Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/python/generic/noise.c')
-rw-r--r--source/blender/python/generic/noise.c760
1 files changed, 760 insertions, 0 deletions
diff --git a/source/blender/python/generic/noise.c b/source/blender/python/generic/noise.c
new file mode 100644
index 00000000000..4a09cbb58d8
--- /dev/null
+++ b/source/blender/python/generic/noise.c
@@ -0,0 +1,760 @@
+/**
+ * $Id$
+ *
+ * Blender.Noise BPython module implementation.
+ * This submodule has functions to generate noise of various types.
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
+ * All rights reserved.
+ *
+ * This is a new part of Blender.
+ *
+ * Contributor(s): eeshlo
+ *
+ * ***** END GPL LICENSE BLOCK *****
+*/
+
+/************************/
+/* Blender Noise Module */
+/************************/
+
+#include <Python.h>
+#include "structseq.h"
+
+#include "BLI_blenlib.h"
+#include "DNA_texture_types.h"
+/*-----------------------------------------*/
+/* 'mersenne twister' random number generator */
+
+/*
+ A C-program for MT19937, with initialization improved 2002/2/10.
+ Coded by Takuji Nishimura and Makoto Matsumoto.
+ This is a faster version by taking Shawn Cokus's optimization,
+ Matthe Bellew's simplification, Isaku Wada's real version.
+
+ Before using, initialize the state by using init_genrand(seed)
+ or init_by_array(init_key, key_length).
+
+ Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ 1. Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. The names of its contributors may not be used to endorse or promote
+ products derived from this software without specific prior written
+ permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+ Any feedback is very welcome.
+ http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
+ email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
+*/
+
+/* 2.5 update
+ * Noise.setRandomSeed --> seed_set
+ * Noise.randuvec --> random_unit_vector
+ * Noise.vNoise --> noise_vector
+ * Noise.vTurbulence --> turbulence_vector
+ * Noise.multiFractal --> multi_fractal
+ * Noise.cellNoise --> cell
+ * Noise.cellNoiseV --> cell_vector
+ * Noise.vlNoise --> vl_vector
+ * Noise.heteroTerrain --> hetero_terrain
+ * Noise.hybridMFractal --> hybrid_multi_fractal
+ * Noise.fBm --> fractal
+ * Noise.ridgedMFractal --> ridged_multi_fractal
+ *
+ * Const's *
+ * Noise.NoiseTypes --> types
+ * Noise.DistanceMetrics --> distance_metrics
+ */
+
+/* Period parameters */
+#define N 624
+#define M 397
+#define MATRIX_A 0x9908b0dfUL /* constant vector a */
+#define UMASK 0x80000000UL /* most significant w-r bits */
+#define LMASK 0x7fffffffUL /* least significant r bits */
+#define MIXBITS(u,v) (((u) & UMASK) | ((v) & LMASK))
+#define TWIST(u,v) ((MIXBITS(u,v) >> 1) ^ ((v)&1UL ? MATRIX_A : 0UL))
+
+static unsigned long state[N]; /* the array for the state vector */
+static int left = 1;
+static int initf = 0;
+static unsigned long *next;
+
+PyObject *Noise_Init(void);
+
+/* initializes state[N] with a seed */
+static void init_genrand(unsigned long s)
+{
+ int j;
+ state[0] = s & 0xffffffffUL;
