Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/nodes/geometry/nodes/legacy/node_geo_legacy_attribute_map_range.cc')
-rw-r--r--source/blender/nodes/geometry/nodes/legacy/node_geo_legacy_attribute_map_range.cc437
1 files changed, 437 insertions, 0 deletions
diff --git a/source/blender/nodes/geometry/nodes/legacy/node_geo_legacy_attribute_map_range.cc b/source/blender/nodes/geometry/nodes/legacy/node_geo_legacy_attribute_map_range.cc
new file mode 100644
index 00000000000..8ebcf34ad0b
--- /dev/null
+++ b/source/blender/nodes/geometry/nodes/legacy/node_geo_legacy_attribute_map_range.cc
@@ -0,0 +1,437 @@
+/*
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ */
+
+#include "BLI_math_base_safe.h"
+#include "BLI_task.hh"
+
+#include "UI_interface.h"
+#include "UI_resources.h"
+
+#include "node_geometry_util.hh"
+
+namespace blender::nodes::node_geo_legacy_attribute_map_range_cc {
+
+static void node_declare(NodeDeclarationBuilder &b)
+{
+ b.add_input<decl::Geometry>(N_("Geometry"));
+ b.add_input<decl::String>(N_("Attribute"));
+ b.add_input<decl::String>(N_("Result"));
+ b.add_input<decl::Float>(N_("From Min"));
+ b.add_input<decl::Float>(N_("From Max")).default_value(1.0f);
+ b.add_input<decl::Float>(N_("To Min"));
+ b.add_input<decl::Float>(N_("To Max")).default_value(1.0f);
+ b.add_input<decl::Float>(N_("Steps")).default_value(4.0f);
+ b.add_input<decl::Vector>(N_("From Min"), "From Min_001");
+ b.add_input<decl::Vector>(N_("From Max"), "From Max_001").default_value({1.0f, 1.0f, 1.0f});
+ b.add_input<decl::Vector>(N_("To Min"), "To Min_001");
+ b.add_input<decl::Vector>(N_("To Max"), "To Max_001").default_value({1.0f, 1.0f, 1.0f});
+ b.add_input<decl::Vector>(N_("Steps"), "Steps_001").default_value({4.0f, 4.0f, 4.0f});
+ b.add_input<decl::Bool>(N_("Clamp"));
+ b.add_output<decl::Geometry>(N_("Geometry"));
+}
+
+static void fn_attribute_map_range_layout(uiLayout *layout, bContext *UNUSED(C), PointerRNA *ptr)
+{
+ uiItemR(layout, ptr, "data_type", 0, "", ICON_NONE);
+ uiItemR(layout, ptr, "interpolation_type", 0, "", ICON_NONE);
+}
+
+static void node_init(bNodeTree *UNUSED(ntree), bNode *node)
+{
+ NodeAttributeMapRange *data = (NodeAttributeMapRange *)MEM_callocN(sizeof(NodeAttributeMapRange),
+ __func__);
+ data->data_type = CD_PROP_FLOAT;
+ data->interpolation_type = NODE_MAP_RANGE_LINEAR;
+
+ node->storage = data;
+}
+static void node_update(bNodeTree *ntree, bNode *node)
+{
+ NodeAttributeMapRange &node_storage = *(NodeAttributeMapRange *)node->storage;
+
+ bNodeSocket *sock_from_min_float = (bNodeSocket *)BLI_findlink(&node->inputs, 3);
+ bNodeSocket *sock_from_max_float = sock_from_min_float->next;
+ bNodeSocket *sock_to_min_float = sock_from_max_float->next;
+ bNodeSocket *sock_to_max_float = sock_to_min_float->next;
+ bNodeSocket *sock_steps_float = sock_to_max_float->next;
+
+ bNodeSocket *sock_from_min_vector = sock_steps_float->next;
+ bNodeSocket *sock_from_max_vector = sock_from_min_vector->next;
+ bNodeSocket *sock_to_min_vector = sock_from_max_vector->next;
