevee_depth_of_field_lib.glsl)

/* -------------------------------------------------------------------- */
/** \name Options.
 * \{ */

/* Quality options */
#ifdef DOF_HOLEFILL_PASS
/* No need for very high density for hole_fill. */
const int gather_ring_count = 3;
const int gather_ring_density = 3;
const int gather_max_density_change = 0;
const int gather_density_change_ring = 1;
#else
const int gather_ring_count = DOF_GATHER_RING_COUNT;
const int gather_ring_density = 3;
const int gather_max_density_change = 50; /* Dictates the maximum good quality blur. */
const int gather_density_change_ring = 1;
#endif

/** \} */

/* -------------------------------------------------------------------- */
/** \name Constants.
 * \{ */

const float unit_ring_radius = 1.0 / float(gather_ring_count);
const float unit_sample_radius = 1.0 / float(gather_ring_count + 0.5);
const float large_kernel_radius = 0.5 + float(gather_ring_count);
const float smaller_kernel_radius = 0.5 + float(gather_ring_count - gather_density_change_ring);
/* NOTE(fclem) the bias is reducing issues with density change visible transition. */
const float radius_downscale_factor = smaller_kernel_radius / large_kernel_radius;
const int change_density_at_ring = (gather_ring_count - gather_density_change_ring + 1);
const float coc_radius_error = 2.0;

/** \} */

/* -------------------------------------------------------------------- */
/** \name Gather common.
 * \{ */

struct DofGatherData {
  vec4 color;
  float weight;
  float dist; /* TODO remove */
  /* For scatter occlusion. */
  float coc;
  float coc_sqr;
  /* For ring bucket merging. */
  float transparency;

  float layer_opacity;
};

#define GATHER_DATA_INIT DofGatherData(vec4(0.0), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

/* Intersection with the center of the kernel. */
float dof_intersection_weight(float coc, float distance_from_center, float intersection_multiplier)
{
  if (no_smooth_intersection) {
    return step(0.0, (abs(coc) - distance_from_center));
  }
  else {
    /* (Slide 64). */
    return saturate((abs(coc) - distance_from_center) * intersection_multiplier + 0.5);
  }
}

/* Returns weight of the sample for the outer bucket (containing previous
 * rings). */
float dof_gather_accum_weight(float coc, float bordering_radius, bool first_ring)
{
  /* First ring has nothing to be mixed against. */
  if (first_ring) {
    return 0.0;
  }
  return saturate(coc - bordering_radius);
}

void dof_gather_ammend_weight(inout DofGatherData sample_data, float weight)
{
  sample_data.color *= weight;
  sample_data.coc *= weight;
  sample_data.coc_sqr *= weight;
  sample_data.weight *= weight;
}

void dof_gather_accumulate_sample(DofGatherData sample_data,
                                  float weight,
                                  inout DofGatherData accum_data)
{
  accum_data.color += sample_data.color * weight;
  accum_data.coc += sample_data.coc * weight;
  accum_data.coc_sqr += sample_data.coc * (sample_data.coc * weight);
  accum_data.weight += weight;
}

void dof_gather_accumulate_sample_pair(DofGatherData pair_data[2],
                                       float bordering_radius,
                                       float intersection_multiplier,
                                       bool first_ring,
                                       const bool do_fast_gather,
                                       const bool is_foreground,
                                       inout DofGatherData ring_data,
                                       inout DofGatherData accum_data)
{
  if (do_fast_gather) {
    for (int i = 0; i < 2; i++) {
      dof_gather_accumulate_sample(pair_data[i], 1.0, accum_data);
      accum_data.layer_opacity += 1.0;
    }
    return;
  }

#if 0
  const float mirroring_threshold = -dof_layer_threshold - dof_layer_offset;
  /* TODO(fclem) Promote to parameter? dither with Noise? */
  const float mirroring_min_distance = 15.0;
  if (pair_data[0].coc < mirroring_threshold &&
      (pair_data[1].coc - mirroring_min_distance) > pair_data[0].coc) {
    pair_data[1].coc = pair_data[0].coc;
  }
  else if (pair_data[1].coc < mirroring_threshold &&
           (pair_data[0].coc - mirroring_min_distance) > pair_data[1].coc) {
    pair_data[0].coc = pair_data[1].coc;
  }
#endif

  for (int i = 0; i < 2; i++) {
    float sample_weight = dof_sample_weight(pair_data[i].coc);
    float layer_weight = dof_layer_weight(pair_data[i].coc, is_foreground);
    float inter_weight = dof_intersection_weight(
        pair_data[i].coc, pair_data[i].dist, intersection_multiplier);
    float weight = inter_weight * layer_weight * sample_weight;