+ for(j = 1; j < N; j++) {
+ state[j] =
+ (1812433253UL *
+ (state[j - 1] ^ (state[j - 1] >> 30)) + j);
+ /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
+ /* In the previous versions, MSBs of the seed affect */
+ /* only MSBs of the array state[]. */
+ /* 2002/01/09 modified by Makoto Matsumoto */
+ state[j] &= 0xffffffffUL; /* for >32 bit machines */
+ }
+ left = 1;
+ initf = 1;
+}
+
+static void next_state(void)
+{
+ unsigned long *p = state;
+ int j;
+
+ /* if init_genrand() has not been called, */
+ /* a default initial seed is used */
+ if(initf == 0)
+ init_genrand(5489UL);
+
+ left = N;
+ next = state;
+
+ for(j = N - M + 1; --j; p++)
+ *p = p[M] ^ TWIST(p[0], p[1]);
+
+ for(j = M; --j; p++)
+ *p = p[M - N] ^ TWIST(p[0], p[1]);
+
+ *p = p[M - N] ^ TWIST(p[0], state[0]);
+}
+
+/*------------------------------------------------------------*/
+
+static void setRndSeed(int seed)
+{
+ if(seed == 0)
+ init_genrand(time(NULL));
+ else
+ init_genrand(seed);
+}
+
+/* float number in range [0, 1) using the mersenne twister rng */
+static float frand()
+{
+ unsigned long y;
+
+ if(--left == 0)
+ next_state();
+ y = *next++;
+
+ /* Tempering */
+ y ^= (y >> 11);
+ y ^= (y << 7) & 0x9d2c5680UL;
+ y ^= (y << 15) & 0xefc60000UL;
+ y ^= (y >> 18);
+
+ return (float) y / 4294967296.f;
+}
+
+/*------------------------------------------------------------*/
+
+/* returns random unit vector */
+static void randuvec(float v[3])
+{
+ float r;
+ v[2] = 2.f * frand() - 1.f;
+ if((r = 1.f - v[2] * v[2]) > 0.f) {
+ float a = (float)(6.283185307f * frand());
+ r = (float)sqrt(r);
+ v[0] = (float)(r * cos(a));
+ v[1] = (float)(r * sin(a));
+ } else
+ v[2] = 1.f;
+}
+
+static PyObject *Noise_random(PyObject * self)
+{
+ return PyFloat_FromDouble(frand());
+}
+
+static PyObject *Noise_random_unit_vector(PyObject * self)
+{
+ float v[3] = {0.0f, 0.0f, 0.0f};
+ randuvec(v);
+ return Py_BuildValue("[fff]", v[0], v[1], v[2]);
+}
+
+/*---------------------------------------------------------------------*/
+
+/* Random seed init. Only used for MT random() & randuvec() */
+
+static PyObject *Noise_seed_set(PyObject * self, PyObject * args)
+{
+ int s;
+ if(!PyArg_ParseTuple(args, "i:seed_set", &s))
+ return NULL;
+ setRndSeed(s);
+ Py_RETURN_NONE;
+}
+
+/*-------------------------------------------------------------------------*/
+
+/* General noise */
+
+static PyObject *Noise_noise(PyObject * self, PyObject * args)
+{
+ float x, y, z;
+ int nb = 1;
+ if(!PyArg_ParseTuple(args, "(fff)|i:noise", &x, &y, &z, &nb))
+ return NULL;
+
+ return PyFloat_FromDouble((2.0 * BLI_gNoise(1.0, x, y, z, 0, nb) - 1.0));
+}
+
+/*-------------------------------------------------------------------------*/
+
+/* General Vector noise */
+
+static void noise_vector(float x, float y, float z, int nb, float v[3])
+{
+ /* Simply evaluate noise at 3 different positions */
+ v[0] = (float)(2.0 * BLI_gNoise(1.f, x + 9.321f, y - 1.531f, z - 7.951f, 0,
+ nb) - 1.0);
+ v[1] = (float)(2.0 * BLI_gNoise(1.f, x, y, z, 0, nb) - 1.0);