+ bNodeSocket *sock_to_max_vector = sock_to_min_vector->next;
+ bNodeSocket *sock_steps_vector = sock_to_max_vector->next;
+
+ bNodeSocket *sock_clamp = sock_steps_vector->next;
+
+ const CustomDataType data_type = static_cast<CustomDataType>(node_storage.data_type);
+
+ nodeSetSocketAvailability(ntree,
+ sock_clamp,
+ node_storage.interpolation_type == NODE_MAP_RANGE_LINEAR ||
+ node_storage.interpolation_type == NODE_MAP_RANGE_STEPPED);
+
+ nodeSetSocketAvailability(ntree, sock_from_min_float, data_type == CD_PROP_FLOAT);
+ nodeSetSocketAvailability(ntree, sock_from_max_float, data_type == CD_PROP_FLOAT);
+ nodeSetSocketAvailability(ntree, sock_to_min_float, data_type == CD_PROP_FLOAT);
+ nodeSetSocketAvailability(ntree, sock_to_max_float, data_type == CD_PROP_FLOAT);
+ nodeSetSocketAvailability(ntree,
+ sock_steps_float,
+ data_type == CD_PROP_FLOAT &&
+ node_storage.interpolation_type == NODE_MAP_RANGE_STEPPED);
+
+ nodeSetSocketAvailability(ntree, sock_from_min_vector, data_type == CD_PROP_FLOAT3);
+ nodeSetSocketAvailability(ntree, sock_from_max_vector, data_type == CD_PROP_FLOAT3);
+ nodeSetSocketAvailability(ntree, sock_to_min_vector, data_type == CD_PROP_FLOAT3);
+ nodeSetSocketAvailability(ntree, sock_to_max_vector, data_type == CD_PROP_FLOAT3);
+ nodeSetSocketAvailability(ntree,
+ sock_steps_vector,
+ data_type == CD_PROP_FLOAT3 &&
+ node_storage.interpolation_type == NODE_MAP_RANGE_STEPPED);
+}
+
+static float map_linear(const float value,
+ const float min_from,
+ const float max_from,
+ const float min_to,
+ const float max_to)
+{
+ /* First we calculate a fraction that measures how far along
+ * the [min_from, max_from] interval the value lies.
+ *
+ * value
+ * min_from [------>|------------------------] max_from
+ * factor (e.g. 0.25)
+ *
+ * Then to find where the value is mapped, we add the same fraction
+ * of the [min_to, max_to] interval to min_to.
+ *
+ * min_to [--->|-----------] max_to
+ * v
+ * min_to + (max_to - min_to) * factor
+ */
+ const float factor = safe_divide(value - min_from, max_from - min_from);
+ return min_to + factor * (max_to - min_to);
+}
+
+static float map_stepped(const float value,
+ const float min_from,
+ const float max_from,
+ const float min_to,
+ const float max_to,
+ const float steps)
+{
+ /* First the factor is calculated here in the same way as for the linear mapping.
+ *
+ * Then the factor is mapped to multiples of 1.0 / steps.
+ * This is best understood with a few examples. Assume steps == 3.
+ * ____________________________________
+ * | factor | * 4.0 | floor() | / 3.0 |
+ * |--------|-------|---------|-------|
+ * | 0.0 | 0.0 | 0.0 | 0.0 |
+ * | 0.1 | 0.4 | 0.0 | 0.0 |
+ * | 0.25 | 1.0 | 1.0 | 0.333 |
+ * | 0.45 | 1.8 | 1.0 | 0.333 |
+ * | 0.5 | 2.0 | 2.0 | 0.666 |
+ * | 0.55 | 2.2 | 2.0 | 0.666 |
+ * | 0.999 | 3.999 | 3.0 | 1.0 |
+ * | 1.0 | 4.0 | 4.0 | 1.333 |
+ * ------------------------------------
+ * Note that the factor is not always mapped the closest multiple of 1.0 /steps.