    /**
     * If a CoC is larger than bordering radius we accumulate it to the general accumulator.
     * If not, we accumulate to the ring bucket. This is to have more consistent sample occlusion.
     **/
    float accum_weight = dof_gather_accum_weight(pair_data[i].coc, bordering_radius, first_ring);
    dof_gather_accumulate_sample(pair_data[i], weight * accum_weight, accum_data);
    dof_gather_accumulate_sample(pair_data[i], weight * (1.0 - accum_weight), ring_data);

    accum_data.layer_opacity += layer_weight;

    if (is_foreground) {
      ring_data.transparency += 1.0 - inter_weight * layer_weight;
    }
    else {
      float coc = is_foreground ? -pair_data[i].coc : pair_data[i].coc;
      ring_data.transparency += saturate(coc - bordering_radius);
    }
  }
}

void dof_gather_accumulate_sample_ring(DofGatherData ring_data,
                                       int sample_count,
                                       bool first_ring,
                                       const bool do_fast_gather,
                                       /* accum_data occludes the ring_data if true. */
                                       const bool reversed_occlusion,
                                       inout DofGatherData accum_data)
{
  if (do_fast_gather) {
    /* Do nothing as ring_data contains nothing. All samples are already in
     * accum_data. */
    return;
  }

  if (first_ring) {
    /* Layer opacity is directly accumulated into accum_data data. */
    accum_data.color = ring_data.color;
    accum_data.coc = ring_data.coc;
    accum_data.coc_sqr = ring_data.coc_sqr;
    accum_data.weight = ring_data.weight;

    accum_data.transparency = ring_data.transparency / float(sample_count);
    return;
  }

  if (ring_data.weight == 0.0) {
    return;
  }

  float ring_avg_coc = ring_data.coc / ring_data.weight;
  float accum_avg_coc = accum_data.coc / accum_data.weight;

  /* Smooth test to set opacity to see if the ring average coc occludes the
   * accumulation. Test is reversed to be multiplied against opacity. */
  float ring_occlu = saturate(accum_avg_coc - ring_avg_coc);
  /* The bias here is arbitrary. Seems to avoid weird looking foreground in most
   * cases. We might need to make it a parameter or find a relative bias. */
  float accum_occlu = saturate((ring_avg_coc - accum_avg_coc) * 0.1 - 1.0);

  if (is_resolve) {
    ring_occlu = accum_occlu = 0.0;
  }

  if (no_gather_occlusion) {
    ring_occlu = 0.0;
    accum_occlu = 0.0;
  }

  /* (Slide 40) */
  float ring_opacity = saturate(1.0 - ring_data.transparency / float(sample_count));
  float accum_opacity = 1.0 - accum_data.transparency;

  if (reversed_occlusion) {
    /* Accum_data occludes the ring. */
    float alpha = (accum_data.weight == 0.0) ? 0.0 : accum_opacity * accum_occlu;
    float one_minus_alpha = 1.0 - alpha;

    accum_data.color += ring_data.color * one_minus_alpha;
    accum_data.coc += ring_data.coc * one_minus_alpha;
    accum_data.coc_sqr += ring_data.coc_sqr * one_minus_alpha;
    accum_data.weight += ring_data.weight * one_minus_alpha;

    accum_data.transparency *= 1.0 - ring_opacity;
  }
  else {
    /* Ring occludes the accum_data (Same as reference). */
    float alpha = (accum_data.weight == 0.0) ? 1.0 : (ring_opacity * ring_occlu);
    float one_minus_alpha = 1.0 - alpha;

    accum_data.color = accum_data.color * one_minus_alpha + ring_data.color;
    accum_data.coc = accum_data.coc * one_minus_alpha + ring_data.coc;
    accum_data.coc_sqr = accum_data.coc_sqr * one_minus_alpha + ring_data.coc_sqr;
    accum_data.weight = accum_data.weight * one_minus_alpha + ring_data.weight;
  }
}