+ v[2] = (float)(2.0 * BLI_gNoise(1.f, x + 6.327f, y + 0.1671f, z - 2.672f, 0,
+ nb) - 1.0);
+}
+
+static PyObject *Noise_vector(PyObject * self, PyObject * args)
+{
+ float x, y, z, v[3];
+ int nb = 1;
+ if(!PyArg_ParseTuple(args, "(fff)|i:vector", &x, &y, &z, &nb))
+ return NULL;
+ noise_vector(x, y, z, nb, v);
+ return Py_BuildValue("[fff]", v[0], v[1], v[2]);
+}
+
+/*---------------------------------------------------------------------------*/
+
+/* General turbulence */
+
+static float turb(float x, float y, float z, int oct, int hard, int nb,
+ float ampscale, float freqscale)
+{
+ float amp, out, t;
+ int i;
+ amp = 1.f;
+ out = (float)(2.0 * BLI_gNoise(1.f, x, y, z, 0, nb) - 1.0);
+ if(hard)
+ out = (float)fabs(out);
+ for(i = 1; i < oct; i++) {
+ amp *= ampscale;
+ x *= freqscale;
+ y *= freqscale;
+ z *= freqscale;
+ t = (float)(amp * (2.0 * BLI_gNoise(1.f, x, y, z, 0, nb) - 1.0));
+ if(hard)
+ t = (float)fabs(t);
+ out += t;
+ }
+ return out;
+}
+
+static PyObject *Noise_turbulence(PyObject * self, PyObject * args)
+{
+ float x, y, z;
+ int oct, hd, nb = 1;
+ float as = 0.5, fs = 2.0;
+ if(!PyArg_ParseTuple(args, "(fff)ii|iff:turbulence", &x, &y, &z, &oct, &hd, &nb, &as, &fs))
+ return NULL;
+
+ return PyFloat_FromDouble(turb(x, y, z, oct, hd, nb, as, fs));
+}
+
+/*--------------------------------------------------------------------------*/
+
+/* Turbulence Vector */
+
+static void vTurb(float x, float y, float z, int oct, int hard, int nb,
+ float ampscale, float freqscale, float v[3])
+{
+ float amp, t[3];
+ int i;
+ amp = 1.f;
+ noise_vector(x, y, z, nb, v);
+ if(hard) {
+ v[0] = (float)fabs(v[0]);
+ v[1] = (float)fabs(v[1]);
+ v[2] = (float)fabs(v[2]);
+ }
+ for(i = 1; i < oct; i++) {
+ amp *= ampscale;
+ x *= freqscale;
+ y *= freqscale;
+ z *= freqscale;
+ noise_vector(x, y, z, nb, t);
+ if(hard) {
+ t[0] = (float)fabs(t[0]);
+ t[1] = (float)fabs(t[1]);
+ t[2] = (float)fabs(t[2]);
+ }
+ v[0] += amp * t[0];
+ v[1] += amp * t[1];
+ v[2] += amp * t[2];
+ }
+}
+
+static PyObject *Noise_turbulence_vector(PyObject * self, PyObject * args)
+{
+ float x, y, z, v[3];
+ int oct, hd, nb = 1;
+ float as = 0.5, fs = 2.0;
+ if(!PyArg_ParseTuple(args, "(fff)ii|iff:turbulence_vector", &x, &y, &z, &oct, &hd, &nb, &as, &fs))
+ return NULL;
+ vTurb(x, y, z, oct, hd, nb, as, fs, v);
+ return Py_BuildValue("[fff]", v[0], v[1], v[2]);
+}
+
+/*---------------------------------------------------------------------*/
+
+/* F. Kenton Musgrave's fractal functions */
+
+static PyObject *Noise_fractal(PyObject * self, PyObject * args)
+{
+ float x, y, z, H, lac, oct;
+ int nb = 1;
+ if(!PyArg_ParseTuple(args, "(fff)fff|i:fractal", &x, &y, &z, &H, &lac, &oct, &nb))
+ return NULL;
+ return PyFloat_FromDouble(mg_fBm(x, y, z, H, lac, oct, nb));
+}
+
+/*------------------------------------------------------------------------*/
+
+static PyObject *Noise_multi_fractal(PyObject * self, PyObject * args)
+{
+ float x, y, z, H, lac, oct;
+ int nb = 1;
+ if(!PyArg_ParseTuple(args, "(fff)fff|i:multi_fractal", &x, &y, &z, &H, &lac, &oct, &nb))
+ return NULL;
+
