Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/blender/python/generic')
-rw-r--r--source/blender/python/generic/CMakeLists.txt2
-rw-r--r--source/blender/python/generic/Makefile2
-rw-r--r--source/blender/python/generic/Mathutils.c721
-rw-r--r--source/blender/python/generic/bgl.c34
-rw-r--r--source/blender/python/generic/bgl.h4
-rw-r--r--source/blender/python/generic/blf_api.c (renamed from source/blender/python/generic/blf.c)180
-rw-r--r--source/blender/python/generic/blf_api.h (renamed from source/blender/python/generic/blf.h)0
-rw-r--r--source/blender/python/generic/bpy_internal_import.c59
-rw-r--r--source/blender/python/generic/bpy_internal_import.h5
-rw-r--r--source/blender/python/generic/geometry.c (renamed from source/blender/python/generic/Geometry.c)32
-rw-r--r--source/blender/python/generic/geometry.h (renamed from source/blender/python/generic/Geometry.h)2
-rw-r--r--source/blender/python/generic/mathutils.c273
-rw-r--r--source/blender/python/generic/mathutils.h (renamed from source/blender/python/generic/Mathutils.h)65
-rw-r--r--source/blender/python/generic/mathutils_color.c560
-rw-r--r--source/blender/python/generic/mathutils_color.h52
-rw-r--r--source/blender/python/generic/mathutils_euler.c (renamed from source/blender/python/generic/euler.c)345
-rw-r--r--source/blender/python/generic/mathutils_euler.h (renamed from source/blender/python/generic/euler.h)9
-rw-r--r--source/blender/python/generic/mathutils_matrix.c (renamed from source/blender/python/generic/matrix.c)567
-rw-r--r--source/blender/python/generic/mathutils_matrix.h (renamed from source/blender/python/generic/matrix.h)15
-rw-r--r--source/blender/python/generic/mathutils_quat.c (renamed from source/blender/python/generic/quat.c)531
-rw-r--r--source/blender/python/generic/mathutils_quat.h (renamed from source/blender/python/generic/quat.h)11
-rw-r--r--source/blender/python/generic/mathutils_vector.c (renamed from source/blender/python/generic/vector.c)501
-rw-r--r--source/blender/python/generic/mathutils_vector.h (renamed from source/blender/python/generic/vector.h)13
-rw-r--r--source/blender/python/generic/noise.c760
24 files changed, 3137 insertions, 1606 deletions
diff --git a/source/blender/python/generic/CMakeLists.txt b/source/blender/python/generic/CMakeLists.txt
index b6985458d0c..1a91abfbec8 100644
--- a/source/blender/python/generic/CMakeLists.txt
+++ b/source/blender/python/generic/CMakeLists.txt
@@ -31,4 +31,4 @@ SET(INC
${PYTHON_INC}
)
-BLENDERLIB(bf_gen_python "${SRC}" "${INC}")
+BLENDERLIB(bf_python_ext "${SRC}" "${INC}")
diff --git a/source/blender/python/generic/Makefile b/source/blender/python/generic/Makefile
index dc674478dab..0df98046f63 100644
--- a/source/blender/python/generic/Makefile
+++ b/source/blender/python/generic/Makefile
@@ -15,7 +15,7 @@
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
-# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
# All rights reserved.
diff --git a/source/blender/python/generic/Mathutils.c b/source/blender/python/generic/Mathutils.c
deleted file mode 100644
index 542bf7a6ca9..00000000000
--- a/source/blender/python/generic/Mathutils.c
+++ /dev/null
@@ -1,721 +0,0 @@
-/*
- * $Id$
- *
- * ***** BEGIN GPL LICENSE BLOCK *****
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
- *
- * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
- * All rights reserved.
- *
- * This is a new part of Blender.
- *
- * Contributor(s): Joseph Gilbert, Campbell Barton
- *
- * ***** END GPL LICENSE BLOCK *****
- */
-
-/* Note: Changes to Mathutils since 2.4x
- * use radians rather then degrees
- * - Mathutils.MidpointVecs --> vector.lerp(other, fac)
- * - Mathutils.AngleBetweenVecs --> vector.angle(other)
- * - Mathutils.ProjectVecs --> vector.project(other)
- * - Mathutils.DifferenceQuats --> quat.difference(other)
- * - Mathutils.Slerp --> quat.slerp(other, fac)
- * - Mathutils.Rand: removed, use pythons random module
- * - Mathutils.RotationMatrix(angle, size, axis_flag, axis) --> Mathutils.RotationMatrix(angle, size, axis); merge axis & axis_flag args
- * - Matrix.scalePart --> Matrix.scale_part
- * - Matrix.translationPart --> Matrix.translation_part
- * - Matrix.rotationPart --> Matrix.rotation_part
- * - toMatrix --> to_matrix
- * - toEuler --> to_euler
- * - toQuat --> to_quat
- * - Vector.toTrackQuat --> Vector.to_track_quat
- *
- * Moved to Geometry module: Intersect, TriangleArea, TriangleNormal, QuadNormal, LineIntersect
- */
-
-#include "Mathutils.h"
-
-#include "BLI_math.h"
-
-//-------------------------DOC STRINGS ---------------------------
-static char M_Mathutils_doc[] =
-"This module provides access to matrices, eulers, quaternions and vectors.";
-
-//-----------------------------METHODS----------------------------
-//-----------------quat_rotation (internal)-----------
-//This function multiplies a vector/point * quat or vice versa
-//to rotate the point/vector by the quaternion
-//arguments should all be 3D
-PyObject *quat_rotation(PyObject *arg1, PyObject *arg2)
-{
- float rot[3];
- QuaternionObject *quat = NULL;
- VectorObject *vec = NULL;
-
- if(QuaternionObject_Check(arg1)){
- quat = (QuaternionObject*)arg1;
- if(!BaseMath_ReadCallback(quat))
- return NULL;
-
- if(VectorObject_Check(arg2)){
- vec = (VectorObject*)arg2;
-
- if(!BaseMath_ReadCallback(vec))
- return NULL;
-
- rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -
- 2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +
- 2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -
- quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
- rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] +
- 2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] -
- quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] -
- 2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
- rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] +
- quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -
- quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -
- quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
- return newVectorObject(rot, 3, Py_NEW, NULL);
- }
- }else if(VectorObject_Check(arg1)){
- vec = (VectorObject*)arg1;
-
- if(!BaseMath_ReadCallback(vec))
- return NULL;
-
- if(QuaternionObject_Check(arg2)){
- quat = (QuaternionObject*)arg2;
- if(!BaseMath_ReadCallback(quat))
- return NULL;
-
- rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -
- 2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +
- 2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -
- quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
- rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] +
- 2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] -
- quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] -
- 2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
- rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] +
- quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -
- quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -
- quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
- return newVectorObject(rot, 3, Py_NEW, NULL);
- }
- }
-
- PyErr_SetString(PyExc_RuntimeError, "quat_rotation(internal): internal problem rotating vector/point\n");
- return NULL;
-
-}
-
-//----------------------------------MATRIX FUNCTIONS--------------------
-//----------------------------------Mathutils.RotationMatrix() ----------
-//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
-static char M_Mathutils_RotationMatrix_doc[] =
-".. function:: RotationMatrix(angle, size, axis)\n"
-"\n"
-" Create a matrix representing a rotation.\n"
-"\n"
-" :arg angle: The angle of rotation desired.\n"
-" :type angle: float\n"
-" :arg size: The size of the rotation matrix to construct [2, 4].\n"
-" :type size: int\n"
-" :arg axis: a string in ['X', 'Y', 'Z'] or a 3D Vector Object (optional when size is 2).\n"
-" :type axis: string or :class:`Vector`\n"
-" :return: A new rotation matrix.\n"
-" :rtype: :class:`Matrix`\n";
-
-static PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
-{
- VectorObject *vec= NULL;
- char *axis= NULL;
- int matSize;
- float angle = 0.0f;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!PyArg_ParseTuple(args, "fi|O", &angle, &matSize, &vec)) {
- PyErr_SetString(PyExc_TypeError, "Mathutils.RotationMatrix(angle, size, axis): expected float int and a string or vector\n");
- return NULL;
- }
-
- if(vec && !VectorObject_Check(vec)) {
- axis= _PyUnicode_AsString((PyObject *)vec);
- if(axis==NULL || axis[0]=='\0' || axis[1]!='\0' || axis[0] < 'X' || axis[0] > 'Z') {
- PyErr_SetString(PyExc_TypeError, "Mathutils.RotationMatrix(): 3rd argument axis value must be a 3D vector or a string in 'X', 'Y', 'Z'\n");
- return NULL;
- }
- else {
- /* use the string */
- vec= NULL;
- }
- }
-
- while (angle<-(Py_PI*2))
- angle+=(Py_PI*2);
- while (angle>(Py_PI*2))
- angle-=(Py_PI*2);
-
- if(matSize != 2 && matSize != 3 && matSize != 4) {
- PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
- return NULL;
- }
- if(matSize == 2 && (vec != NULL)) {
- PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
- return NULL;
- }
- if((matSize == 3 || matSize == 4) && (axis == NULL) && (vec == NULL)) {
- PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
- return NULL;
- }
- if(vec) {
- if(vec->size != 3) {
- PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): the vector axis must be a 3D vector\n");
- return NULL;
- }
-
- if(!BaseMath_ReadCallback(vec))
- return NULL;
-
- }
-
- /* check for valid vector/axis above */
- if(vec) {
- axis_angle_to_mat3( (float (*)[3])mat,vec->vec, angle);
- }
- else if(matSize == 2) {
- //2D rotation matrix
- mat[0] = (float) cos (angle);
- mat[1] = (float) sin (angle);
- mat[2] = -((float) sin(angle));
- mat[3] = (float) cos(angle);
- } else if(strcmp(axis, "X") == 0) {
- //rotation around X
- mat[0] = 1.0f;
- mat[4] = (float) cos(angle);
- mat[5] = (float) sin(angle);
- mat[7] = -((float) sin(angle));
- mat[8] = (float) cos(angle);
- } else if(strcmp(axis, "Y") == 0) {
- //rotation around Y
- mat[0] = (float) cos(angle);
- mat[2] = -((float) sin(angle));
- mat[4] = 1.0f;
- mat[6] = (float) sin(angle);
- mat[8] = (float) cos(angle);
- } else if(strcmp(axis, "Z") == 0) {
- //rotation around Z
- mat[0] = (float) cos(angle);
- mat[1] = (float) sin(angle);
- mat[3] = -((float) sin(angle));
- mat[4] = (float) cos(angle);
- mat[8] = 1.0f;
- }
- else {
- /* should never get here */
- PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): unknown error\n");
- return NULL;
- }
-
- if(matSize == 4) {
- //resize matrix
- mat[10] = mat[8];
- mat[9] = mat[7];
- mat[8] = mat[6];
- mat[7] = 0.0f;
- mat[6] = mat[5];
- mat[5] = mat[4];
- mat[4] = mat[3];
- mat[3] = 0.0f;
- }
- //pass to matrix creation
- return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
-}
-
-static char M_Mathutils_TranslationMatrix_doc[] =
-".. function:: TranslationMatrix(vector)\n"
-"\n"
-" Create a matrix representing a translation.\n"
-"\n"
-" :arg vector: The translation vector.\n"
-" :type vector: :class:`Vector`\n"
-" :return: An identity matrix with a translation.\n"
-" :rtype: :class:`Matrix`\n";
-
-static PyObject *M_Mathutils_TranslationMatrix(PyObject * self, VectorObject * vec)
-{
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!VectorObject_Check(vec)) {
- PyErr_SetString(PyExc_TypeError, "Mathutils.TranslationMatrix(): expected vector\n");
- return NULL;
- }
- if(vec->size != 3 && vec->size != 4) {
- PyErr_SetString(PyExc_TypeError, "Mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
- return NULL;
- }
-
- if(!BaseMath_ReadCallback(vec))
- return NULL;
-
- //create a identity matrix and add translation
- unit_m4((float(*)[4]) mat);
- mat[12] = vec->vec[0];
- mat[13] = vec->vec[1];
- mat[14] = vec->vec[2];
-
- return newMatrixObject(mat, 4, 4, Py_NEW, NULL);
-}
-//----------------------------------Mathutils.ScaleMatrix() -------------
-//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
-static char M_Mathutils_ScaleMatrix_doc[] =
-".. function:: ScaleMatrix(factor, size, axis)\n"
-"\n"
-" Create a matrix representing a scaling.\n"
-"\n"
-" :arg factor: The factor of scaling to apply.\n"
-" :type factor: float\n"
-" :arg size: The size of the scale matrix to construct [2, 4].\n"
-" :type size: int\n"
-" :arg axis: Direction to influence scale. (optional).\n"
-" :type axis: :class:`Vector`\n"
-" :return: A new scale matrix.\n"
-" :rtype: :class:`Matrix`\n";
-
-static PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args)
-{
- VectorObject *vec = NULL;
- float norm = 0.0f, factor;
- int matSize, x;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
- PyErr_SetString(PyExc_TypeError, "Mathutils.ScaleMatrix(): expected float int and optional vector\n");
- return NULL;
- }
- if(matSize != 2 && matSize != 3 && matSize != 4) {
- PyErr_SetString(PyExc_AttributeError, "Mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
- return NULL;
- }