/* FIXME(fclem) Seems to be wrong since it needs ringcount+1 as input for
 * slightfocus gather. */
/* This should be replaced by web_sample_count_get() but doing so is breaking other things. */
int dof_gather_total_sample_count(const int ring_count, const int ring_density)
{
  return (ring_count * ring_count - ring_count) * ring_density + 1;
}

void dof_gather_accumulate_center_sample(DofGatherData center_data,
                                         float bordering_radius,
                                         int i_radius,
                                         const bool do_fast_gather,
                                         const bool is_foreground,
                                         const bool is_resolve,
                                         inout DofGatherData accum_data)
{
  float layer_weight = dof_layer_weight(center_data.coc, is_foreground);
  float sample_weight = dof_sample_weight(center_data.coc);
  float weight = layer_weight * sample_weight;
  float accum_weight = dof_gather_accum_weight(center_data.coc, bordering_radius, false);

  if (do_fast_gather) {
    /* Hope for the compiler to optimize the above. */
    layer_weight = 1.0;
    sample_weight = 1.0;
    accum_weight = 1.0;
    weight = 1.0;
  }

  center_data.transparency = 1.0 - weight;

  dof_gather_accumulate_sample(center_data, weight * accum_weight, accum_data);

  if (!do_fast_gather) {
    if (is_resolve) {
      /* NOTE(fclem): Hack to smooth transition to full in-focus opacity. */
      int total_sample_count = dof_gather_total_sample_count(i_radius + 1,
                                                             DOF_SLIGHT_FOCUS_DENSITY);
      float fac = saturate(1.0 - abs(center_data.coc) / float(dof_layer_threshold));
      accum_data.layer_opacity += float(total_sample_count) * fac * fac;
    }
    accum_data.layer_opacity += layer_weight;

    /* Logic of dof_gather_accumulate_sample(). */
    weight *= (1.0 - accum_weight);
    center_data.coc_sqr = center_data.coc * (center_data.coc * weight);
    center_data.color *= weight;
    center_data.coc *= weight;
    center_data.weight = weight;

    if (is_foreground && !is_resolve) {
      /* Reduce issue with closer foreground over distant foreground. */
      float ring_area = sqr(bordering_radius);
      dof_gather_ammend_weight(center_data, ring_area);
    }

    /* Accumulate center as its own ring. */
    dof_gather_accumulate_sample_ring(
        center_data, 1, false, do_fast_gather, is_foreground, accum_data);
  }
}

int dof_gather_total_sample_count_with_density_change(const int ring_count,
                                                      const int ring_density,
                                                      int density_change)
{
  int sample_count_per_density_change = dof_gather_total_sample_count(ring_count, ring_density) -
                                        dof_gather_total_sample_count(
                                            ring_count - gather_density_change_ring, ring_density);

  return dof_gather_total_sample_count(ring_count, ring_density) +
         sample_count_per_density_change * density_change;
}

void dof_gather_accumulate_resolve(int total_sample_count,
                                   DofGatherData accum_data,
                                   out vec4 out_col,
                                   out float out_weight,
                                   out vec2 out_occlusion)
{
  float weight_inv = safe_rcp(accum_data.weight);
  out_col = accum_data.color * weight_inv;
  out_occlusion = vec2(abs(accum_data.coc), accum_data.coc_sqr) * weight_inv;

  if (is_foreground) {
    out_weight = 1.0 - accum_data.transparency;
  }
  else if (accum_data.weight > 0.0) {
    out_weight = accum_data.layer_opacity / float(total_sample_count);
  }
  else {
    out_weight = 0.0;
  }
  /* Gathering may not accumulate to 1.0 alpha because of float precision. */
  if (out_weight > 0.99) {
    out_weight = 1.0;
  }
  else if (out_weight < 0.01) {
    out_weight = 0.0;
  }
  /* Same thing for alpha channel. */
  if (out_col.a > 0.993) {
    out_col.a = 1.0;
  }
  else if (out_col.a < 0.003) {
    out_col.a = 0.0;
  }
}

float dof_load_gather_coc(sampler2D gather_input_coc_tx, vec2 uv, float lod)
{
  float coc = textureLod(gather_input_coc_tx, uv, lod).r;
  /* We gather at halfres. CoC must be divided by 2 to be compared against radii. */
  return coc * 0.5;
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Common Gather accumulator.
 * \{ */