+ */
+ const float factor = safe_divide(value - min_from, max_from - min_from);
+ const float factor_mapped = safe_divide(floorf(factor * (steps + 1.0f)), steps);
+ return min_to + factor_mapped * (max_to - min_to);
+}
+
+static float smoothstep_polynomial(float x)
+{
+ /* This polynomial is only meant to be used for the [0, 1] range. */
+ return (3.0f - 2.0f * x) * (x * x);
+}
+
+static float map_smoothstep(const float value,
+ const float min_from,
+ const float max_from,
+ const float min_to,
+ const float max_to)
+{
+ const float factor = safe_divide(value - min_from, max_from - min_from);
+ const float factor_clamped = std::clamp(factor, 0.0f, 1.0f);
+ const float factor_mapped = smoothstep_polynomial(factor_clamped);
+ return min_to + factor_mapped * (max_to - min_to);
+}
+
+static float smootherstep_polynomial(float x)
+{
+ /* This polynomial is only meant to be used for the [0, 1] range. */
+ return x * x * x * (x * (x * 6.0f - 15.0f) + 10.0f);
+}
+
+static float map_smootherstep(const float value,
+ const float min_from,
+ const float max_from,
+ const float min_to,
+ const float max_to)
+{
+ const float factor = safe_divide(value - min_from, max_from - min_from);
+ const float factor_clamped = std::clamp(factor, 0.0f, 1.0f);
+ const float factor_mapped = smootherstep_polynomial(factor_clamped);
+ return min_to + factor_mapped * (max_to - min_to);
+}
+
+static void map_range_float(const VArray<float> &attribute_input,
+ MutableSpan<float> results,
+ const GeoNodeExecParams &params)
+{
+ const bNode &node = params.node();
+ NodeAttributeMapRange &node_storage = *(NodeAttributeMapRange *)node.storage;
+ const int interpolation_type = node_storage.interpolation_type;
+ const float min_from = params.get_input<float>("From Min");
+ const float max_from = params.get_input<float>("From Max");
+ const float min_to = params.get_input<float>("To Min");
+ const float max_to = params.get_input<float>("To Max");
+
+ VArray_Span<float> span{attribute_input};
+
+ switch (interpolation_type) {
+ case NODE_MAP_RANGE_LINEAR: {
+ threading::parallel_for(span.index_range(), 2048, [&](IndexRange range) {
+ for (const int i : range) {
+ results[i] = map_linear(span[i], min_from, max_from, min_to, max_to);
+ }
+ });
+ break;
+ }
+ case NODE_MAP_RANGE_STEPPED: {
+ const float steps = params.get_input<float>("Steps");
+ threading::parallel_for(span.index_range(), 1024, [&](IndexRange range) {
+ for (const int i : range) {
+ results[i] = map_stepped(span[i], min_from, max_from, min_to, max_to, steps);
+ }
+ });
+ break;
+ }
+ case NODE_MAP_RANGE_SMOOTHSTEP: {
+ threading::parallel_for(span.index_range(), 1024, [&](IndexRange range) {
+ for (const int i : range) {
+ results[i] = map_smoothstep(span[i], min_from, max_from, min_to, max_to);
+ }
+ });
+ break;
+ }
+ case NODE_MAP_RANGE_SMOOTHERSTEP: {
+ threading::parallel_for(span.index_range(), 1024, [&](IndexRange range) {
+ for (const int i : range) {
+ results[i] = map_smootherstep(span[i], min_from, max_from, min_to, max_to);
+ }
+ });
+ break;
+ }
+ }
+
+ if (ELEM(interpolation_type, NODE_MAP_RANGE_LINEAR, NODE_MAP_RANGE_STEPPED) &&
+ params.get_input<bool>("Clamp")) {
+ /* Users can specify min_to > max_to, but clamping expects min < max. */
+ const float clamp_min = min_to < max_to ? min_to : max_to;
+ const float clamp_max = min_to < max_to ? max_to : min_to;