- if(vec) {
- if(vec->size > 2 && matSize == 2) {
- PyErr_SetString(PyExc_AttributeError, "Mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
- return NULL;
- }
-
- if(!BaseMath_ReadCallback(vec))
- return NULL;
-
- }
- if(vec == NULL) { //scaling along axis
- if(matSize == 2) {
- mat[0] = factor;
- mat[3] = factor;
- } else {
- mat[0] = factor;
- mat[4] = factor;
- mat[8] = factor;
- }
- } else { //scaling in arbitrary direction
- //normalize arbitrary axis
- for(x = 0; x < vec->size; x++) {
- norm += vec->vec[x] * vec->vec[x];
- }
- norm = (float) sqrt(norm);
- for(x = 0; x < vec->size; x++) {
- vec->vec[x] /= norm;
- }
- if(matSize == 2) {
- mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
- mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
- mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
- mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
- } else {
- mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
- mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
- mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
- mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
- mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
- mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
- mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
- mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
- mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
- }
- }
- if(matSize == 4) {
- //resize matrix
- mat[10] = mat[8];
- mat[9] = mat[7];
- mat[8] = mat[6];
- mat[7] = 0.0f;
- mat[6] = mat[5];
- mat[5] = mat[4];
- mat[4] = mat[3];
- mat[3] = 0.0f;
- }
- //pass to matrix creation
- return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
-}
-//----------------------------------Mathutils.OrthoProjectionMatrix() ---
-//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
-static char M_Mathutils_OrthoProjectionMatrix_doc[] =
-".. function:: OrthoProjectionMatrix(plane, size, axis)\n"
-"\n"
-" Create a matrix to represent an orthographic projection.\n"
-"\n"
-" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ', 'R'], where a single axis is for a 2D matrix and 'R' requires axis is given.\n"
-" :type plane: string\n"
-" :arg size: The size of the projection matrix to construct [2, 4].\n"
-" :type size: int\n"
-" :arg axis: Arbitrary perpendicular plane vector (optional).\n"
-" :type axis: :class:`Vector`\n"
-" :return: A new projection matrix.\n"
-" :rtype: :class:`Matrix`\n";
-static PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args)
-{
- VectorObject *vec = NULL;
- char *plane;
- int matSize, x;
- float norm = 0.0f;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
- PyErr_SetString(PyExc_TypeError, "Mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
- return NULL;
- }
- if(matSize != 2 && matSize != 3 && matSize != 4) {
- PyErr_SetString(PyExc_AttributeError,"Mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
- return NULL;
- }
- if(vec) {
- if(vec->size > 2 && matSize == 2) {
- PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
- return NULL;
- }
-
- if(!BaseMath_ReadCallback(vec))
- return NULL;
-
- }
- if(vec == NULL) { //ortho projection onto cardinal plane
- if((strcmp(plane, "X") == 0) && matSize == 2) {
- mat[0] = 1.0f;
- } else if((strcmp(plane, "Y") == 0) && matSize == 2) {
- mat[3] = 1.0f;
- } else if((strcmp(plane, "XY") == 0) && matSize > 2) {
- mat[0] = 1.0f;
- mat[4] = 1.0f;
- } else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
- mat[0] = 1.0f;
- mat[8] = 1.0f;
- } else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
- mat[4] = 1.0f;
- mat[8] = 1.0f;
- } else {
- PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: X, Y, XY, XZ, YZ\n");
- return NULL;
- }
- } else { //arbitrary plane
- //normalize arbitrary axis
- for(x = 0; x < vec->size; x++) {
- norm += vec->vec[x] * vec->vec[x];
- }
- norm = (float) sqrt(norm);
- for(x = 0; x < vec->size; x++) {
- vec->vec[x] /= norm;
- }
- if((strcmp(plane, "R") == 0) && matSize == 2) {
- mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
- mat[1] = -(vec->vec[0] * vec->vec[1]);
- mat[2] = -(vec->vec[0] * vec->vec[1]);
- mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
- } else if((strcmp(plane, "R") == 0) && matSize > 2) {
- mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
- mat[1] = -(vec->vec[0] * vec->vec[1]);
- mat[2] = -(vec->vec[0] * vec->vec[2]);
- mat[3] = -(vec->vec[0] * vec->vec[1]);
- mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
- mat[5] = -(vec->vec[1] * vec->vec[2]);
- mat[6] = -(vec->vec[0] * vec->vec[2]);
- mat[7] = -(vec->vec[1] * vec->vec[2]);
- mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
- } else {
- PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
- return NULL;
- }
- }
- if(matSize == 4) {
- //resize matrix
- mat[10] = mat[8];
- mat[9] = mat[7];
- mat[8] = mat[6];
- mat[7] = 0.0f;
- mat[6] = mat[5];
- mat[5] = mat[4];
- mat[4] = mat[3];
- mat[3] = 0.0f;
- }
- //pass to matrix creation
- return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
-}
-
-static char M_Mathutils_ShearMatrix_doc[] =
-".. function:: ShearMatrix(plane, factor, size)\n"
-"\n"
-" Create a matrix to represent an shear transformation.\n"
-"\n"
-" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'], where a single axis is for a 2D matrix.\n"
-" :type plane: string\n"
-" :arg factor: The factor of shear to apply.\n"
-" :type factor: float\n"
-" :arg size: The size of the shear matrix to construct [2, 4].\n"
-" :type size: int\n"
-" :return: A new shear matrix.\n"
-" :rtype: :class:`Matrix`\n";
-
-static PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args)
-{
- int matSize;
- char *plane;
- float factor;
- float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
-
- if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
- PyErr_SetString(PyExc_TypeError,"Mathutils.ShearMatrix(): expected string float and int\n");
- return NULL;
- }
- if(matSize != 2 && matSize != 3 && matSize != 4) {
- PyErr_SetString(PyExc_AttributeError,"Mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
- return NULL;
- }
-
- if((strcmp(plane, "X") == 0)
- && matSize == 2) {
- mat[0] = 1.0f;
- mat[2] = factor;
- mat[3] = 1.0f;
- } else if((strcmp(plane, "Y") == 0) && matSize == 2) {
- mat[0] = 1.0f;
- mat[1] = factor;
- mat[3] = 1.0f;
- } else if((strcmp(plane, "XY") == 0) && matSize > 2) {
- mat[0] = 1.0f;
- mat[4] = 1.0f;
- mat[6] = factor;
- mat[7] = factor;
- } else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
- mat[0] = 1.0f;
- mat[3] = factor;
- mat[4] = 1.0f;
- mat[5] = factor;
- mat[8] = 1.0f;
- } else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
- mat[0] = 1.0f;
- mat[1] = factor;
- mat[2] = factor;
- mat[4] = 1.0f;
- mat[8] = 1.0f;
- } else {
- PyErr_SetString(PyExc_AttributeError, "Mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
- return NULL;
- }
- if(matSize == 4) {
- //resize matrix
- mat[10] = mat[8];
- mat[9] = mat[7];
- mat[8] = mat[6];
- mat[7] = 0.0f;
- mat[6] = mat[5];
- mat[5] = mat[4];
- mat[4] = mat[3];
- mat[3] = 0.0f;
- }
- //pass to matrix creation
- return newMatrixObject(mat, matSize, matSize, Py_NEW, NULL);
-}
-
-/* Utility functions */
-
-// LomontRRDCompare4, Ever Faster Float Comparisons by Randy Dillon
-#define SIGNMASK(i) (-(int)(((unsigned int)(i))>>31))
-
-int EXPP_FloatsAreEqual(float af, float bf, int maxDiff)
-{ // solid, fast routine across all platforms
- // with constant time behavior
- int ai = *(int *)(&af);
- int bi = *(int *)(&bf);
- int test = SIGNMASK(ai^bi);
- int diff, v1, v2;
-
- assert((0 == test) || (0xFFFFFFFF == test));
- diff = (ai ^ (test & 0x7fffffff)) - bi;
- v1 = maxDiff + diff;
- v2 = maxDiff - diff;
- return (v1|v2) >= 0;
-}
-
-/*---------------------- EXPP_VectorsAreEqual -------------------------
- Builds on EXPP_FloatsAreEqual to test vectors */
-int EXPP_VectorsAreEqual(float *vecA, float *vecB, int size, int floatSteps)
-{
- int x;
- for (x=0; x< size; x++){
- if (EXPP_FloatsAreEqual(vecA[x], vecB[x], floatSteps) == 0)
- return 0;
- }
- return 1;
-}
-
-
-/* Mathutils Callbacks */
-
-/* for mathutils internal use only, eventually should re-alloc but to start with we only have a few users */
-Mathutils_Callback *mathutils_callbacks[8] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL};
-
-int Mathutils_RegisterCallback(Mathutils_Callback *cb)
-{
- int i;
-
- /* find the first free slot */
- for(i= 0; mathutils_callbacks[i]; i++) {
- if(mathutils_callbacks[i]==cb) /* alredy registered? */
- return i;
- }
-
- mathutils_callbacks[i] = cb;
- return i;
-}
-
-/* use macros to check for NULL */
-int _BaseMathObject_ReadCallback(BaseMathObject *self)
-{
- Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
- if(cb->get(self->cb_user, self->cb_subtype, self->data))
- return 1;
-
- PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
- return 0;
-}
-
-int _BaseMathObject_WriteCallback(BaseMathObject *self)
-{
- Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
- if(cb->set(self->cb_user, self->cb_subtype, self->data))
- return 1;
-
- PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
- return 0;
-}
-
-int _BaseMathObject_ReadIndexCallback(BaseMathObject *self, int index)
-{
- Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
- if(cb->get_index(self->cb_user, self->cb_subtype, self->data, index))
- return 1;
-
- PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
- return 0;
-}
-
-int _BaseMathObject_WriteIndexCallback(BaseMathObject *self, int index)
-{
- Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
- if(cb->set_index(self->cb_user, self->cb_subtype, self->data, index))
- return 1;
-
- PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
- return 0;
-}
-
-/* BaseMathObject generic functions for all mathutils types */
-char BaseMathObject_Owner_doc[] = "The item this is wrapping or None (readonly).";
-PyObject *BaseMathObject_getOwner( BaseMathObject * self, void *type )
-{
- PyObject *ret= self->cb_user ? self->cb_user : Py_None;
- Py_INCREF(ret);
- return ret;
-}
-
-char BaseMathObject_Wrapped_doc[] = "True when this object wraps external data (readonly). **type** boolean";
-PyObject *BaseMathObject_getWrapped( BaseMathObject *self, void *type )
-{
- return PyBool_FromLong((self->wrapped == Py_WRAP) ? 1:0);
-}
-
-void BaseMathObject_dealloc(BaseMathObject * self)
-{
- /* only free non wrapped */
- if(self->wrapped != Py_WRAP)
- PyMem_Free(self->data);
-
- Py_XDECREF(self->cb_user);
- Py_TYPE(self)->tp_free(self); // PyObject_DEL(self); // breaks subtypes
-}
-
-/*----------------------------MODULE INIT-------------------------*/
-struct PyMethodDef M_Mathutils_methods[] = {
- {"RotationMatrix", (PyCFunction) M_Mathutils_RotationMatrix, METH_VARARGS, M_Mathutils_RotationMatrix_doc},
- {"ScaleMatrix", (PyCFunction) M_Mathutils_ScaleMatrix, METH_VARARGS, M_Mathutils_ScaleMatrix_doc},
- {"ShearMatrix", (PyCFunction) M_Mathutils_ShearMatrix, METH_VARARGS, M_Mathutils_ShearMatrix_doc},
- {"TranslationMatrix", (PyCFunction) M_Mathutils_TranslationMatrix, METH_O, M_Mathutils_TranslationMatrix_doc},
- {"OrthoProjectionMatrix", (PyCFunction) M_Mathutils_OrthoProjectionMatrix, METH_VARARGS, M_Mathutils_OrthoProjectionMatrix_doc},
- {NULL, NULL, 0, NULL}
-};
-
-static struct PyModuleDef M_Mathutils_module_def = {
- PyModuleDef_HEAD_INIT,
- "Mathutils", /* m_name */
- M_Mathutils_doc, /* m_doc */
- 0, /* m_size */
- M_Mathutils_methods, /* m_methods */
- 0, /* m_reload */
- 0, /* m_traverse */
- 0, /* m_clear */
- 0, /* m_free */
-};
-
-PyObject *Mathutils_Init(void)
-{
- PyObject *submodule;
-
- if( PyType_Ready( &vector_Type ) < 0 )
- return NULL;
- if( PyType_Ready( &matrix_Type ) < 0 )
- return NULL;
- if( PyType_Ready( &euler_Type ) < 0 )
- return NULL;
- if( PyType_Ready( &quaternion_Type ) < 0 )
- return NULL;
-
- submodule = PyModule_Create(&M_Mathutils_module_def);
- PyDict_SetItemString(PySys_GetObject("modules"), M_Mathutils_module_def.m_name, submodule);
-
- /* each type has its own new() function */
- PyModule_AddObject( submodule, "Vector", (PyObject *)&vector_Type );
- PyModule_AddObject( submodule, "Matrix", (PyObject *)&matrix_Type );
- PyModule_AddObject( submodule, "Euler", (PyObject *)&euler_Type );
- PyModule_AddObject( submodule, "Quaternion", (PyObject *)&quaternion_Type );
-
- mathutils_matrix_vector_cb_index= Mathutils_RegisterCallback(&mathutils_matrix_vector_cb);
-
- return (submodule);
-}
diff --git a/source/blender/python/generic/bgl.c b/source/blender/python/generic/bgl.c
index 63c518c8721..8ac2107f8d2 100644
--- a/source/blender/python/generic/bgl.c
+++ b/source/blender/python/generic/bgl.c
@@ -27,9 +27,8 @@
* ***** END GPL LICENSE BLOCK *****
*/
-/* This file is the Blender.BGL part of opy_draw.c, from the old
- * bpython/intern dir, with minor changes to adapt it to the new Python
- * implementation. The BGL submodule "wraps" OpenGL functions and constants,
+/* This file is the 'bgl' module.