+ return PyFloat_FromDouble(mg_MultiFractal(x, y, z, H, lac, oct, nb));
+}
+
+/*------------------------------------------------------------------------*/
+
+static PyObject *Noise_vl_vector(PyObject * self, PyObject * args)
+{
+ float x, y, z, d;
+ int nt1 = 1, nt2 = 1;
+ if(!PyArg_ParseTuple(args, "(fff)f|ii:vl_vector", &x, &y, &z, &d, &nt1, &nt2))
+ return NULL;
+ return PyFloat_FromDouble(mg_VLNoise(x, y, z, d, nt1, nt2));
+}
+
+/*-------------------------------------------------------------------------*/
+
+static PyObject *Noise_hetero_terrain(PyObject * self, PyObject * args)
+{
+ float x, y, z, H, lac, oct, ofs;
+ int nb = 1;
+ if(!PyArg_ParseTuple(args, "(fff)ffff|i:hetero_terrain", &x, &y, &z, &H, &lac, &oct, &ofs, &nb))
+ return NULL;
+
+ return PyFloat_FromDouble(mg_HeteroTerrain(x, y, z, H, lac, oct, ofs, nb));
+}
+
+/*-------------------------------------------------------------------------*/
+
+static PyObject *Noise_hybrid_multi_fractal(PyObject * self, PyObject * args)
+{
+ float x, y, z, H, lac, oct, ofs, gn;
+ int nb = 1;
+ if(!PyArg_ParseTuple(args, "(fff)fffff|i:hybrid_multi_fractal", &x, &y, &z, &H, &lac, &oct, &ofs, &gn, &nb))
+ return NULL;
+
+ return PyFloat_FromDouble(mg_HybridMultiFractal(x, y, z, H, lac, oct, ofs, gn, nb));
+}
+
+/*------------------------------------------------------------------------*/
+
+static PyObject *Noise_ridged_multi_fractal(PyObject * self, PyObject * args)
+{
+ float x, y, z, H, lac, oct, ofs, gn;
+ int nb = 1;
+ if(!PyArg_ParseTuple(args, "(fff)fffff|i:ridged_multi_fractal", &x, &y, &z, &H, &lac, &oct, &ofs, &gn, &nb))
+ return NULL;
+ return PyFloat_FromDouble(mg_RidgedMultiFractal(x, y, z, H, lac, oct, ofs, gn, nb));
+}
+
+/*-------------------------------------------------------------------------*/
+
+static PyObject *Noise_voronoi(PyObject * self, PyObject * args)
+{
+ float x, y, z, da[4], pa[12];
+ int dtype = 0;
+ float me = 2.5; /* default minkovsky exponent */
+ if(!PyArg_ParseTuple(args, "(fff)|if:voronoi", &x, &y, &z, &dtype, &me))
+ return NULL;
+ voronoi(x, y, z, da, pa, me, dtype);
+ return Py_BuildValue("[[ffff][[fff][fff][fff][fff]]]",
+ da[0], da[1], da[2], da[3],
+ pa[0], pa[1], pa[2],
+ pa[3], pa[4], pa[5],
+ pa[6], pa[7], pa[8], pa[9], pa[10], pa[11]);
+}
+
+/*-------------------------------------------------------------------------*/
+
+static PyObject *Noise_cell(PyObject * self, PyObject * args)
+{
+ float x, y, z;
+ if(!PyArg_ParseTuple(args, "(fff):cell", &x, &y, &z))
+ return NULL;
+
+ return PyFloat_FromDouble(cellNoise(x, y, z));
+}
+
+/*--------------------------------------------------------------------------*/
+
+static PyObject *Noise_cell_vector(PyObject * self, PyObject * args)
+{
+ float x, y, z, ca[3];
+ if(!PyArg_ParseTuple(args, "(fff):cell_vector", &x, &y, &z))
+ return NULL;
+ cellNoiseV(x, y, z, ca);
+ return Py_BuildValue("[fff]", ca[0], ca[1], ca[2]);
+}
+
+/*--------------------------------------------------------------------------*/
+/* For all other Blender modules, this stuff seems to be put in a header file.