+
+ threading::parallel_for(results.index_range(), 2048, [&](IndexRange range) {
+ for (const int i : range) {
+ results[i] = std::clamp(results[i], clamp_min, clamp_max);
+ }
+ });
+ }
+}
+
+static void map_range_float3(const VArray<float3> &attribute_input,
+ const MutableSpan<float3> results,
+ const GeoNodeExecParams &params)
+{
+ const bNode &node = params.node();
+ NodeAttributeMapRange &node_storage = *(NodeAttributeMapRange *)node.storage;
+ const int interpolation_type = node_storage.interpolation_type;
+ const float3 min_from = params.get_input<float3>("From Min_001");
+ const float3 max_from = params.get_input<float3>("From Max_001");
+ const float3 min_to = params.get_input<float3>("To Min_001");
+ const float3 max_to = params.get_input<float3>("To Max_001");
+
+ VArray_Span<float3> span{attribute_input};
+
+ switch (interpolation_type) {
+ case NODE_MAP_RANGE_LINEAR: {
+ threading::parallel_for(span.index_range(), 1024, [&](IndexRange range) {
+ for (const int i : range) {
+ results[i].x = map_linear(span[i].x, min_from.x, max_from.x, min_to.x, max_to.x);
+ results[i].y = map_linear(span[i].y, min_from.y, max_from.y, min_to.y, max_to.y);
+ results[i].z = map_linear(span[i].z, min_from.z, max_from.z, min_to.z, max_to.z);
+ }
+ });
+ break;
+ }
+ case NODE_MAP_RANGE_STEPPED: {
+ const float3 steps = params.get_input<float3>("Steps_001");
+ threading::parallel_for(span.index_range(), 1024, [&](IndexRange range) {
+ for (const int i : range) {
+ results[i].x = map_stepped(
+ span[i].x, min_from.x, max_from.x, min_to.x, max_to.x, steps.x);
+ results[i].y = map_stepped(
+ span[i].y, min_from.y, max_from.y, min_to.y, max_to.y, steps.y);
+ results[i].z = map_stepped(
+ span[i].z, min_from.z, max_from.z, min_to.z, max_to.z, steps.z);
+ }
+ });
+ break;
+ }
+ case NODE_MAP_RANGE_SMOOTHSTEP: {
+ threading::parallel_for(span.index_range(), 1024, [&](IndexRange range) {
+ for (const int i : range) {
+ results[i].x = map_smoothstep(span[i].x, min_from.x, max_from.x, min_to.x, max_to.x);
+ results[i].y = map_smoothstep(span[i].y, min_from.y, max_from.y, min_to.y, max_to.y);
+ results[i].z = map_smoothstep(span[i].z, min_from.z, max_from.z, min_to.z, max_to.z);
+ }
+ });
+ break;
+ }
+ case NODE_MAP_RANGE_SMOOTHERSTEP: {
+ threading::parallel_for(span.index_range(), 1024, [&](IndexRange range) {
+ for (const int i : range) {
+ results[i].x = map_smootherstep(span[i].x, min_from.x, max_from.x, min_to.x, max_to.x);
+ results[i].y = map_smootherstep(span[i].y, min_from.y, max_from.y, min_to.y, max_to.y);
+ results[i].z = map_smootherstep(span[i].z, min_from.z, max_from.z, min_to.z, max_to.z);
+ }
+ });
+ break;
+ }
+ }
+
+ if (ELEM(interpolation_type, NODE_MAP_RANGE_LINEAR, NODE_MAP_RANGE_STEPPED) &&
+ params.get_input<bool>("Clamp")) {
+ /* Users can specify min_to > max_to, but clamping expects min < max. */
+ float3 clamp_min;
+ float3 clamp_max;
+ clamp_min.x = min_to.x < max_to.x ? min_to.x : max_to.x;
+ clamp_max.x = min_to.x < max_to.x ? max_to.x : min_to.x;
+ clamp_min.y = min_to.y < max_to.y ? min_to.y : max_to.y;
+ clamp_max.y = min_to.y < max_to.y ? max_to.y : min_to.y;
+ clamp_min.z = min_to.z < max_to.z ? min_to.z : max_to.z;
+ clamp_max.z = min_to.z < max_to.z ? max_to.z : min_to.z;
+
+ for (int i : results.index_range()) {
+ clamp_v3_v3v3(results[i], clamp_min, clamp_max);
+ }
+ }