/* Radii needs to be halfres CoC sizes. */
bool dof_do_density_change(float base_radius, float min_intersectable_radius)
{
  /* Reduce artifact for very large blur. */
  min_intersectable_radius *= 0.1;

  bool need_new_density = (base_radius * unit_ring_radius > min_intersectable_radius);
  bool larger_than_min_density = (base_radius * radius_downscale_factor >
                                  float(gather_ring_count));

  return need_new_density && larger_than_min_density;
}

void dof_gather_init(float base_radius,
                     vec2 noise,
                     out vec2 center_co,
                     out float lod,
                     out float intersection_multiplier)
{
  /* Jitter center half a ring to reduce undersampling. */
  vec2 jitter_ofs = 0.499 * sample_disk(noise);
  if (DOF_BOKEH_TEXTURE) {
    jitter_ofs *= dof_buf.bokeh_anisotropic_scale;
  }
  vec2 frag_coord = vec2(gl_GlobalInvocationID.xy) + 0.5;
  center_co = frag_coord + jitter_ofs * base_radius * unit_sample_radius;

  /* TODO(fclem) Seems like the default lod selection is too big. Bias to avoid blocky moving out
   * of focus shapes. */
  const float lod_bias = -2.0;
  lod = max(floor(log2(base_radius * unit_sample_radius) + 0.5) + lod_bias, 0.0);

  if (no_gather_mipmaps) {
    lod = 0.0;
  }
  /* (Slide 64). */
  intersection_multiplier = pow(0.5, lod);
}

void dof_gather_accumulator(sampler2D color_tx,
                            sampler2D color_bilinear_tx,
                            sampler2D coc_tx,
                            sampler2D bkh_lut_tx, /* Renamed because of ugly macro. */
                            float base_radius,
                            float min_intersectable_radius,
                            const bool do_fast_gather,
                            const bool do_density_change,
                            out vec4 out_color,
                            out float out_weight,
                            out vec2 out_occlusion)
{
  vec2 frag_coord = vec2(gl_GlobalInvocationID.xy);
  vec2 noise_offset = sampling_rng_2D_get(SAMPLING_LENS_U);
  vec2 noise = no_gather_random ? vec2(0.0, 0.0) :
                                  vec2(interlieved_gradient_noise(frag_coord, 0, noise_offset.x),
                                       interlieved_gradient_noise(frag_coord, 1, noise_offset.y));

  if (!do_fast_gather) {
    /* Jitter the radius to reduce noticeable density changes. */
    base_radius += noise.x * unit_ring_radius * base_radius;
  }
  else {
    /* Jittering the radius more than we need means we are going to feather the bokeh shape half a
     * ring. So we need to compensate for fast gather that does not check CoC intersection. */
    base_radius += (0.5 - noise.x) * 1.5 * unit_ring_radius * base_radius;
  }
  /* TODO(fclem) another seed? For now Cranly-Partterson rotation with golden ratio. */
  noise.x = fract(noise.x * 6.1803398875);

  float lod, isect_mul;
  vec2 center_co;
  dof_gather_init(base_radius, noise, center_co, lod, isect_mul);

  bool first_ring = true;

  DofGatherData accum_data = GATHER_DATA_INIT;

  int density_change = 0;
  for (int ring = gather_ring_count; ring > 0; ring--) {
    int sample_pair_count = gather_ring_density * ring;

    float step_rot = M_PI / float(sample_pair_count);
    mat2 step_rot_mat = rot2_from_angle(step_rot);

    float angle_offset = noise.y * step_rot;
    vec2 offset = vec2(cos(angle_offset), sin(angle_offset));

    float ring_radius = float(ring) * unit_sample_radius * base_radius;

    /* Slide 38. */
    float bordering_radius = ring_radius +
                             (0.5 + coc_radius_error) * base_radius * unit_sample_radius;
    DofGatherData ring_data = GATHER_DATA_INIT;
    for (int sample_pair = 0; sample_pair < sample_pair_count; sample_pair++) {
      offset = step_rot_mat * offset;

      DofGatherData pair_data[2];
      for (int i = 0; i < 2; i++) {
        vec2 offset_co = ((i == 0) ? offset : -offset);
        if (DOF_BOKEH_TEXTURE) {
          /* Scaling to 0.25 for speed. Improves texture cache hit. */
          offset_co = texture(bkh_lut_tx, offset_co * 0.25 + 0.5).rg;
          offset_co *= (is_foreground) ? -dof_buf.bokeh_anisotropic_scale :
                                         dof_buf.bokeh_anisotropic_scale;
        }
        vec2 sample_co = center_co + offset_co * ring_radius;
        vec2 sample_uv = sample_co * dof_buf.gather_uv_fac;
        if (do_fast_gather) {
          pair_data[i].color = textureLod(color_bilinear_tx, sample_uv, lod);
        }
        else {
          pair_data[i].color = textureLod(color_tx, sample_uv, lod);
        }
        pair_data[i].coc = dof_load_gather_coc(coc_tx, sample_uv, lod);
        pair_data[i].dist = ring_radius;
      }