+ This doesn't seem really appropriate to me, so I just put it here, feel free to change it.
+ In the original module I actually kept the docs stings with the functions themselves,
+ but I grouped them here so that it can easily be moved to a header if anyone thinks that is necessary. */
+
+static char random__doc__[] = "() No arguments.\n\n\
+Returns a random floating point number in the range [0, 1)";
+
+static char random_unit_vector__doc__[] =
+ "() No arguments.\n\nReturns a random unit vector (3-float list).";
+
+static char seed_set__doc__[] = "(seed value)\n\n\
+Initializes random number generator.\n\
+if seed is zero, the current time will be used instead.";
+
+static char noise__doc__[] = "((x,y,z) tuple, [noisetype])\n\n\
+Returns general noise of the optional specified type.\n\
+Optional argument noisetype determines the type of noise, STDPERLIN by default, see NoiseTypes.";
+
+static char noise_vector__doc__[] = "((x,y,z) tuple, [noisetype])\n\n\
+Returns noise vector (3-float list) of the optional specified type.\
+Optional argument noisetype determines the type of noise, STDPERLIN by default, see NoiseTypes.";
+
+static char turbulence__doc__[] =
+ "((x,y,z) tuple, octaves, hard, [noisebasis], [ampscale], [freqscale])\n\n\
+Returns general turbulence value using the optional specified noisebasis function.\n\
+octaves (integer) is the number of noise values added.\n\
+hard (bool), when false (0) returns 'soft' noise, when true (1) returns 'hard' noise (returned value always positive).\n\
+Optional arguments:\n\
+noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.\n\
+ampscale sets the amplitude scale value of the noise frequencies added, 0.5 by default.\n\
+freqscale sets the frequency scale factor, 2.0 by default.";
+
+static char turbulence_vector__doc__[] =
+ "((x,y,z) tuple, octaves, hard, [noisebasis], [ampscale], [freqscale])\n\n\
+Returns general turbulence vector (3-float list) using the optional specified noisebasis function.\n\
+octaves (integer) is the number of noise values added.\n\
+hard (bool), when false (0) returns 'soft' noise, when true (1) returns 'hard' noise (returned vector always positive).\n\
+Optional arguments:\n\
+noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.\n\
+ampscale sets the amplitude scale value of the noise frequencies added, 0.5 by default.\n\
+freqscale sets the frequency scale factor, 2.0 by default.";
+
+static char fractal__doc__[] =
+ "((x,y,z) tuple, H, lacunarity, octaves, [noisebasis])\n\n\
+Returns Fractal Brownian Motion noise value(fBm).\n\
+H is the fractal increment parameter.\n\
+lacunarity is the gap between successive frequencies.\n\
+octaves is the number of frequencies in the fBm.\n\
+Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
+
+static char multi_fractal__doc__[] =
+ "((x,y,z) tuple, H, lacunarity, octaves, [noisebasis])\n\n\
+Returns Multifractal noise value.\n\
+H determines the highest fractal dimension.\n\
+lacunarity is gap between successive frequencies.\n\
+octaves is the number of frequencies in the fBm.\n\
+Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
+
+static char vl_vector__doc__[] =
+ "((x,y,z) tuple, distortion, [noisetype1], [noisetype2])\n\n\
+Returns Variable Lacunarity Noise value, a distorted variety of noise.\n\