+}
+
+static AttributeDomain get_result_domain(const GeometryComponent &component,
+ StringRef source_name,
+ StringRef result_name)
+{
+ std::optional<AttributeMetaData> result_info = component.attribute_get_meta_data(result_name);
+ if (result_info) {
+ return result_info->domain;
+ }
+ std::optional<AttributeMetaData> source_info = component.attribute_get_meta_data(source_name);
+ if (source_info) {
+ return source_info->domain;
+ }
+ return ATTR_DOMAIN_POINT;
+}
+
+static void map_range_attribute(GeometryComponent &component, const GeoNodeExecParams &params)
+{
+ const std::string input_name = params.get_input<std::string>("Attribute");
+ const std::string result_name = params.get_input<std::string>("Result");
+
+ if (input_name.empty() || result_name.empty()) {
+ return;
+ }
+
+ const bNode &node = params.node();
+ NodeAttributeMapRange &node_storage = *(NodeAttributeMapRange *)node.storage;
+ const CustomDataType data_type = static_cast<CustomDataType>(node_storage.data_type);
+
+ const AttributeDomain domain = get_result_domain(component, input_name, result_name);
+
+ GVArray attribute_input = component.attribute_try_get_for_read(input_name, domain, data_type);
+
+ if (!attribute_input) {
+ params.error_message_add(NodeWarningType::Error,
+ TIP_("No attribute with name \"") + input_name + "\"");
+ return;
+ }
+
+ OutputAttribute attribute_result = component.attribute_try_get_for_output_only(
+ result_name, domain, data_type);
+ if (!attribute_result) {
+ params.error_message_add(NodeWarningType::Error,
+ TIP_("Could not find or create attribute with name \"") +
+ result_name + "\"");
+ return;
+ }
+
+ switch (data_type) {
+ case CD_PROP_FLOAT: {
+ map_range_float(attribute_input.typed<float>(), attribute_result.as_span<float>(), params);
+ break;
+ }
+ case CD_PROP_FLOAT3: {
+ map_range_float3(
+ attribute_input.typed<float3>(), attribute_result.as_span<float3>(), params);
+ break;
+ }
+ default:
+ BLI_assert_unreachable();
+ }
+
+ attribute_result.save();
+}
+
+static void node_geo_exec(GeoNodeExecParams params)
+{
+ GeometrySet geometry_set = params.extract_input<GeometrySet>("Geometry");
+
+ if (geometry_set.has<MeshComponent>()) {
+ map_range_attribute(geometry_set.get_component_for_write<MeshComponent>(), params);
+ }
+ if (geometry_set.has<PointCloudComponent>()) {
+ map_range_attribute(geometry_set.get_component_for_write<PointCloudComponent>(), params);
+ }
+ if (geometry_set.has<CurveComponent>()) {
+ map_range_attribute(geometry_set.get_component_for_write<CurveComponent>(), params);
+ }
+
+ params.set_output("Geometry", geometry_set);
+}
+
+} // namespace blender::nodes::node_geo_legacy_attribute_map_range_cc
+
+void register_node_type_geo_attribute_map_range()
+{
+ namespace file_ns = blender::nodes::node_geo_legacy_attribute_map_range_cc;
+
+ static bNodeType ntype;
+
+ geo_node_type_base(
+ &ntype, GEO_NODE_LEGACY_ATTRIBUTE_MAP_RANGE, "Attribute Map Range", NODE_CLASS_ATTRIBUTE, 0);
+ ntype.geometry_node_execute = file_ns::node_geo_exec;
+ node_type_init(&ntype, file_ns::node_init);
+ node_type_update(&ntype, file_ns::node_update);
+ node_type_storage(
+ &ntype, "NodeAttributeMapRange", node_free_standard_storage, node_copy_standard_storage);
+ ntype.declare = file_ns::node_declare;
+ ntype.draw_buttons = file_ns::fn_attribute_map_range_layout;
+ nodeRegisterType(&ntype);
+}