+ * The BGL submodule "wraps" OpenGL functions and constants,
* allowing script writers to make OpenGL calls in their Python scripts. */
#include "bgl.h" /*This must come first */
@@ -64,13 +63,16 @@ static int Buffer_ass_slice( PyObject * self, int begin, int end,
PyObject * seq );
static PySequenceMethods Buffer_SeqMethods = {
- ( lenfunc ) Buffer_len, /*sq_length */
- ( binaryfunc ) 0, /*sq_concat */
- ( ssizeargfunc ) 0, /*sq_repeat */
- ( ssizeargfunc ) Buffer_item, /*sq_item */
- ( ssizessizeargfunc ) Buffer_slice, /*sq_slice */
- ( ssizeobjargproc ) Buffer_ass_item, /*sq_ass_item */
- ( ssizessizeobjargproc ) Buffer_ass_slice, /*sq_ass_slice */
+ ( lenfunc ) Buffer_len, /*sq_length */
+ ( binaryfunc ) NULL, /*sq_concat */
+ ( ssizeargfunc ) NULL, /*sq_repeat */
+ ( ssizeargfunc ) Buffer_item, /*sq_item */
+ ( ssizessizeargfunc ) Buffer_slice, /*sq_slice, deprecated TODO, replace */
+ ( ssizeobjargproc ) Buffer_ass_item, /*sq_ass_item */
+ ( ssizessizeobjargproc ) Buffer_ass_slice, /*sq_ass_slice, deprecated TODO, replace */
+ (objobjproc) NULL, /* sq_contains */
+ (binaryfunc) NULL, /* sq_inplace_concat */
+ (ssizeargfunc) NULL, /* sq_inplace_repeat */
};
static void Buffer_dealloc( PyObject * self );
@@ -319,20 +321,20 @@ static int Buffer_ass_item(PyObject *self, int i, PyObject *v)
}
if (buf->type==GL_BYTE) {
- if (!PyArg_Parse(v, "b;Coordinates must be ints", &buf->buf.asbyte[i]))
+ if (!PyArg_Parse(v, "b:Coordinates must be ints", &buf->buf.asbyte[i]))
return -1;
} else if (buf->type==GL_SHORT) {
- if (!PyArg_Parse(v, "h;Coordinates must be ints", &buf->buf.asshort[i]))
+ if (!PyArg_Parse(v, "h:Coordinates must be ints", &buf->buf.asshort[i]))
return -1;
} else if (buf->type==GL_INT) {
- if (!PyArg_Parse(v, "i;Coordinates must be ints", &buf->buf.asint[i]))
+ if (!PyArg_Parse(v, "i:Coordinates must be ints", &buf->buf.asint[i]))
return -1;
} else if (buf->type==GL_FLOAT) {
- if (!PyArg_Parse(v, "f;Coordinates must be floats", &buf->buf.asfloat[i]))
+ if (!PyArg_Parse(v, "f:Coordinates must be floats", &buf->buf.asfloat[i]))
return -1;
} else if (buf->type==GL_DOUBLE) {
- if (!PyArg_Parse(v, "d;Coordinates must be floats", &buf->buf.asdouble[i]))
+ if (!PyArg_Parse(v, "d:Coordinates must be floats", &buf->buf.asdouble[i]))
return -1;
}
return 0;
@@ -1115,7 +1117,7 @@ PyObject *BGL_Init(void)
{
PyObject *mod, *dict, *item;
mod = PyModule_Create(&BGL_module_def);
- PyDict_SetItemString(PySys_GetObject("modules"), BGL_module_def.m_name, mod);
+ PyDict_SetItemString(PyImport_GetModuleDict(), BGL_module_def.m_name, mod);
dict= PyModule_GetDict(mod);
if( PyType_Ready( &BGL_bufferType) < 0)
diff --git a/source/blender/python/generic/bgl.h b/source/blender/python/generic/bgl.h
index 89bade930ce..80b0b90f643 100644
--- a/source/blender/python/generic/bgl.h
+++ b/source/blender/python/generic/bgl.h
@@ -36,10 +36,6 @@
#ifndef EXPP_BGL_H
#define EXPP_BGL_H
-#ifdef HAVE_CONFIG_H
-#include <config.h>
-#endif
-
#include <Python.h>
PyObject *BGL_Init(void);
diff --git a/source/blender/python/generic/blf.c b/source/blender/python/generic/blf_api.c
index eda13db57b5..a5f5f8815c7 100644
--- a/source/blender/python/generic/blf.c
+++ b/source/blender/python/generic/blf_api.c
@@ -23,33 +23,45 @@
*/
#include <Python.h>
-#include "blf.h"
+#include "blf_api.h"
#include "../../blenfont/BLF_api.h"
static char py_blf_position_doc[] =
-".. function:: position(x, y, z)\n"
+".. function:: position(fontid, x, y, z)\n"
"\n"
-" Set the position for drawing text.\n";
+" Set the position for drawing text.\n"
+"\n"
+" :arg fontid: The id of the typeface as returned by :func:`blf.load`, for default font use 0.\n"
+" :type fontid: int\n"
+" :arg x: X axis position to draw the text.\n"
+" :type x: float\n"
+" :arg y: Y axis position to draw the text.\n"
+" :type y: float\n"
+" :arg z: Z axis position to draw the text.\n"
+" :type z: float\n";
static PyObject *py_blf_position(PyObject *self, PyObject *args)
{
+ int fontid;
float x, y, z;
- if (!PyArg_ParseTuple(args, "fff:BLF.position", &x, &y, &z))
+ if (!PyArg_ParseTuple(args, "ifff:blf.position", &fontid, &x, &y, &z))
return NULL;
- BLF_position(x, y, z);
+ BLF_position(fontid, x, y, z);
Py_RETURN_NONE;
}
static char py_blf_size_doc[] =
-".. function:: size(size, dpi)\n"
+".. function:: size(fontid, size, dpi)\n"
"\n"
" Set the size and dpi for drawing text.\n"
"\n"
+" :arg fontid: The id of the typeface as returned by :func:`blf.load`, for default font use 0.\n"
+" :type fontid: int\n"
" :arg size: Point size of the font.\n"
" :type size: int\n"
" :arg dpi: dots per inch value to use for drawing.\n"
@@ -57,84 +69,94 @@ static char py_blf_size_doc[] =
static PyObject *py_blf_size(PyObject *self, PyObject *args)
{
- int size, dpi;
+ int fontid, size, dpi;
- if (!PyArg_ParseTuple(args, "ii:BLF.size", &size, &dpi))
+ if (!PyArg_ParseTuple(args, "iii:blf.size", &fontid, &size, &dpi))
return NULL;
- BLF_size(size, dpi);
+ BLF_size(fontid, size, dpi);
Py_RETURN_NONE;
}
static char py_blf_aspect_doc[] =
-".. function:: aspect(aspect)\n"
+".. function:: aspect(fontid, aspect)\n"
"\n"
" Set the aspect for drawing text.\n"
"\n"
+" :arg fontid: The id of the typeface as returned by :func:`blf.load`, for default font use 0.\n"
+" :type fontid: int\n"
" :arg aspect: The aspect ratio for text drawing to use.\n"
" :type aspect: float\n";
static PyObject *py_blf_aspect(PyObject *self, PyObject *args)
{
float aspect;
+ int fontid;
- if (!PyArg_ParseTuple(args, "f:BLF.aspect", &aspect))
+ if (!PyArg_ParseTuple(args, "if:blf.aspect", &fontid, &aspect))
return NULL;
- BLF_aspect(aspect);
+ BLF_aspect(fontid, aspect);
Py_RETURN_NONE;
}
static char py_blf_blur_doc[] =
-".. function:: blur(radius)\n"
+".. function:: blur(fontid, radius)\n"
"\n"
" Set the blur radius for drawing text.\n"
"\n"
+" :arg fontid: The id of the typeface as returned by :func:`blf.load`, for default font use 0.\n"
+" :type fontid: int\n"
" :arg radius: The radius for blurring text (in pixels).\n"
" :type radius: int\n";
static PyObject *py_blf_blur(PyObject *self, PyObject *args)
{
- int blur;
+ int blur, fontid;
- if (!PyArg_ParseTuple(args, "i:BLF.blur", &blur))
+ if (!PyArg_ParseTuple(args, "ii:blf.blur", &fontid, &blur))
return NULL;
- BLF_blur(blur);
+ BLF_blur(fontid, blur);
Py_RETURN_NONE;
}
static char py_blf_draw_doc[] =
-".. function:: draw(text)\n"
+".. function:: draw(fontid, text)\n"
"\n"
" Draw text in the current context.\n"
"\n"
+" :arg fontid: The id of the typeface as returned by :func:`blf.load`, for default font use 0.\n"
+" :type fontid: int\n"
" :arg text: the text to draw.\n"
" :type text: string\n";
static PyObject *py_blf_draw(PyObject *self, PyObject *args)
{
char *text;
+ int fontid;
- if (!PyArg_ParseTuple(args, "s:BLF.draw", &text))
+ if (!PyArg_ParseTuple(args, "is:blf.draw", &fontid, &text))
return NULL;
- BLF_draw(text);
+ BLF_draw(fontid, text);
Py_RETURN_NONE;
}
static char py_blf_dimensions_doc[] =
-".. function:: dimensions(text)\n"
+".. function:: dimensions(fontid, text)\n"
"\n"
-" Return the width and hight of the text.\n"
+" Return the width and height of the text.\n"
"\n"
+" :arg fontid: The id of the typeface as returned by :func:`blf.load`, for default font use 0.\n"
+" :type fontid: int\n"
" :arg text: the text to draw.\n"
" :type text: string\n"
" :return: the width and height of the text.\n"
@@ -145,11 +167,12 @@ static PyObject *py_blf_dimensions(PyObject *self, PyObject *args)
char *text;
float r_width, r_height;
PyObject *ret;
+ int fontid;
- if (!PyArg_ParseTuple(args, "s:BLF.dimensions", &text))
+ if (!PyArg_ParseTuple(args, "is:blf.dimensions", &fontid, &text))
return NULL;
- BLF_width_and_height(text, &r_width, &r_height);
+ BLF_width_and_height(fontid, text, &r_width, &r_height);
ret= PyTuple_New(2);
PyTuple_SET_ITEM(ret, 0, PyFloat_FromDouble(r_width));
@@ -158,96 +181,125 @@ static PyObject *py_blf_dimensions(PyObject *self, PyObject *args)
}
static char py_blf_clipping_doc[] =
-".. function:: clipping(xmin, ymin, xmax, ymax)\n"
+".. function:: clipping(fontid, xmin, ymin, xmax, ymax)\n"
+"\n"
+" Set the clipping, enable/disable using CLIPPING.\n"
"\n"
-" Set the clipping, enable/disable using CLIPPING.\n";
+" :arg fontid: The id of the typeface as returned by :func:`blf.load`, for default font use 0.\n"
+" :type fontid: int\n"
+" :arg xmin: Clip the drawing area by these bounds.\n"
+" :type xmin: float\n"
+" :arg ymin: Clip the drawing area by these bounds.\n"
+" :type ymin: float\n"
+" :arg xmax: Clip the drawing area by these bounds.\n"
+" :type xmax: float\n"
+" :arg ymax: Clip the drawing area by these bounds.\n"
+" :type ymax: float\n";
static PyObject *py_blf_clipping(PyObject *self, PyObject *args)
{
float xmin, ymin, xmax, ymax;
+ int fontid;
- if (!PyArg_ParseTuple(args, "ffff:BLF.clipping", &xmin, &ymin, &xmax, &ymax))
+ if (!PyArg_ParseTuple(args, "iffff:blf.clipping", &fontid, &xmin, &ymin, &xmax, &ymax))
return NULL;
- BLF_clipping(xmin, ymin, xmax, ymax);
+ BLF_clipping(fontid, xmin, ymin, xmax, ymax);
Py_RETURN_NONE;
}
static char py_blf_disable_doc[] =
-".. function:: disable(option)\n"
+".. function:: disable(fontid, option)\n"
"\n"
" Disable option.\n"
"\n"
+" :arg fontid: The id of the typeface as returned by :func:`blf.load`, for default font use 0.\n"
+" :type fontid: int\n"
" :arg option: One of ROTATION, CLIPPING, SHADOW or KERNING_DEFAULT.\n"
" :type option: int\n";
static PyObject *py_blf_disable(PyObject *self, PyObject *args)
{
- int option;
+ int option, fontid;
- if (!PyArg_ParseTuple(args, "i:BLF.disable", &option))
+ if (!PyArg_ParseTuple(args, "ii:blf.disable", &fontid, &option))
return NULL;
- BLF_disable(option);