+distortion sets the amount of distortion.\n\
+Optional arguments noisetype1 and noisetype2 set the noisetype to distort and the noisetype used for the distortion respectively.\n\
+See NoiseTypes, both are STDPERLIN by default.";
+
+static char hetero_terrain__doc__[] =
+ "((x,y,z) tuple, H, lacunarity, octaves, offset, [noisebasis])\n\n\
+returns Heterogeneous Terrain value\n\
+H determines the fractal dimension of the roughest areas.\n\
+lacunarity is the gap between successive frequencies.\n\
+octaves is the number of frequencies in the fBm.\n\
+offset raises the terrain from 'sea level'.\n\
+Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
+
+static char hybrid_multi_fractal__doc__[] =
+ "((x,y,z) tuple, H, lacunarity, octaves, offset, gain, [noisebasis])\n\n\
+returns Hybrid Multifractal value.\n\
+H determines the fractal dimension of the roughest areas.\n\
+lacunarity is the gap between successive frequencies.\n\
+octaves is the number of frequencies in the fBm.\n\
+offset raises the terrain from 'sea level'.\n\
+gain scales the values.\n\
+Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
+
+static char ridged_multi_fractal__doc__[] =
+ "((x,y,z) tuple, H, lacunarity, octaves, offset, gain [noisebasis])\n\n\
+returns Ridged Multifractal value.\n\
+H determines the fractal dimension of the roughest areas.\n\
+lacunarity is the gap between successive frequencies.\n\
+octaves is the number of frequencies in the fBm.\n\
+offset raises the terrain from 'sea level'.\n\
+gain scales the values.\n\
+Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
+
+static char voronoi__doc__[] =
+ "((x,y,z) tuple, distance_metric, [exponent])\n\n\
+returns a list, containing a list of distances in order of closest feature,\n\
+and a list containing the positions of the four closest features\n\
+Optional arguments:\n\
+distance_metric: see DistanceMetrics, default is DISTANCE\n\
+exponent is only used with MINKOVSKY, default is 2.5.";
+
+static char cell__doc__[] = "((x,y,z) tuple)\n\n\
+returns cellnoise float value.";
+
+static char cell_vector__doc__[] = "((x,y,z) tuple)\n\n\
+returns cellnoise vector/point/color (3-float list).";
+
+static char Noise__doc__[] = "Blender Noise and Turbulence Module\n\n\
+This module can be used to generate noise of various types.\n\
+This can be used for terrain generation, to create textures,\n\
+make animations more 'animated', object deformation, etc.\n\
+As an example, this code segment when scriptlinked to a framechanged event,\n\
+will make the camera sway randomly about, by changing parameters this can\n\
+look like anything from an earthquake to a very nervous or maybe even drunk cameraman...\n\
+(the camera needs an ipo with at least one Loc & Rot key for this to work!):\n\
+\n\
+\tfrom Blender import Get, Scene, Noise\n\
+\n\
+\t####################################################\n\
+\t# This controls jitter speed\n\
+\tsl = 0.025\n\
+\t# This controls the amount of position jitter\n\
+\tsp = 0.1\n\
+\t# This controls the amount of rotation jitter\n\
+\tsr = 0.25\n\
+\t####################################################\n\
+\n\
+\ttime = Get('curtime')\n\
+\tob = Scene.GetCurrent().getCurrentCamera()\n\
+\tps = (sl*time, sl*time, sl*time)\n\