      dof_gather_accumulate_sample_pair(pair_data,
                                        bordering_radius,
                                        isect_mul,
                                        first_ring,
                                        do_fast_gather,
                                        is_foreground,
                                        ring_data,
                                        accum_data);
    }

    if (is_foreground) {
      /* Reduce issue with closer foreground over distant foreground. */
      /* TODO(fclem) this seems to not be completely correct as the issue remains. */
      float ring_area = (sqr(float(ring) + 0.5 + coc_radius_error) -
                         sqr(float(ring) - 0.5 + coc_radius_error)) *
                        sqr(base_radius * unit_sample_radius);
      dof_gather_ammend_weight(ring_data, ring_area);
    }

    dof_gather_accumulate_sample_ring(
        ring_data, sample_pair_count * 2, first_ring, do_fast_gather, is_foreground, accum_data);

    first_ring = false;

    if (do_density_change && (ring == change_density_at_ring) &&
        (density_change < gather_max_density_change)) {
      if (dof_do_density_change(base_radius, min_intersectable_radius)) {
        base_radius *= radius_downscale_factor;
        ring += gather_density_change_ring;
        /* We need to account for the density change in the weights (slide 62).
         * For that multiply old kernel data by its area divided by the new kernel area. */
        const float outer_rings_weight = 1.0 / (radius_downscale_factor * radius_downscale_factor);
        /* Samples are already weighted per ring in foreground pass. */
        if (!is_foreground) {
          dof_gather_ammend_weight(accum_data, outer_rings_weight);
        }
        /* Re-init kernel position & sampling parameters. */
        dof_gather_init(base_radius, noise, center_co, lod, isect_mul);
        density_change++;
      }
    }
  }

  {
    /* Center sample. */
    vec2 sample_uv = center_co * dof_buf.gather_uv_fac;
    DofGatherData center_data;
    if (do_fast_gather) {
      center_data.color = textureLod(color_bilinear_tx, sample_uv, lod);
    }
    else {
      center_data.color = textureLod(color_tx, sample_uv, lod);
    }
    center_data.coc = dof_load_gather_coc(coc_tx, sample_uv, lod);
    center_data.dist = 0.0;

    /* Slide 38. */
    float bordering_radius = (0.5 + coc_radius_error) * base_radius * unit_sample_radius;

    dof_gather_accumulate_center_sample(
        center_data, bordering_radius, 0, do_fast_gather, is_foreground, false, accum_data);
  }

  int total_sample_count = dof_gather_total_sample_count_with_density_change(
      gather_ring_count, gather_ring_density, density_change);
  dof_gather_accumulate_resolve(
      total_sample_count, accum_data, out_color, out_weight, out_occlusion);

  if (debug_gather_perf && density_change > 0) {
    float fac = saturate(float(density_change) / float(10.0));
    out_color.rgb = avg(out_color.rgb) * neon_gradient(fac);
  }
  if (debug_gather_perf && do_fast_gather) {
    out_color.rgb = avg(out_color.rgb) * vec3(0.0, 1.0, 0.0);
  }
  if (debug_scatter_perf) {
    out_color.rgb = avg(out_color.rgb) * vec3(0.0, 1.0, 0.0);
  }

  /* Output premultiplied color so we can use bilinear sampler in resolve pass. */
  out_color *= out_weight;
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Slight focus accumulator.
 *
 * The full pixel neighborhood is gathered.
 * \{ */

void dof_slight_focus_gather(sampler2D depth_tx,
                             sampler2D color_tx,
                             sampler2D bkh_lut_tx, /* Renamed because of ugly macro job. */
                             float radius,
                             out vec4 out_color,
                             out float out_weight,
                             out float out_center_coc)
{
  vec2 frag_coord = vec2(gl_GlobalInvocationID.xy) + 0.5;
  vec2 noise_offset = sampling_rng_2D_get(SAMPLING_LENS_U);
  vec2 noise = no_gather_random ? vec2(0.0) :
                                  vec2(interlieved_gradient_noise(frag_coord, 3, noise_offset.x),
                                       interlieved_gradient_noise(frag_coord, 5, noise_offset.y));