+ BLF_disable(fontid, option);
Py_RETURN_NONE;
}
static char py_blf_enable_doc[] =
-".. function:: enable(option)\n"
+".. function:: enable(fontid, option)\n"
"\n"
" Enable option.\n"
"\n"
+" :arg fontid: The id of the typeface as returned by :func:`blf.load`, for default font use 0.\n"
+" :type fontid: int\n"
" :arg option: One of ROTATION, CLIPPING, SHADOW or KERNING_DEFAULT.\n"
" :type option: int\n";
static PyObject *py_blf_enable(PyObject *self, PyObject *args)
{
- int option;
+ int option, fontid;
- if (!PyArg_ParseTuple(args, "i:BLF.enable", &option))
+ if (!PyArg_ParseTuple(args, "ii:blf.enable", &fontid, &option))
return NULL;
- BLF_enable(option);
+ BLF_enable(fontid, option);
Py_RETURN_NONE;
}
static char py_blf_rotation_doc[] =
-".. function:: rotation(angle)\n"
+".. function:: rotation(fontid, angle)\n"
"\n"
" Set the text rotation angle, enable/disable using ROTATION.\n"
"\n"
+" :arg fontid: The id of the typeface as returned by :func:`blf.load`, for default font use 0.\n"
+" :type fontid: int\n"
" :arg angle: The angle for text drawing to use.\n"
-" :type aspect: float\n";
+" :type angle: float\n";
static PyObject *py_blf_rotation(PyObject *self, PyObject *args)
{
float angle;
+ int fontid;
- if (!PyArg_ParseTuple(args, "f:BLF.rotation", &angle))
+ if (!PyArg_ParseTuple(args, "if:blf.rotation", &fontid, &angle))
return NULL;
- BLF_rotation(angle);
+ BLF_rotation(fontid, angle);
Py_RETURN_NONE;
}
static char py_blf_shadow_doc[] =
-".. function:: shadow(level, r, g, b, a)\n"
+".. function:: shadow(fontid, level, r, g, b, a)\n"
"\n"
" Shadow options, enable/disable using SHADOW .\n"
"\n"
+" :arg fontid: The id of the typeface as returned by :func:`blf.load`, for default font use 0.\n"
+" :type fontid: int\n"
" :arg level: The blur level, can be 3, 5 or 0.\n"
-" :type level: int\n";
+" :type level: int\n"
+" :arg r: Shadow color (red channel 0.0 - 1.0).\n"
+" :type r: float\n"
+" :arg g: Shadow color (green channel 0.0 - 1.0).\n"
+" :type g: float\n"
+" :arg b: Shadow color (blue channel 0.0 - 1.0).\n"
+" :type b: float\n"
+" :arg a: Shadow color (alpha channel 0.0 - 1.0).\n"
+" :type a: float\n";
static PyObject *py_blf_shadow(PyObject *self, PyObject *args)
{
- int level;
+ int level, fontid;
float r, g, b, a;
- if (!PyArg_ParseTuple(args, "iffff:BLF.shadow", &level, &r, &g, &b, &a))
+ if (!PyArg_ParseTuple(args, "iiffff:blf.shadow", &fontid, &level, &r, &g, &b, &a))
return NULL;
if (level != 0 && level != 3 && level != 5) {
@@ -255,28 +307,55 @@ static PyObject *py_blf_shadow(PyObject *self, PyObject *args)
return NULL;
}
- BLF_shadow(level, r, g, b, a);
+ BLF_shadow(fontid, level, r, g, b, a);
Py_RETURN_NONE;
}
static char py_blf_shadow_offset_doc[] =
-".. function:: shadow_offset(x, y)\n"
+".. function:: shadow_offset(fontid, x, y)\n"
+"\n"
+" Set the offset for shadow text.\n"
"\n"
-" Set the offset for shadow text.\n";
+" :arg fontid: The id of the typeface as returned by :func:`blf.load`, for default font use 0.\n"
+" :type fontid: int\n"
+" :arg x: Vertical shadow offset value in pixels.\n"
+" :type x: float\n"
+" :arg y: Horizontal shadow offset value in pixels.\n"
+" :type y: float\n";
static PyObject *py_blf_shadow_offset(PyObject *self, PyObject *args)
{
- int x, y;
+ int x, y, fontid;
- if (!PyArg_ParseTuple(args, "ii:BLF.shadow_offset", &x, &y))
+ if (!PyArg_ParseTuple(args, "iii:blf.shadow_offset", &fontid, &x, &y))
return NULL;
- BLF_shadow_offset(x, y);
+ BLF_shadow_offset(fontid, x, y);
Py_RETURN_NONE;
}
+static char py_blf_load_doc[] =
+".. function:: load(filename)\n"
+"\n"
+" Load a new font.\n"
+"\n"
+" :arg filename: the filename of the font.\n"
+" :type filename: string\n"
+" :return: the new font's fontid or -1 if there was an error.\n"
+" :rtype: integer\n";
+
+static PyObject *py_blf_load(PyObject *self, PyObject *args)
+{
+ char* filename;
+
+ if (!PyArg_ParseTuple(args, "s:blf.load", &filename))
+ return NULL;
+
+ return PyLong_FromLong(BLF_load(filename));
+}
+
/*----------------------------MODULE INIT-------------------------*/
struct PyMethodDef BLF_methods[] = {
{"aspect", (PyCFunction) py_blf_aspect, METH_VARARGS, py_blf_aspect_doc},
@@ -291,6 +370,7 @@ struct PyMethodDef BLF_methods[] = {
{"shadow", (PyCFunction) py_blf_shadow, METH_VARARGS, py_blf_shadow_doc},
{"shadow_offset", (PyCFunction) py_blf_shadow_offset, METH_VARARGS, py_blf_shadow_offset_doc},
{"size", (PyCFunction) py_blf_size, METH_VARARGS, py_blf_size_doc},
+ {"load", (PyCFunction) py_blf_load, METH_VARARGS, py_blf_load_doc},
{NULL, NULL, 0, NULL}
};
@@ -314,7 +394,7 @@ PyObject *BLF_Init(void)
PyObject *submodule;
submodule = PyModule_Create(&BLF_module_def);
- PyDict_SetItemString(PySys_GetObject("modules"), BLF_module_def.m_name, submodule);
+ PyDict_SetItemString(PyImport_GetModuleDict(), BLF_module_def.m_name, submodule);
PyModule_AddIntConstant(submodule, "ROTATION", BLF_ROTATION);
PyModule_AddIntConstant(submodule, "CLIPPING", BLF_CLIPPING);
diff --git a/source/blender/python/generic/blf.h b/source/blender/python/generic/blf_api.h
index fae20ace996..fae20ace996 100644
--- a/source/blender/python/generic/blf.h
+++ b/source/blender/python/generic/blf_api.h
diff --git a/source/blender/python/generic/bpy_internal_import.c b/source/blender/python/generic/bpy_internal_import.c
index 6b79945ccd8..1951e72567c 100644
--- a/source/blender/python/generic/bpy_internal_import.c
+++ b/source/blender/python/generic/bpy_internal_import.c
@@ -32,7 +32,9 @@
#include "MEM_guardedalloc.h"
#include "BKE_text.h" /* txt_to_buf */
#include "BKE_main.h"
+#include "BKE_global.h" /* grr, only for G.sce */
#include "BLI_listbase.h"
+#include "BLI_path_util.h"
#include <stddef.h>
static Main *bpy_import_main= NULL;
@@ -55,6 +57,12 @@ void bpy_import_main_set(struct Main *maggie)
bpy_import_main= maggie;
}
+/* returns a dummy filename for a textblock so we can tell what file a text block comes from */
+void bpy_text_filename_get(char *fn, Text *text)
+{
+ sprintf(fn, "%s/%s", text->id.lib ? text->id.lib->filepath : G.sce, text->id.name+2);
+}
+
PyObject *bpy_text_import( Text *text )
{
char *buf = NULL;
@@ -62,8 +70,11 @@ PyObject *bpy_text_import( Text *text )
int len;
if( !text->compiled ) {
+ char fn_dummy[256];
+ bpy_text_filename_get(fn_dummy, text);
+
buf = txt_to_buf( text );
- text->compiled = Py_CompileString( buf, text->id.name+2, Py_file_input );
+ text->compiled = Py_CompileString( buf, fn_dummy, Py_file_input );
MEM_freeN( buf );
if( PyErr_Occurred( ) ) {
@@ -119,8 +130,8 @@ PyObject *bpy_text_import_name( char *name, int *found )
PyObject *bpy_text_reimport( PyObject *module, int *found )
{
Text *text;
- const char *txtname;
const char *name;
+ char *filepath;
char *buf = NULL;
//XXX Main *maggie= bpy_import_main ? bpy_import_main:G.main;
Main *maggie= bpy_import_main;
@@ -133,14 +144,14 @@ PyObject *bpy_text_reimport( PyObject *module, int *found )
*found= 0;
/* get name, filename from the module itself */
+ if((name= PyModule_GetName(module)) == NULL)
+ return NULL;
- txtname = PyModule_GetFilename( module );
- name = PyModule_GetName( module );
- if( !txtname || !name)
+ if((filepath= (char *)PyModule_GetFilename(module)) == NULL)
return NULL;
/* look up the text object */
- text= BLI_findstring(&maggie->text, txtname, offsetof(ID, name) + 2);
+ text= BLI_findstring(&maggie->text, BLI_path_basename(filepath), offsetof(ID, name) + 2);
/* uh-oh.... didn't find it */
if( !text )
@@ -189,7 +200,7 @@ static PyObject *blender_import( PyObject * self, PyObject * args, PyObject * k
&name, &globals, &locals, &fromlist, &dummy_val) )
return NULL;
- /* import existing builtin modules or modules that have been imported alredy */
+ /* import existing builtin modules or modules that have been imported already */
newmodule = PyImport_ImportModuleEx( name, globals, locals, fromlist );
if(newmodule)
@@ -226,16 +237,11 @@ static PyObject *blender_import( PyObject * self, PyObject * args, PyObject * k
* our reload() module, to handle reloading in-memory scripts
*/
-static PyObject *blender_reload( PyObject * self, PyObject * args )
+static PyObject *blender_reload( PyObject * self, PyObject * module )
{
PyObject *exception, *err, *tb;
- PyObject *module = NULL;
PyObject *newmodule = NULL;
int found= 0;
-
- /* check for a module arg */
- if( !PyArg_ParseTuple( args, "O:bpy_reload_meth", &module ) )
- return NULL;
/* try reimporting from file */
newmodule = PyImport_ReloadModule( module );
@@ -269,7 +275,7 @@ static PyObject *blender_reload( PyObject * self, PyObject * args )
}
PyMethodDef bpy_import_meth[] = { {"bpy_import_meth", (PyCFunction)blender_import, METH_VARARGS | METH_KEYWORDS, "blenders import"} };
-PyMethodDef bpy_reload_meth[] = { {"bpy_reload_meth", (PyCFunction)blender_reload, METH_VARARGS, "blenders reload"} };
+PyMethodDef bpy_reload_meth[] = { {"bpy_reload_meth", (PyCFunction)blender_reload, METH_O, "blenders reload"} };
/* Clear user modules.
@@ -298,7 +304,7 @@ PyMethodDef bpy_reload_meth[] = { {"bpy_reload_meth", (PyCFunction)blender_reloa
void bpy_text_clear_modules(int clear_all)
{
- PyObject *modules= PySys_GetObject("modules");
+ PyObject *modules= PyImport_GetModuleDict();
char *fname;
char *file_extension;
@@ -344,3 +350,26 @@ void bpy_text_clear_modules(int clear_all)
Py_DECREF(list); /* removes all references from append */
}
#endif
+
+
+/*****************************************************************************
+* Description: This function creates a new Python dictionary object.
+* note: dict is owned by sys.modules["__main__"] module, reference is borrowed
+* note: important we use the dict from __main__, this is what python expects
+ for 'pickle' to work as well as strings like this...