+\t# To add jitter only when the camera moves, use this next line instead\n\
+\t#ps = (sl*ob.LocX, sl*ob.LocY, sl*ob.LocZ)\n\
+\trv = Noise.turbulence_vector(ps, 3, 0, Noise.NoiseTypes.NEWPERLIN)\n\
+\tob.dloc = (sp*rv[0], sp*rv[1], sp*rv[2])\n\
+\tob.drot = (sr*rv[0], sr*rv[1], sr*rv[2])\n\
+\n";
+
+/* Just in case, declarations for a header file */
+/*
+static PyObject *Noise_random(PyObject *self);
+static PyObject *Noise_random_unit_vector(PyObject *self);
+static PyObject *Noise_seed_set(PyObject *self, PyObject *args);
+static PyObject *Noise_noise(PyObject *self, PyObject *args);
+static PyObject *Noise_vector(PyObject *self, PyObject *args);
+static PyObject *Noise_turbulence(PyObject *self, PyObject *args);
+static PyObject *Noise_turbulence_vector(PyObject *self, PyObject *args);
+static PyObject *Noise_fractal(PyObject *self, PyObject *args);
+static PyObject *Noise_multi_fractal(PyObject *self, PyObject *args);
+static PyObject *Noise_vl_vector(PyObject *self, PyObject *args);
+static PyObject *Noise_hetero_terrain(PyObject *self, PyObject *args);
+static PyObject *Noise_hybrid_multi_fractal(PyObject *self, PyObject *args);
+static PyObject *Noise_ridged_multi_fractal(PyObject *self, PyObject *args);
+static PyObject *Noise_voronoi(PyObject *self, PyObject *args);
+static PyObject *Noise_cell(PyObject *self, PyObject *args);
+static PyObject *Noise_cell_vector(PyObject *self, PyObject *args);
+*/
+
+static PyMethodDef NoiseMethods[] = {
+ {"seed_set", (PyCFunction) Noise_seed_set, METH_VARARGS, seed_set__doc__},
+ {"random", (PyCFunction) Noise_random, METH_NOARGS, random__doc__},
+ {"random_unit_vector", (PyCFunction) Noise_random_unit_vector, METH_NOARGS, random_unit_vector__doc__},
+ {"noise", (PyCFunction) Noise_noise, METH_VARARGS, noise__doc__},
+ {"vector", (PyCFunction) Noise_vector, METH_VARARGS, noise_vector__doc__},
+ {"turbulence", (PyCFunction) Noise_turbulence, METH_VARARGS, turbulence__doc__},
+ {"turbulence_vector", (PyCFunction) Noise_turbulence_vector, METH_VARARGS, turbulence_vector__doc__},
+ {"fractal", (PyCFunction) Noise_fractal, METH_VARARGS, fractal__doc__},
+ {"multi_fractal", (PyCFunction) Noise_multi_fractal, METH_VARARGS, multi_fractal__doc__},
+ {"vl_vector", (PyCFunction) Noise_vl_vector, METH_VARARGS, vl_vector__doc__},
+ {"hetero_terrain", (PyCFunction) Noise_hetero_terrain, METH_VARARGS, hetero_terrain__doc__},
+ {"hybrid_multi_fractal", (PyCFunction) Noise_hybrid_multi_fractal, METH_VARARGS, hybrid_multi_fractal__doc__},
+ {"ridged_multi_fractal", (PyCFunction) Noise_ridged_multi_fractal, METH_VARARGS, ridged_multi_fractal__doc__},
+ {"voronoi", (PyCFunction) Noise_voronoi, METH_VARARGS, voronoi__doc__},
+ {"cell", (PyCFunction) Noise_cell, METH_VARARGS, cell__doc__},
+ {"cell_vector", (PyCFunction) Noise_cell_vector, METH_VARARGS, cell_vector__doc__},
+ {NULL, NULL, 0, NULL}
+};
+
+/*----------------------------------------------------------------------*/
+
+static struct PyModuleDef noise_module_def = {
+ PyModuleDef_HEAD_INIT,
+ "noise", /* m_name */
+ Noise__doc__, /* m_doc */
+ 0, /* m_size */
+ NoiseMethods, /* m_methods */
+ 0, /* m_reload */
+ 0, /* m_traverse */
+ 0, /* m_clear */
+ 0, /* m_free */
+};
+
+PyObject *Noise_Init(void)
+{
+ PyObject *submodule = PyModule_Create(&noise_module_def);