  DofGatherData fg_accum = GATHER_DATA_INIT;
  DofGatherData bg_accum = GATHER_DATA_INIT;

  int i_radius = clamp(int(radius), 0, int(dof_layer_threshold));

  const float sample_count_max = float(DOF_SLIGHT_FOCUS_SAMPLE_MAX);
  /* Scale by search area. */
  float sample_count = sample_count_max * saturate(sqr(radius) / sqr(dof_layer_threshold));

  bool first_ring = true;

  for (float s = 0.0; s < sample_count; s++) {
    vec2 rand2 = fract(hammersley_2d(s, sample_count) + noise);
    vec2 offset = sample_disk(rand2);
    float ring_dist = sqrt(rand2.y);

    DofGatherData pair_data[2];
    for (int i = 0; i < 2; i++) {
      vec2 sample_offset = ((i == 0) ? offset : -offset);
      /* OPTI: could precompute the factor. */
      vec2 sample_uv = (frag_coord + sample_offset) / vec2(textureSize(depth_tx, 0));
      float depth = textureLod(depth_tx, sample_uv, 0.0).r;
      pair_data[i].coc = dof_coc_from_depth(dof_buf, sample_uv, depth);
      pair_data[i].color = safe_color(textureLod(color_tx, sample_uv, 0.0));
      pair_data[i].dist = ring_dist;
      if (DOF_BOKEH_TEXTURE) {
        /* Contains subpixel distance to bokeh shape. */
        ivec2 lut_texel = ivec2(round(sample_offset)) + dof_max_slight_focus_radius;
        pair_data[i].dist = texelFetch(bkh_lut_tx, lut_texel, 0).r;
      }
      pair_data[i].coc = clamp(pair_data[i].coc, -dof_buf.coc_abs_max, dof_buf.coc_abs_max);
    }

    float bordering_radius = ring_dist + 0.5;
    const float isect_mul = 1.0;
    DofGatherData bg_ring = GATHER_DATA_INIT;
    dof_gather_accumulate_sample_pair(
        pair_data, bordering_radius, isect_mul, first_ring, false, false, bg_ring, bg_accum);
    /* Treat each sample as a ring. */
    dof_gather_accumulate_sample_ring(bg_ring, 2, first_ring, false, false, bg_accum);

    if (DOF_BOKEH_TEXTURE) {
      /* Swap distances in order to flip bokeh shape for foreground. */
      float tmp = pair_data[0].dist;
      pair_data[0].dist = pair_data[1].dist;
      pair_data[1].dist = tmp;
    }
    DofGatherData fg_ring = GATHER_DATA_INIT;
    dof_gather_accumulate_sample_pair(
        pair_data, bordering_radius, isect_mul, first_ring, false, true, fg_ring, fg_accum);
    /* Treat each sample as a ring. */
    dof_gather_accumulate_sample_ring(fg_ring, 2, first_ring, false, true, fg_accum);

    first_ring = false;
  }

  /* Center sample. */
  vec2 sample_uv = frag_coord / vec2(textureSize(depth_tx, 0));
  DofGatherData center_data;
  center_data.color = safe_color(textureLod(color_tx, sample_uv, 0.0));
  center_data.coc = dof_coc_from_depth(dof_buf, sample_uv, textureLod(depth_tx, sample_uv, 0.0).r);
  center_data.coc = clamp(center_data.coc, -dof_buf.coc_abs_max, dof_buf.coc_abs_max);
  center_data.dist = 0.0;

  out_center_coc = center_data.coc;

  /* Slide 38. */
  float bordering_radius = 0.5;

  dof_gather_accumulate_center_sample(
      center_data, bordering_radius, i_radius, false, true, true, fg_accum);
  dof_gather_accumulate_center_sample(
      center_data, bordering_radius, i_radius, false, false, true, bg_accum);

  vec4 bg_col, fg_col;
  float bg_weight, fg_weight;
  vec2 unused_occlusion;

  int total_sample_count = int(sample_count) * 2 + 1;
  dof_gather_accumulate_resolve(total_sample_count, bg_accum, bg_col, bg_weight, unused_occlusion);
  dof_gather_accumulate_resolve(total_sample_count, fg_accum, fg_col, fg_weight, unused_occlusion);

  /* Fix weighting issues on perfectly focus to slight focus transitioning areas. */
  if (abs(center_data.coc) < 0.5) {
    bg_col = center_data.color;
    bg_weight = 1.0;
  }

  /* Alpha Over */
  float alpha = 1.0 - fg_weight;
  out_weight = bg_weight * alpha + fg_weight;
  out_color = bg_col * bg_weight * alpha + fg_col * fg_weight;
}

/** \} */