+ >> foo = 10
+ >> print(__import__("__main__").foo)
+*****************************************************************************/
+PyObject *bpy_namespace_dict_new(const char *filename)
+{
+ PyInterpreterState *interp= PyThreadState_GET()->interp;
+ PyObject *mod_main= PyModule_New("__main__");
+ PyDict_SetItemString(interp->modules, "__main__", mod_main);
+ Py_DECREF(mod_main); /* sys.modules owns now */
+ PyModule_AddStringConstant(mod_main, "__name__", "__main__");
+ if(filename)
+ PyModule_AddStringConstant(mod_main, "__file__", filename); /* __file__ only for nice UI'ness */
+ PyModule_AddObject(mod_main, "__builtins__", interp->builtins);
+ Py_INCREF(interp->builtins); /* AddObject steals a reference */
+ return PyModule_GetDict(mod_main);
+}
diff --git a/source/blender/python/generic/bpy_internal_import.h b/source/blender/python/generic/bpy_internal_import.h
index 947e0dfc29d..83e05fd6ded 100644
--- a/source/blender/python/generic/bpy_internal_import.h
+++ b/source/blender/python/generic/bpy_internal_import.h
@@ -50,6 +50,9 @@ PyObject* bpy_text_import( struct Text *text );
PyObject* bpy_text_import_name( char *name, int *found );
PyObject* bpy_text_reimport( PyObject *module, int *found );
/* void bpy_text_clear_modules( int clear_all );*/ /* Clear user modules */
+
+void bpy_text_filename_get(char *fn, struct Text *text);
+
extern PyMethodDef bpy_import_meth[];
extern PyMethodDef bpy_reload_meth[];
@@ -57,5 +60,7 @@ extern PyMethodDef bpy_reload_meth[];
struct Main *bpy_import_main_get(void);
void bpy_import_main_set(struct Main *maggie);
+/* name namespace function for bpy & bge */
+PyObject *bpy_namespace_dict_new(const char *filename);
#endif /* EXPP_bpy_import_h */
diff --git a/source/blender/python/generic/Geometry.c b/source/blender/python/generic/geometry.c
index 158b07b1be5..0e98760314d 100644
--- a/source/blender/python/generic/Geometry.c
+++ b/source/blender/python/generic/geometry.c
@@ -27,7 +27,7 @@
* ***** END GPL LICENSE BLOCK *****
*/
-#include "Geometry.h"
+#include "geometry.h"
/* Used for PolyFill */
#include "BKE_displist.h"
@@ -44,7 +44,7 @@
/*-------------------------DOC STRINGS ---------------------------*/
-static char M_Geometry_doc[] = "The Blender Geometry module\n\n";
+static char M_Geometry_doc[] = "The Blender geometry module\n\n";
static char M_Geometry_Intersect_doc[] = "(v1, v2, v3, ray, orig, clip=1) - returns the intersection between a ray and a triangle, if possible, returns None otherwise";
static char M_Geometry_TriangleArea_doc[] = "(v1, v2, v3) - returns the area size of the 2D or 3D triangle defined";
static char M_Geometry_TriangleNormal_doc[] = "(v1, v2, v3) - returns the normal of the 3D triangle defined";
@@ -59,7 +59,7 @@ static char M_Geometry_BoxPack2D_doc[] = "";
static char M_Geometry_BezierInterp_doc[] = "";
//---------------------------------INTERSECTION FUNCTIONS--------------------
-//----------------------------------Mathutils.Intersect() -------------------
+//----------------------------------geometry.Intersect() -------------------
static PyObject *M_Geometry_Intersect( PyObject * self, PyObject * args )
{
VectorObject *ray, *ray_off, *vec1, *vec2, *vec3;
@@ -131,7 +131,7 @@ static PyObject *M_Geometry_Intersect( PyObject * self, PyObject * args )
return newVectorObject(pvec, 3, Py_NEW, NULL);
}
-//----------------------------------Mathutils.LineIntersect() -------------------
+//----------------------------------geometry.LineIntersect() -------------------
/* Line-Line intersection using algorithm from mathworld.wolfram.com */
static PyObject *M_Geometry_LineIntersect( PyObject * self, PyObject * args )
{
@@ -200,7 +200,7 @@ static PyObject *M_Geometry_LineIntersect( PyObject * self, PyObject * args )
//---------------------------------NORMALS FUNCTIONS--------------------
-//----------------------------------Mathutils.QuadNormal() -------------------
+//----------------------------------geometry.QuadNormal() -------------------
static PyObject *M_Geometry_QuadNormal( PyObject * self, PyObject * args )
{
VectorObject *vec1;
@@ -251,7 +251,7 @@ static PyObject *M_Geometry_QuadNormal( PyObject * self, PyObject * args )
return newVectorObject(n1, 3, Py_NEW, NULL);
}
-//----------------------------Mathutils.TriangleNormal() -------------------
+//----------------------------geometry.TriangleNormal() -------------------
static PyObject *M_Geometry_TriangleNormal( PyObject * self, PyObject * args )
{
VectorObject *vec1, *vec2, *vec3;
@@ -288,7 +288,7 @@ static PyObject *M_Geometry_TriangleNormal( PyObject * self, PyObject * args )
}
//--------------------------------- AREA FUNCTIONS--------------------
-//----------------------------------Mathutils.TriangleArea() -------------------
+//----------------------------------geometry.TriangleArea() -------------------
static PyObject *M_Geometry_TriangleArea( PyObject * self, PyObject * args )
{
VectorObject *vec1, *vec2, *vec3;
@@ -333,7 +333,7 @@ static PyObject *M_Geometry_TriangleArea( PyObject * self, PyObject * args )
}
}
-/*----------------------------------Geometry.PolyFill() -------------------*/
+/*----------------------------------geometry.PolyFill() -------------------*/
/* PolyFill function, uses Blenders scanfill to fill multiple poly lines */
static PyObject *M_Geometry_PolyFill( PyObject * self, PyObject * polyLineSeq )
{
@@ -363,7 +363,7 @@ static PyObject *M_Geometry_PolyFill( PyObject * self, PyObject * polyLineSeq )
if (!PySequence_Check(polyLine)) {
freedisplist(&dispbase);
Py_XDECREF(polyLine); /* may be null so use Py_XDECREF*/
- PyErr_SetString( PyExc_TypeError, "One or more of the polylines is not a sequence of Mathutils.Vector's" );
+ PyErr_SetString( PyExc_TypeError, "One or more of the polylines is not a sequence of mathutils.Vector's" );
return NULL;
}
@@ -373,7 +373,7 @@ static PyObject *M_Geometry_PolyFill( PyObject * self, PyObject * polyLineSeq )
if (EXPP_check_sequence_consistency( polyLine, &vector_Type ) != 1) {
freedisplist(&dispbase);
Py_DECREF(polyLine);
- PyErr_SetString( PyExc_TypeError, "A point in one of the polylines is not a Mathutils.Vector type" );
+ PyErr_SetString( PyExc_TypeError, "A point in one of the polylines is not a mathutils.Vector type" );
return NULL;
}
#endif
@@ -414,12 +414,12 @@ static PyObject *M_Geometry_PolyFill( PyObject * self, PyObject * polyLineSeq )
if(ls_error) {
freedisplist(&dispbase); /* possible some dl was allocated */
- PyErr_SetString( PyExc_TypeError, "A point in one of the polylines is not a Mathutils.Vector type" );
+ PyErr_SetString( PyExc_TypeError, "A point in one of the polylines is not a mathutils.Vector type" );
return NULL;
}
else if (totpoints) {
/* now make the list to return */
- filldisplist(&dispbase, &dispbase);
+ filldisplist(&dispbase, &dispbase, 0);
/* The faces are stored in a new DisplayList
thats added to the head of the listbase */
@@ -428,7 +428,7 @@ static PyObject *M_Geometry_PolyFill( PyObject * self, PyObject * polyLineSeq )
tri_list= PyList_New(dl->parts);
if( !tri_list ) {
freedisplist(&dispbase);
- PyErr_SetString( PyExc_RuntimeError, "Geometry.PolyFill failed to make a new list" );
+ PyErr_SetString( PyExc_RuntimeError, "geometry.PolyFill failed to make a new list" );
return NULL;
}
@@ -634,7 +634,7 @@ static int boxPack_FromPyObject(PyObject * value, boxPack **boxarray )
boxPack *box;
- /* Error checking must alredy be done */
+ /* Error checking must already be done */
if( !PyList_Check( value ) ) {
PyErr_SetString( PyExc_TypeError, "can only back a list of [x,y,x,w]" );
return -1;
@@ -819,7 +819,7 @@ struct PyMethodDef M_Geometry_methods[] = {
static struct PyModuleDef M_Geometry_module_def = {
PyModuleDef_HEAD_INIT,
- "Geometry", /* m_name */
+ "geometry", /* m_name */
M_Geometry_doc, /* m_doc */
0, /* m_size */
M_Geometry_methods, /* m_methods */
@@ -835,7 +835,7 @@ PyObject *Geometry_Init(void)
PyObject *submodule;
submodule = PyModule_Create(&M_Geometry_module_def);
- PyDict_SetItemString(PySys_GetObject("modules"), M_Geometry_module_def.m_name, submodule);
+ PyDict_SetItemString(PyImport_GetModuleDict(), M_Geometry_module_def.m_name, submodule);
return (submodule);
}
diff --git a/source/blender/python/generic/Geometry.h b/source/blender/python/generic/geometry.h
index 1e17ca6bf27..401efcc7888 100644
--- a/source/blender/python/generic/Geometry.h
+++ b/source/blender/python/generic/geometry.h
@@ -32,7 +32,7 @@
#define EXPP_Geometry_H
#include <Python.h>
-#include "Mathutils.h"
+#include "mathutils.h"
PyObject *Geometry_Init(void);
diff --git a/source/blender/python/generic/mathutils.c b/source/blender/python/generic/mathutils.c
new file mode 100644
index 00000000000..a643e6621b2
--- /dev/null
+++ b/source/blender/python/generic/mathutils.c
@@ -0,0 +1,273 @@
+/*
+ * $Id$
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
+ * All rights reserved.
+ *
+ * This is a new part of Blender.
+ *
+ * Contributor(s): Joseph Gilbert, Campbell Barton
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+/* Note: Changes to Mathutils since 2.4x
+ * use radians rather then degrees
+ * - Mathutils.Vector/Euler/Quaternion(), now only take single sequence arguments.
+ * - Mathutils.MidpointVecs --> vector.lerp(other, fac)
+ * - Mathutils.AngleBetweenVecs --> vector.angle(other)
+ * - Mathutils.ProjectVecs --> vector.project(other)
+ * - Mathutils.DifferenceQuats --> quat.difference(other)
+ * - Mathutils.Slerp --> quat.slerp(other, fac)
+ * - Mathutils.Rand: removed, use pythons random module
+ * - Mathutils.RotationMatrix(angle, size, axis_flag, axis) --> Mathutils.RotationMatrix(angle, size, axis); merge axis & axis_flag args
+ * - Matrix.scalePart --> Matrix.scale_part
+ * - Matrix.translationPart --> Matrix.translation_part
+ * - Matrix.rotationPart --> Matrix.rotation_part
+ * - toMatrix --> to_matrix
+ * - toEuler --> to_euler
+ * - toQuat --> to_quat
+ * - Vector.toTrackQuat --> Vector.to_track_quat
+ * - Quaternion * Quaternion --> cross product (not dot product)
+ *
+ * moved into class functions.
+ * - Mathutils.RotationMatrix -> mathutils.Matrix.Rotation
+ * - Mathutils.ScaleMatrix -> mathutils.Matrix.Scale
+ * - Mathutils.ShearMatrix -> mathutils.Matrix.Shear
+ * - Mathutils.TranslationMatrix -> mathutils.Matrix.Translation
+ * - Mathutils.OrthoProjectionMatrix -> mathutils.Matrix.OrthoProjection
+ *
+ * Moved to Geometry module: Intersect, TriangleArea, TriangleNormal, QuadNormal, LineIntersect
+ */
+
+#include "mathutils.h"
+
+#include "BLI_math.h"
+
+//-------------------------DOC STRINGS ---------------------------
+static char M_Mathutils_doc[] =
+"This module provides access to matrices, eulers, quaternions and vectors.";
+
+/* helper functionm returns length of the 'value', -1 on error */
+int mathutils_array_parse(float *array, int array_min, int array_max, PyObject *value, const char *error_prefix)
+{
+ PyObject *value_fast= NULL;
+
+ int i, size;
+
+ /* non list/tuple cases */
+ if(!(value_fast=PySequence_Fast(value, error_prefix))) {
+ /* PySequence_Fast sets the error */
+ return -1;
+ }
+
+ size= PySequence_Fast_GET_SIZE(value_fast);
+
+ if(size > array_max || size < array_min) {
+ if (array_max == array_min) PyErr_Format(PyExc_ValueError, "%.200s: sequence size is %d, expected %d", error_prefix, size, array_max);
+ else PyErr_Format(PyExc_ValueError, "%.200s: sequence size is %d, expected [%d - %d]", error_prefix, size, array_min, array_max);
+ Py_DECREF(value_fast);
+ return -1;
+ }
+
+ i= size;
+ do {
+ i--;
+ if(((array[i]= PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value_fast, i))) == -1.0) && PyErr_Occurred()) {
+ PyErr_Format(PyExc_ValueError, "%.200s: sequence index %d is not a float", error_prefix, i);
+ Py_DECREF(value_fast);
+ return -1;
+ }