+ PyDict_SetItemString(PyImport_GetModuleDict(), noise_module_def.m_name, submodule);
+
+ /* use current time as seed for random number generator by default */
+ setRndSeed(0);
+
+ /* Constant noisetype dictionary */
+ if(submodule) {
+ static PyStructSequence_Field noise_types_fields[] = {
+ {"BLENDER", ""},
+ {"STDPERLIN", ""},
+ {"NEWPERLIN", ""},
+ {"VORONOI_F1", ""},
+ {"VORONOI_F2", ""},
+ {"VORONOI_F3", ""},
+ {"VORONOI_F4", ""},
+ {"VORONOI_F2F1", ""},
+ {"VORONOI_CRACKLE", ""},
+ {"CELLNOISE", ""},
+ {0}
+ };
+
+ static PyStructSequence_Desc noise_types_info_desc = {
+ "noise.types", /* name */
+ "Noise type", /* doc */
+ noise_types_fields, /* fields */
+ (sizeof(noise_types_fields)/sizeof(PyStructSequence_Field)) - 1
+ };
+
+ static PyTypeObject NoiseType;
+
+ PyObject *noise_types;
+
+ int pos = 0;
+
+ PyStructSequence_InitType(&NoiseType, &noise_types_info_desc);
+
+ noise_types = PyStructSequence_New(&NoiseType);
+ if (noise_types == NULL) {
+ return NULL;
+ }
+
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_BLENDER));
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_STDPERLIN));
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_NEWPERLIN));
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_VORONOI_F1));
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_VORONOI_F2));
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_VORONOI_F3));
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_VORONOI_F4));
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_VORONOI_F2F1));
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_VORONOI_CRACKLE));
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_CELLNOISE));
+
+ PyModule_AddObject(submodule, "types", noise_types);
+ }
+
+ if(submodule) {
+ static PyStructSequence_Field distance_metrics_fields[] = {
+ {"DISTANCE", ""},
+ {"DISTANCE_SQUARED", ""},
+ {"MANHATTAN", ""},
+ {"CHEBYCHEV", ""},
+ {"MINKOVSKY_HALF", ""},
+ {"MINKOVSKY_FOUR", ""},
+ {"MINKOVSKY", ""},
+ {0}
+ };
+
+ static PyStructSequence_Desc noise_types_info_desc = {
+ "noise.distance_metrics", /* name */
+ "Distance Metrics for noise module.", /* doc */
+ distance_metrics_fields, /* fields */
+ (sizeof(distance_metrics_fields)/sizeof(PyStructSequence_Field)) - 1
+ };
+
+ static PyTypeObject DistanceMetrics;
+
+ PyObject *distance_metrics;
+
+ int pos = 0;
+
+ PyStructSequence_InitType(&DistanceMetrics, &noise_types_info_desc);
+
+ distance_metrics = PyStructSequence_New(&DistanceMetrics);
+ if (distance_metrics == NULL) {
+ return NULL;
+ }
+
+ PyStructSequence_SET_ITEM(distance_metrics, pos++, PyLong_FromLong(TEX_DISTANCE));
+ PyStructSequence_SET_ITEM(distance_metrics, pos++, PyLong_FromLong(TEX_DISTANCE_SQUARED));
+ PyStructSequence_SET_ITEM(distance_metrics, pos++, PyLong_FromLong(TEX_MANHATTAN));
+ PyStructSequence_SET_ITEM(distance_metrics, pos++, PyLong_FromLong(TEX_CHEBYCHEV));
+ PyStructSequence_SET_ITEM(distance_metrics, pos++, PyLong_FromLong(TEX_MINKOVSKY_HALF));
+ PyStructSequence_SET_ITEM(distance_metrics, pos++, PyLong_FromLong(TEX_MINKOVSKY_FOUR));
+ PyStructSequence_SET_ITEM(distance_metrics, pos++, PyLong_FromLong(TEX_MINKOVSKY));
+
+ PyModule_AddObject(submodule, "distance_metrics", distance_metrics);
+ }
+
+ return submodule;
+}