+ } while(i);
+
+ Py_XDECREF(value_fast);
+ return size;
+}
+
+//----------------------------------MATRIX FUNCTIONS--------------------
+
+
+/* Utility functions */
+
+// LomontRRDCompare4, Ever Faster Float Comparisons by Randy Dillon
+#define SIGNMASK(i) (-(int)(((unsigned int)(i))>>31))
+
+int EXPP_FloatsAreEqual(float af, float bf, int maxDiff)
+{ // solid, fast routine across all platforms
+ // with constant time behavior
+ int ai = *(int *)(&af);
+ int bi = *(int *)(&bf);
+ int test = SIGNMASK(ai^bi);
+ int diff, v1, v2;
+
+ assert((0 == test) || (0xFFFFFFFF == test));
+ diff = (ai ^ (test & 0x7fffffff)) - bi;
+ v1 = maxDiff + diff;
+ v2 = maxDiff - diff;
+ return (v1|v2) >= 0;
+}
+
+/*---------------------- EXPP_VectorsAreEqual -------------------------
+ Builds on EXPP_FloatsAreEqual to test vectors */
+int EXPP_VectorsAreEqual(float *vecA, float *vecB, int size, int floatSteps)
+{
+ int x;
+ for (x=0; x< size; x++){
+ if (EXPP_FloatsAreEqual(vecA[x], vecB[x], floatSteps) == 0)
+ return 0;
+ }
+ return 1;
+}
+
+
+/* Mathutils Callbacks */
+
+/* for mathutils internal use only, eventually should re-alloc but to start with we only have a few users */
+Mathutils_Callback *mathutils_callbacks[8] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL};
+
+int Mathutils_RegisterCallback(Mathutils_Callback *cb)
+{
+ int i;
+
+ /* find the first free slot */
+ for(i= 0; mathutils_callbacks[i]; i++) {
+ if(mathutils_callbacks[i]==cb) /* already registered? */
+ return i;
+ }
+
+ mathutils_callbacks[i] = cb;
+ return i;
+}
+
+/* use macros to check for NULL */
+int _BaseMathObject_ReadCallback(BaseMathObject *self)
+{
+ Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
+ if(cb->get(self, self->cb_subtype))
+ return 1;
+
+ if(!PyErr_Occurred())
+ PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
+ return 0;
+}
+
+int _BaseMathObject_WriteCallback(BaseMathObject *self)
+{
+ Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
+ if(cb->set(self, self->cb_subtype))
+ return 1;
+
+ if(!PyErr_Occurred())
+ PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
+ return 0;
+}
+
+int _BaseMathObject_ReadIndexCallback(BaseMathObject *self, int index)
+{
+ Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
+ if(cb->get_index(self, self->cb_subtype, index))
+ return 1;
+
+ if(!PyErr_Occurred())
+ PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
+ return 0;
+}
+
+int _BaseMathObject_WriteIndexCallback(BaseMathObject *self, int index)
+{
+ Mathutils_Callback *cb= mathutils_callbacks[self->cb_type];
+ if(cb->set_index(self, self->cb_subtype, index))
+ return 1;
+
+ if(!PyErr_Occurred())
+ PyErr_Format(PyExc_SystemError, "%s user has become invalid", Py_TYPE(self)->tp_name);
+ return 0;
+}
+
+/* BaseMathObject generic functions for all mathutils types */
+char BaseMathObject_Owner_doc[] = "The item this is wrapping or None (readonly).";
+PyObject *BaseMathObject_getOwner( BaseMathObject * self, void *type )
+{
+ PyObject *ret= self->cb_user ? self->cb_user : Py_None;
+ Py_INCREF(ret);
+ return ret;
+}
+
+char BaseMathObject_Wrapped_doc[] = "True when this object wraps external data (readonly).\n\n:type: boolean";
+PyObject *BaseMathObject_getWrapped( BaseMathObject *self, void *type )
+{
+ return PyBool_FromLong((self->wrapped == Py_WRAP) ? 1:0);
+}
+
+void BaseMathObject_dealloc(BaseMathObject * self)
+{
+ /* only free non wrapped */
+ if(self->wrapped != Py_WRAP)
+ PyMem_Free(self->data);
+
+ Py_XDECREF(self->cb_user);
+ Py_TYPE(self)->tp_free(self); // PyObject_DEL(self); // breaks subtypes
+}
+
+/*----------------------------MODULE INIT-------------------------*/
+struct PyMethodDef M_Mathutils_methods[] = {
+ {NULL, NULL, 0, NULL}
+};
+
+static struct PyModuleDef M_Mathutils_module_def = {
+ PyModuleDef_HEAD_INIT,
+ "mathutils", /* m_name */
+ M_Mathutils_doc, /* m_doc */
+ 0, /* m_size */
+ M_Mathutils_methods, /* m_methods */
+ 0, /* m_reload */
+ 0, /* m_traverse */
+ 0, /* m_clear */
+ 0, /* m_free */
+};
+
+PyObject *Mathutils_Init(void)
+{
+ PyObject *submodule;
+
+ if( PyType_Ready( &vector_Type ) < 0 )
+ return NULL;
+ if( PyType_Ready( &matrix_Type ) < 0 )
+ return NULL;
+ if( PyType_Ready( &euler_Type ) < 0 )
+ return NULL;
+ if( PyType_Ready( &quaternion_Type ) < 0 )
+ return NULL;
+ if( PyType_Ready( &color_Type ) < 0 )
+ return NULL;
+
+ submodule = PyModule_Create(&M_Mathutils_module_def);
+ PyDict_SetItemString(PyImport_GetModuleDict(), M_Mathutils_module_def.m_name, submodule);
+
+ /* each type has its own new() function */
+ PyModule_AddObject( submodule, "Vector", (PyObject *)&vector_Type );
+ PyModule_AddObject( submodule, "Matrix", (PyObject *)&matrix_Type );
+ PyModule_AddObject( submodule, "Euler", (PyObject *)&euler_Type );
+ PyModule_AddObject( submodule, "Quaternion", (PyObject *)&quaternion_Type );
+ PyModule_AddObject( submodule, "Color", (PyObject *)&color_Type );
+
+ mathutils_matrix_vector_cb_index= Mathutils_RegisterCallback(&mathutils_matrix_vector_cb);
+
+ return (submodule);
+}
diff --git a/source/blender/python/generic/Mathutils.h b/source/blender/python/generic/mathutils.h
index 869ac4d70df..85fbe3225ba 100644
--- a/source/blender/python/generic/Mathutils.h
+++ b/source/blender/python/generic/mathutils.h
@@ -33,32 +33,35 @@
#include <Python.h>
-#include "vector.h"
-#include "matrix.h"
-#include "quat.h"
-#include "euler.h"
-
/* Can cast different mathutils types to this, use for generic funcs */
extern char BaseMathObject_Wrapped_doc[];
extern char BaseMathObject_Owner_doc[];
+#define BASE_MATH_MEMBERS(_data) \
+ PyObject_VAR_HEAD \
+ float *_data; /* array of data (alias), wrapped status depends on wrapped status */ \
+ PyObject *cb_user; /* if this vector references another object, otherwise NULL, *Note* this owns its reference */ \
+ unsigned char cb_type; /* which user funcs do we adhere to, RNA, GameObject, etc */ \
+ unsigned char cb_subtype; /* subtype: location, rotation... to avoid defining many new functions for every attribute of the same type */ \
+ unsigned char wrapped; /* wrapped data type? */ \
+
typedef struct {
- PyObject_VAR_HEAD
- float *data; /*array of data (alias), wrapped status depends on wrapped status */
- PyObject *cb_user; /* if this vector references another object, otherwise NULL, *Note* this owns its reference */
- unsigned char cb_type; /* which user funcs do we adhere to, RNA, GameObject, etc */
- unsigned char cb_subtype; /* subtype: location, rotation... to avoid defining many new functions for every attribute of the same type */
- unsigned char wrapped; /* wrapped data type? */
+ BASE_MATH_MEMBERS(data)
} BaseMathObject;
+#include "mathutils_vector.h"
+#include "mathutils_matrix.h"
+#include "mathutils_quat.h"
+#include "mathutils_euler.h"
+#include "mathutils_color.h"
+
PyObject *BaseMathObject_getOwner( BaseMathObject * self, void * );
PyObject *BaseMathObject_getWrapped( BaseMathObject *self, void * );
void BaseMathObject_dealloc(BaseMathObject * self);
PyObject *Mathutils_Init(void);
-
-PyObject *quat_rotation(PyObject *arg1, PyObject *arg2);
+PyObject *Noise_Init(void); /* lazy, saves having own header */
int EXPP_FloatsAreEqual(float A, float B, int floatSteps);
int EXPP_VectorsAreEqual(float *vecA, float *vecB, int size, int floatSteps);
@@ -69,33 +72,20 @@ int EXPP_VectorsAreEqual(float *vecA, float *vecB, int size, int floatSteps);
#define Py_NEW 1
#define Py_WRAP 2
-
-/* Mathutils is used by the BGE and Blender so have to define
- * some things here for luddite mac users of py2.3 */
-#ifndef Py_RETURN_NONE
-#define Py_RETURN_NONE return Py_INCREF(Py_None), Py_None
-#endif
-#ifndef Py_RETURN_FALSE
-#define Py_RETURN_FALSE return Py_INCREF(Py_False), Py_False
-#endif
-#ifndef Py_RETURN_TRUE
-#define Py_RETURN_TRUE return Py_INCREF(Py_True), Py_True
-#endif
-
typedef struct Mathutils_Callback Mathutils_Callback;
-typedef int (*BaseMathCheckFunc)(PyObject *);
-typedef int (*BaseMathGetFunc)(PyObject *, int, float *);
-typedef int (*BaseMathSetFunc)(PyObject *, int, float *);
-typedef int (*BaseMathGetIndexFunc)(PyObject *, int, float *, int);
-typedef int (*BaseMathSetIndexFunc)(PyObject *, int, float *, int);
+typedef int (*BaseMathCheckFunc)(BaseMathObject *); /* checks the user is still valid */
+typedef int (*BaseMathGetFunc)(BaseMathObject *, int); /* gets the vector from the user */
+typedef int (*BaseMathSetFunc)(BaseMathObject *, int); /* sets the users vector values once the vector is modified */
+typedef int (*BaseMathGetIndexFunc)(BaseMathObject *, int, int); /* same as above but only for an index */
+typedef int (*BaseMathSetIndexFunc)(BaseMathObject *, int, int); /* same as above but only for an index */
struct Mathutils_Callback {
- int (*check)(PyObject *user); /* checks the user is still valid */
- int (*get)(PyObject *user, int subtype, float *from); /* gets the vector from the user */
- int (*set)(PyObject *user, int subtype, float *to); /* sets the users vector values once the vector is modified */
- int (*get_index)(PyObject *user, int subtype, float *from,int index); /* same as above but only for an index */
- int (*set_index)(PyObject *user, int subtype, float *to, int index); /* same as above but only for an index */
+ BaseMathCheckFunc check;
+ BaseMathGetFunc get;
+ BaseMathSetFunc set;
+ BaseMathGetIndexFunc get_index;
+ BaseMathSetIndexFunc set_index;
};
int Mathutils_RegisterCallback(Mathutils_Callback *cb);
@@ -111,4 +101,7 @@ int _BaseMathObject_WriteIndexCallback(BaseMathObject *self, int index);
#define BaseMath_ReadIndexCallback(_self, _index) (((_self)->cb_user ? _BaseMathObject_ReadIndexCallback((BaseMathObject *)_self, _index):1))
#define BaseMath_WriteIndexCallback(_self, _index) (((_self)->cb_user ? _BaseMathObject_WriteIndexCallback((BaseMathObject *)_self, _index):1))
+/* utility func */
+int mathutils_array_parse(float *array, int array_min, int array_max, PyObject *value, const char *error_prefix);
+
#endif /* EXPP_Mathutils_H */
diff --git a/source/blender/python/generic/mathutils_color.c b/source/blender/python/generic/mathutils_color.c
new file mode 100644
index 00000000000..57d2838238c
--- /dev/null
+++ b/source/blender/python/generic/mathutils_color.c
@@ -0,0 +1,560 @@
+/*
+ * $Id$
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * Contributor(s): Campbell Barton
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ */
+
+#include "mathutils.h"
+
+#include "BLI_math.h"
+#include "BKE_utildefines.h"
+
+#define COLOR_SIZE 3
+
+//----------------------------------mathutils.Color() -------------------
+//makes a new color for you to play with
+static PyObject *Color_new(PyTypeObject * type, PyObject * args, PyObject * kwargs)
+{
+ float col[3]= {0.0f, 0.0f, 0.0f};
+
+ switch(PyTuple_GET_SIZE(args)) {
+ case 0:
+ break;
+ case 1:
+ if((mathutils_array_parse(col, COLOR_SIZE, COLOR_SIZE, PyTuple_GET_ITEM(args, 0), "mathutils.Color()")) == -1)
+ return NULL;
+ break;
+ default:
+ PyErr_SetString(PyExc_TypeError, "mathutils.Color(): more then a single arg given");
+ return NULL;
+ }
+ return newColorObject(col, Py_NEW, type);
+}
+
+//-----------------------------METHODS----------------------------
+
+/* note: BaseMath_ReadCallback must be called beforehand */
+static PyObject *Color_ToTupleExt(ColorObject *self, int ndigits)
+{
+ PyObject *ret;
+ int i;
+
+ ret= PyTuple_New(COLOR_SIZE);
+
+ if(ndigits >= 0) {
+ for(i= 0; i < COLOR_SIZE; i++) {
+ PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round((double)self->col[i], ndigits)));
+ }
+ }
+ else {
+ for(i= 0; i < COLOR_SIZE; i++) {
+ PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->col[i]));
+ }
+ }
+
+ return ret;
+}
+
+static char Color_copy_doc[] =
+".. function:: copy()\n"
+"\n"
+" Returns a copy of this color.\n"
+"\n"
+" :return: A copy of the color.\n"
+" :rtype: :class:`Color`\n"
+"\n"
+" .. note:: use this to get a copy of a wrapped color with no reference to the original data.\n";
+
+static PyObject *Color_copy(ColorObject * self, PyObject *args)
+{
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ return newColorObject(self->col, Py_NEW, Py_TYPE(self));
+}
+
+//----------------------------print object (internal)--------------
+//print the object to screen
+
+static PyObject *Color_repr(ColorObject * self)
+{
+ PyObject *ret, *tuple;
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ tuple= Color_ToTupleExt(self, -1);
+
+ ret= PyUnicode_FromFormat("Color(%R)", tuple);
+
+ Py_DECREF(tuple);
+ return ret;
+}
+
+//------------------------tp_richcmpr
+//returns -1 execption, 0 false, 1 true
+static PyObject* Color_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
+{
+ ColorObject *colA = NULL, *colB = NULL;
+ int result = 0;
+
+ if(ColorObject_Check(objectA)) {
+ colA = (ColorObject*)objectA;
+ if(!BaseMath_ReadCallback(colA))
+ return NULL;
+ }
+ if(ColorObject_Check(objectB)) {
+ colB = (ColorObject*)objectB;
+ if(!BaseMath_ReadCallback(colB))
+ return NULL;
+ }
+
+ if (!colA || !colB){
+ if (comparison_type == Py_NE){
+ Py_RETURN_TRUE;
+ }else{
+ Py_RETURN_FALSE;
+ }
+ }
+ colA = (ColorObject*)objectA;
+ colB = (ColorObject*)objectB;
+
+ switch (comparison_type){
+ case Py_EQ:
+ result = EXPP_VectorsAreEqual(colA->col, colB->col, COLOR_SIZE, 1);
+ break;
+ case Py_NE:
+ result = !EXPP_VectorsAreEqual(colA->col, colB->col, COLOR_SIZE, 1);
+ break;
+ default:
+ printf("The result of the comparison could not be evaluated");
+ break;
+ }
+ if (result == 1){
+ Py_RETURN_TRUE;
+ }else{
+ Py_RETURN_FALSE;
+ }
+}
+
+//---------------------SEQUENCE PROTOCOLS------------------------
+//----------------------------len(object)------------------------
+//sequence length
+static int Color_len(ColorObject * self)
+{
+ return COLOR_SIZE;
+}
+//----------------------------object[]---------------------------
+//sequence accessor (get)
+static PyObject *Color_item(ColorObject * self, int i)
+{
+ if(i<0) i= COLOR_SIZE-i;
+
+ if(i < 0 || i >= COLOR_SIZE) {
+ PyErr_SetString(PyExc_IndexError, "color[attribute]: array index out of range");
+ return NULL;
+ }
+
+ if(!BaseMath_ReadIndexCallback(self, i))
+ return NULL;
+
+ return PyFloat_FromDouble(self->col[i]);
+
+}
+//----------------------------object[]-------------------------
+//sequence accessor (set)
+static int Color_ass_item(ColorObject * self, int i, PyObject * value)
+{
+ float f = PyFloat_AsDouble(value);
+
+ if(f == -1 && PyErr_Occurred()) { // parsed item not a number
+ PyErr_SetString(PyExc_TypeError, "color[attribute] = x: argument not a number");
+ return -1;
+ }
+
+ if(i<0) i= COLOR_SIZE-i;
+
+ if(i < 0 || i >= COLOR_SIZE){
+ PyErr_SetString(PyExc_IndexError, "color[attribute] = x: array assignment index out of range\n");
+ return -1;
+ }
+
+ self->col[i] = f;
+
+ if(!BaseMath_WriteIndexCallback(self, i))
+ return -1;
+
+ return 0;
+}
+//----------------------------object[z:y]------------------------
+//sequence slice (get)
+static PyObject *Color_slice(ColorObject * self, int begin, int end)
+{
+ PyObject *list = NULL;
+ int count;
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ CLAMP(begin, 0, COLOR_SIZE);
+ if (end<0) end= (COLOR_SIZE + 1) + end;
+ CLAMP(end, 0, COLOR_SIZE);
+ begin = MIN2(begin,end);
+
+ list = PyList_New(end - begin);
+ for(count = begin; count < end; count++) {
+ PyList_SetItem(list, count - begin,
+ PyFloat_FromDouble(self->col[count]));
+ }
+
+ return list;
+}
+//----------------------------object[z:y]------------------------
+//sequence slice (set)
+static int Color_ass_slice(ColorObject * self, int begin, int end, PyObject * seq)
+{
+ int i, size;
+ float col[COLOR_SIZE];
+
+ if(!BaseMath_ReadCallback(self))
+ return -1;
+
+ CLAMP(begin, 0, COLOR_SIZE);
+ if (end<0) end= (COLOR_SIZE + 1) + end;
+ CLAMP(end, 0, COLOR_SIZE);
+ begin = MIN2(begin,end);
+
+ if((size=mathutils_array_parse(col, 0, COLOR_SIZE, seq, "mathutils.Color[begin:end] = []")) == -1)
+ return -1;
+
+ if(size != (end - begin)){
+ PyErr_SetString(PyExc_TypeError, "color[begin:end] = []: size mismatch in slice assignment");
+ return -1;
+ }
+
+ for(i= 0; i < COLOR_SIZE; i++)
+ self->col[begin + i] = col[i];
+
+ BaseMath_WriteCallback(self);
+ return 0;
+}
+
+static PyObject *Color_subscript(ColorObject *self, PyObject *item)
+{
+ if (PyIndex_Check(item)) {
+ Py_ssize_t i;
+ i = PyNumber_AsSsize_t(item, PyExc_IndexError);
+ if (i == -1 && PyErr_Occurred())
+ return NULL;
+ if (i < 0)
+ i += COLOR_SIZE;
+ return Color_item(self, i);
+ } else if (PySlice_Check(item)) {
+ Py_ssize_t start, stop, step, slicelength;
+
+ if (PySlice_GetIndicesEx((PySliceObject*)item, COLOR_SIZE, &start, &stop, &step, &slicelength) < 0)
+ return NULL;
+
+ if (slicelength <= 0) {
+ return PyList_New(0);
+ }
+ else if (step == 1) {
+ return Color_slice(self, start, stop);
+ }
+ else {
+ PyErr_SetString(PyExc_TypeError, "slice steps not supported with color");
+ return NULL;
+ }
+ }
+ else {
+ PyErr_Format(PyExc_TypeError,
+ "color indices must be integers, not %.200s",
+ item->ob_type->tp_name);
+ return NULL;
+ }
+}
+
+static int Color_ass_subscript(ColorObject *self, PyObject *item, PyObject *value)
+{
+ if (PyIndex_Check(item)) {
+ Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
+ if (i == -1 && PyErr_Occurred())
+ return -1;
+ if (i < 0)
+ i += COLOR_SIZE;
+ return Color_ass_item(self, i, value);
+ }
+ else if (PySlice_Check(item)) {
+ Py_ssize_t start, stop, step, slicelength;
+
+ if (PySlice_GetIndicesEx((PySliceObject*)item, COLOR_SIZE, &start, &stop, &step, &slicelength) < 0)
+ return -1;
+
+ if (step == 1)
+ return Color_ass_slice(self, start, stop, value);
+ else {
+ PyErr_SetString(PyExc_TypeError, "slice steps not supported with color");
+ return -1;
+ }
+ }
+ else {
+ PyErr_Format(PyExc_TypeError,
+ "color indices must be integers, not %.200s",
+ item->ob_type->tp_name);
+ return -1;
+ }
+}
+
+//-----------------PROTCOL DECLARATIONS--------------------------
+static PySequenceMethods Color_SeqMethods = {
+ (lenfunc) Color_len, /* sq_length */
+ (binaryfunc) NULL, /* sq_concat */
+ (ssizeargfunc) NULL, /* sq_repeat */
+ (ssizeargfunc) Color_item, /* sq_item */
+ (ssizessizeargfunc) NULL, /* sq_slice, deprecated */
+ (ssizeobjargproc) Color_ass_item, /* sq_ass_item */
+ (ssizessizeobjargproc) NULL, /* sq_ass_slice, deprecated */
+ (objobjproc) NULL, /* sq_contains */
+ (binaryfunc) NULL, /* sq_inplace_concat */
+ (ssizeargfunc) NULL, /* sq_inplace_repeat */
+};
+
+static PyMappingMethods Color_AsMapping = {
+ (lenfunc)Color_len,
+ (binaryfunc)Color_subscript,
+ (objobjargproc)Color_ass_subscript
+};
+
+/* color channel, vector.r/g/b */
+static PyObject *Color_getChannel( ColorObject * self, void *type )
+{
+ return Color_item(self, GET_INT_FROM_POINTER(type));
+}
+
+static int Color_setChannel(ColorObject * self, PyObject * value, void * type)
+{
+ return Color_ass_item(self, GET_INT_FROM_POINTER(type), value);
+}
+
+/* color channel (HSV), color.h/s/v */
+static PyObject *Color_getChannelHSV( ColorObject * self, void *type )
+{
+ float hsv[3];
+ int i= GET_INT_FROM_POINTER(type);
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ rgb_to_hsv(self->col[0], self->col[1], self->col[2], &(hsv[0]), &(hsv[1]), &(hsv[2]));
+
+ return PyFloat_FromDouble(hsv[i]);
+}
+
+static int Color_setChannelHSV(ColorObject * self, PyObject * value, void * type)
+{
+ float hsv[3];
+ int i= GET_INT_FROM_POINTER(type);
+ float f = PyFloat_AsDouble(value);
+
+ if(f == -1 && PyErr_Occurred()) {
+ PyErr_SetString(PyExc_TypeError, "color.h/s/v = value: argument not a number");
+ return -1;
+ }
+
+ if(!BaseMath_ReadCallback(self))
+ return -1;
+
+ rgb_to_hsv(self->col[0], self->col[1], self->col[2], &(hsv[0]), &(hsv[1]), &(hsv[2]));
+ CLAMP(f, 0.0f, 1.0f);
+ hsv[i] = f;
+ hsv_to_rgb(hsv[0], hsv[1], hsv[2], &(self->col[0]), &(self->col[1]), &(self->col[2]));
+
+ if(!BaseMath_WriteCallback(self))
+ return -1;
+
+ return 0;
+}
+
+/* color channel (HSV), color.h/s/v */
+static PyObject *Color_getHSV(ColorObject * self, void *type)
+{
+ float hsv[3];
+ PyObject *ret;
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ rgb_to_hsv(self->col[0], self->col[1], self->col[2], &(hsv[0]), &(hsv[1]), &(hsv[2]));
+
+ ret= PyTuple_New(3);
+ PyTuple_SET_ITEM(ret, 0, PyFloat_FromDouble(hsv[0]));
+ PyTuple_SET_ITEM(ret, 1, PyFloat_FromDouble(hsv[1]));
+ PyTuple_SET_ITEM(ret, 2, PyFloat_FromDouble(hsv[2]));
+ return ret;
+}
+
+static int Color_setHSV(ColorObject * self, PyObject * value, void * type)
+{
+ float hsv[3];
+
+ if(mathutils_array_parse(hsv, 3, 3, value, "mathutils.Color.hsv = value") == -1)
+ return -1;
+
+ CLAMP(hsv[0], 0.0f, 1.0f);
+ CLAMP(hsv[1], 0.0f, 1.0f);
+ CLAMP(hsv[2], 0.0f, 1.0f);
+
+ hsv_to_rgb(hsv[0], hsv[1], hsv[2], &(self->col[0]), &(self->col[1]), &(self->col[2]));
+
+ if(!BaseMath_WriteCallback(self))
+ return -1;
+
+ return 0;
+}
+
+/*****************************************************************************/
+/* Python attributes get/set structure: */
+/*****************************************************************************/
+static PyGetSetDef Color_getseters[] = {
+ {"r", (getter)Color_getChannel, (setter)Color_setChannel, "Red color channel.\n\n:type: float", (void *)0},
+ {"g", (getter)Color_getChannel, (setter)Color_setChannel, "Green color channel.\n\n:type: float", (void *)1},
+ {"b", (getter)Color_getChannel, (setter)Color_setChannel, "Blue color channel.\n\n:type: float", (void *)2},
+
+ {"h", (getter)Color_getChannelHSV, (setter)Color_setChannelHSV, "HSV Hue component in [0, 1].\n\n:type: float", (void *)0},
+ {"s", (getter)Color_getChannelHSV, (setter)Color_setChannelHSV, "HSV Saturation component in [0, 1].\n\n:type: float", (void *)1},
+ {"v", (getter)Color_getChannelHSV, (setter)Color_setChannelHSV, "HSV Value component in [0, 1].\n\n:type: float", (void *)2},
+
+ {"hsv", (getter)Color_getHSV, (setter)Color_setHSV, "HSV Values in [0, 1].\n\n:type: float triplet", (void *)0},
+
+ {"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, BaseMathObject_Wrapped_doc, NULL},
+ {"owner", (getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
+ {NULL,NULL,NULL,NULL,NULL} /* Sentinel */
+};
+
+
+//-----------------------METHOD DEFINITIONS ----------------------
+static struct PyMethodDef Color_methods[] = {
+ {"__copy__", (PyCFunction) Color_copy, METH_VARARGS, Color_copy_doc},
+ {"copy", (PyCFunction) Color_copy, METH_VARARGS, Color_copy_doc},
+ {NULL, NULL, 0, NULL}
+};
+
+//------------------PY_OBECT DEFINITION--------------------------
+static char color_doc[] =
+"This object gives access to Colors in Blender.";
+
+PyTypeObject color_Type = {
+ PyVarObject_HEAD_INIT(NULL, 0)
+ "color", //tp_name
+ sizeof(ColorObject), //tp_basicsize
+ 0, //tp_itemsize
+ (destructor)BaseMathObject_dealloc, //tp_dealloc
+ 0, //tp_print
+ 0, //tp_getattr
+ 0, //tp_setattr
+ 0, //tp_compare
+ (reprfunc) Color_repr, //tp_repr
+ 0, //tp_as_number
+ &Color_SeqMethods, //tp_as_sequence
+ &Color_AsMapping, //tp_as_mapping
+ 0, //tp_hash
+ 0, //tp_call
+ 0, //tp_str
+ 0, //tp_getattro
+ 0, //tp_setattro
+ 0, //tp_as_buffer
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, //tp_flags
+ color_doc, //tp_doc
+ 0, //tp_traverse
+ 0, //tp_clear
+ (richcmpfunc)Color_richcmpr, //tp_richcompare
+ 0, //tp_weaklistoffset
+ 0, //tp_iter
+ 0, //tp_iternext
+ Color_methods, //tp_methods
+ 0, //tp_members
+ Color_getseters, //tp_getset
+ 0, //tp_base
+ 0, //tp_dict
+ 0, //tp_descr_get
+ 0, //tp_descr_set
+ 0, //tp_dictoffset
+ 0, //tp_init
+ 0, //tp_alloc
+ Color_new, //tp_new
+ 0, //tp_free
+ 0, //tp_is_gc
+ 0, //tp_bases
+ 0, //tp_mro
+ 0, //tp_cache
+ 0, //tp_subclasses
+ 0, //tp_weaklist
+ 0 //tp_del
+};
+//------------------------newColorObject (internal)-------------
+//creates a new color object
+/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
+ (i.e. it was allocated elsewhere by MEM_mallocN())
+ pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
+ (i.e. it must be created here with PyMEM_malloc())*/
+PyObject *newColorObject(float *col, int type, PyTypeObject *base_type)
+{
+ ColorObject *self;
+
+ if(base_type) self = (ColorObject *)base_type->tp_alloc(base_type, 0);
+ else self = PyObject_NEW(ColorObject, &color_Type);
+
+ /* init callbacks as NULL */
+ self->cb_user= NULL;
+ self->cb_type= self->cb_subtype= 0;
+
+ if(type == Py_WRAP){
+ self->col = col;
+ self->wrapped = Py_WRAP;
+ }
+ else if (type == Py_NEW){
+ self->col = PyMem_Malloc(COLOR_SIZE * sizeof(float));
+ if(col)
+ copy_v3_v3(self->col, col);
+ else
+ zero_v3(self->col);
+
+ self->wrapped = Py_NEW;
+ }
+ else {
+ return NULL;
+ }
+
+ return (PyObject *)self;
+}
+
+PyObject *newColorObject_cb(PyObject *cb_user, int cb_type, int cb_subtype)
+{
+ ColorObject *self= (ColorObject *)newColorObject(NULL, Py_NEW, NULL);
+ if(self) {
+ Py_INCREF(cb_user);
+ self->cb_user= cb_user;
+ self->cb_type= (unsigned char)cb_type;
+ self->cb_subtype= (unsigned char)cb_subtype;
+ }
+
+ return (PyObject *)self;
+}
diff --git a/source/blender/python/generic/mathutils_color.h b/source/blender/python/generic/mathutils_color.h
new file mode 100644
index 00000000000..02b27d86817
--- /dev/null
+++ b/source/blender/python/generic/mathutils_color.h
@@ -0,0 +1,52 @@
+/*
+ * $Id$
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): Joseph Gilbert
+ *
+ * ***** END GPL LICENSE BLOCK *****
+ *
+ */
+
+#ifndef EXPP_color_h
+#define EXPP_color_h
+
+#include <Python.h>
+
+extern PyTypeObject color_Type;
+#define ColorObject_Check(_v) PyObject_TypeCheck((_v), &color_Type)
+
+typedef struct {
+ BASE_MATH_MEMBERS(col)
+} ColorObject;
+
+/*struct data contains a pointer to the actual data that the
+object uses. It can use either PyMem allocated data (which will
+be stored in py_data) or be a wrapper for data allocated through
+blender (stored in blend_data). This is an either/or struct not both*/
+
+//prototypes
+PyObject *newColorObject( float *col, int type, PyTypeObject *base_type);
+PyObject *newColorObject_cb(PyObject *cb_user, int cb_type, int cb_subtype);
+
+#endif /* EXPP_color_h */
diff --git a/source/blender/python/generic/euler.c b/source/blender/python/generic/mathutils_euler.c
index 892e42657b7..b36eb7803f1 100644
--- a/source/blender/python/generic/euler.c
+++ b/source/blender/python/generic/mathutils_euler.c
@@ -26,7 +26,7 @@
* ***** END GPL LICENSE BLOCK *****
*/
-#include "Mathutils.h"
+#include "mathutils.h"
#include "BLI_math.h"
#include "BKE_utildefines.h"
@@ -35,52 +35,32 @@
#include "BLO_sys_types.h"
#endif
-//----------------------------------Mathutils.Euler() -------------------
+#define EULER_SIZE 3
+
+//----------------------------------mathutils.Euler() -------------------
//makes a new euler for you to play with
static PyObject *Euler_new(PyTypeObject * type, PyObject * args, PyObject * kwargs)
{
- PyObject *listObject = NULL;
- int size, i;
- float eul[3];
- PyObject *e;
- short order= 0; // TODO, add order option
-
- size = PyTuple_GET_SIZE(args);
- if (size == 1) {
- listObject = PyTuple_GET_ITEM(args, 0);
- if (PySequence_Check(listObject)) {
- size = PySequence_Length(listObject);
- } else { // Single argument was not a sequence
- PyErr_SetString(PyExc_TypeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
- return NULL;
- }
- } else if (size == 0) {
- //returns a new empty 3d euler
- return newEulerObject(NULL, order, Py_NEW, NULL);
- } else {
- listObject = args;
- }
+ PyObject *seq= NULL;
+ char *order_str= NULL;
- if (size != 3) { // Invalid euler size
- PyErr_SetString(PyExc_AttributeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
+ float eul[EULER_SIZE]= {0.0f, 0.0f, 0.0f};
+ short order= EULER_ORDER_XYZ;
+
+ if(!PyArg_ParseTuple(args, "|Os:mathutils.Euler", &seq, &order_str))
return NULL;
- }
- for (i=0; i<size; i++) {
- e = PySequence_GetItem(listObject, i);
- if (e == NULL) { // Failed to read sequence
- Py_DECREF(listObject);
- PyErr_SetString(PyExc_RuntimeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
+ switch(PyTuple_GET_SIZE(args)) {
+ case 0:
+ break;
+ case 2:
+ if((order=euler_order_from_string(order_str, "mathutils.Euler()")) == -1)
return NULL;
- }
-
- eul[i]= (float)PyFloat_AsDouble(e);
- Py_DECREF(e);
-
- if(eul[i]==-1 && PyErr_Occurred()) { // parsed item is not a number
- PyErr_SetString(PyExc_TypeError, "Mathutils.Euler(): 3d numeric sequence expected\n");
+ /* intentionally pass through */
+ case 1:
+ if (mathutils_array_parse(eul, EULER_SIZE, EULER_SIZE, seq, "mathutils.Euler()") == -1)
return NULL;
- }
+ break;
}
return newEulerObject(eul, order, Py_NEW, NULL);
}
@@ -89,12 +69,12 @@ short euler_order_from_string(const char *str, const char *error_prefix)
{
if((str[0] && str[1] && str[2] && str[3]=='\0')) {
switch(*((int32_t *)str)) {
- case 'X'|'Y'<<8|'Z'<<16: return 0;
- case 'X'|'Z'<<8|'Y'<<16: return 1;
- case 'Y'|'X'<<8|'Z'<<16: return 2;
- case 'Y'|'Z'<<8|'X'<<16: return 3;
- case 'Z'|'X'<<8|'Y'<<16: return 4;
- case 'Z'|'Y'<<8|'X'<<16: return 5;
+ case 'X'|'Y'<<8|'Z'<<16: return EULER_ORDER_XYZ;
+ case 'X'|'Z'<<8|'Y'<<16: return EULER_ORDER_XZY;
+ case 'Y'|'X'<<8|'Z'<<16: return EULER_ORDER_YXZ;
+ case 'Y'|'Z'<<8|'X'<<16: return EULER_ORDER_YZX;
+ case 'Z'|'X'<<8|'Y'<<16: return EULER_ORDER_ZXY;
+ case 'Z'|'Y'<<8|'X'<<16: return EULER_ORDER_ZYX;
}
}
@@ -102,8 +82,29 @@ short euler_order_from_string(const char *str, const char *error_prefix)
return -1;
}
+/* note: BaseMath_ReadCallback must be called beforehand */
+static PyObject *Euler_ToTupleExt(EulerObject *self, int ndigits)
+{
+ PyObject *ret;
+ int i;
+
+ ret= PyTuple_New(EULER_SIZE);
+
+ if(ndigits >= 0) {
+ for(i= 0; i < EULER_SIZE; i++) {
+ PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round((double)self->eul[i], ndigits)));
+ }
+ }
+ else {
+ for(i= 0; i < EULER_SIZE; i++) {
+ PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->eul[i]));
+ }
+ }
+
+ return ret;
+}
+
//-----------------------------METHODS----------------------------
-//----------------------------Euler.toQuat()----------------------
//return a quaternion representation of the euler
static char Euler_ToQuat_doc[] =
@@ -121,12 +122,12 @@ static PyObject *Euler_ToQuat(EulerObject * self)
if(!BaseMath_ReadCallback(self))
return NULL;
- if(self->order==0) eul_to_quat(quat, self->eul);
- else eulO_to_quat(quat, self->eul, self->order);
+ if(self->order==EULER_ORDER_XYZ) eul_to_quat(quat, self->eul);
+ else eulO_to_quat(quat, self->eul, self->order);
return newQuaternionObject(quat, Py_NEW, NULL);
}
-//----------------------------Euler.toMatrix()---------------------
+
//return a matrix representation of the euler
static char Euler_ToMatrix_doc[] =
".. method:: to_matrix()\n"
@@ -143,12 +144,12 @@ static PyObject *Euler_ToMatrix(EulerObject * self)
if(!BaseMath_ReadCallback(self))
return NULL;
- if(self->order==0) eul_to_mat3((float (*)[3])mat, self->eul);
- else eulO_to_mat3((float (*)[3])mat, self->eul, self->order);
+ if(self->order==EULER_ORDER_XYZ) eul_to_mat3((float (*)[3])mat, self->eul);
+ else eulO_to_mat3((float (*)[3])mat, self->eul, self->order);
return newMatrixObject(mat, 3, 3 , Py_NEW, NULL);
}
-//----------------------------Euler.unique()-----------------------
+
//sets the x,y,z values to a unique euler rotation
// TODO, check if this works with rotation order!!!
static char Euler_Unique_doc[] =
@@ -207,7 +208,7 @@ static PyObject *Euler_Unique(EulerObject * self)
Py_INCREF(self);
return (PyObject *)self;
}
-//----------------------------Euler.zero()-------------------------
+
//sets the euler to 0,0,0
static char Euler_Zero_doc[] =
".. method:: zero()\n"
@@ -227,28 +228,38 @@ static PyObject *Euler_Zero(EulerObject * self)
Py_INCREF(self);
return (PyObject *)self;
}
-//----------------------------Euler.rotate()-----------------------
-//rotates a euler a certain amount and returns the result
-//should return a unique euler rotation (i.e. no 720 degree pitches :)
+
+static char Euler_Rotate_doc[] =
+".. method:: rotate(angle, axis)\n"
+"\n"
+" Rotates the euler a certain amount and returning a unique euler rotation (no 720 degree pitches).\n"
+"\n"
+" :arg angle: angle in radians.\n"
+" :type angle: float\n"
+" :arg axis: single character in ['X, 'Y', 'Z'].\n"
+" :type axis: string\n"
+" :return: an instance of itself\n"
+" :rtype: :class:`Euler`";
+
static PyObject *Euler_Rotate(EulerObject * self, PyObject *args)
{
float angle = 0.0f;
char *axis;
- if(!PyArg_ParseTuple(args, "fs", &angle, &axis)){
- PyErr_SetString(PyExc_TypeError, "euler.rotate():expected angle (float) and axis (x,y,z)");
+ if(!PyArg_ParseTuple(args, "fs:rotate", &angle, &axis)){
+ PyErr_SetString(PyExc_TypeError, "euler.rotate(): expected angle (float) and axis (x,y,z)");
return NULL;
}
- if(ELEM3(*axis, 'x', 'y', 'z') && axis[1]=='\0'){
- PyErr_SetString(PyExc_TypeError, "euler.rotate(): expected axis to be 'x', 'y' or 'z'");
+ if(ELEM3(*axis, 'X', 'Y', 'Z') && axis[1]=='\0'){
+ PyErr_SetString(PyExc_TypeError, "euler.rotate(): expected axis to be 'X', 'Y' or 'Z'");
return NULL;
}
if(!BaseMath_ReadCallback(self))
return NULL;
- if(self->order == 0) rotate_eul(self->eul, *axis, angle);
- else rotate_eulO(self->eul, self->order, *axis, angle);
+ if(self->order == EULER_ORDER_XYZ) rotate_eul(self->eul, *axis, angle);
+ else rotate_eulO(self->eul, self->order, *axis, angle);
BaseMath_WriteCallback(self);
Py_INCREF(self);
@@ -312,16 +323,22 @@ static PyObject *Euler_copy(EulerObject * self, PyObject *args)
//----------------------------print object (internal)--------------
//print the object to screen
+
static PyObject *Euler_repr(EulerObject * self)
{
- char str[64];
-
+ PyObject *ret, *tuple;
+
if(!BaseMath_ReadCallback(self))
return NULL;
- sprintf(str, "[%.6f, %.6f, %.6f](euler)", self->eul[0], self->eul[1], self->eul[2]);
- return PyUnicode_FromString(str);
+ tuple= Euler_ToTupleExt(self, -1);
+
+ ret= PyUnicode_FromFormat("Euler(%R)", tuple);
+
+ Py_DECREF(tuple);
+ return ret;
}
+
//------------------------tp_richcmpr
//returns -1 execption, 0 false, 1 true
static PyObject* Euler_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
@@ -352,10 +369,10 @@ static PyObject* Euler_richcmpr(PyObject *objectA, PyObject *objectB, int compar
switch (comparison_type){
case Py_EQ:
- result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1);
+ result = EXPP_VectorsAreEqual(eulA->eul, eulB->eul, EULER_SIZE, 1);
break;
case Py_NE:
- result = !EXPP_VectorsAreEqual(eulA->eul, eulB->eul, 3, 1);
+ result = !EXPP_VectorsAreEqual(eulA->eul, eulB->eul, EULER_SIZE, 1);
break;
default:
printf("The result of the comparison could not be evaluated");
@@ -373,15 +390,15 @@ static PyObject* Euler_richcmpr(PyObject *objectA, PyObject *objectB, int compar
//sequence length
static int Euler_len(EulerObject * self)
{
- return 3;
+ return EULER_SIZE;
}
//----------------------------object[]---------------------------
//sequence accessor (get)
static PyObject *Euler_item(EulerObject * self, int i)
{
- if(i<0) i= 3-i;
+ if(i<0) i= EULER_SIZE-i;
- if(i < 0 || i >= 3) {
+ if(i < 0 || i >= EULER_SIZE) {
PyErr_SetString(PyExc_IndexError, "euler[attribute]: array index out of range");
return NULL;
}
@@ -403,9 +420,9 @@ static int Euler_ass_item(EulerObject * self, int i, PyObject * value)
return -1;
}
- if(i<0) i= 3-i;
+ if(i<0) i= EULER_SIZE-i;
- if(i < 0 || i >= 3){
+ if(i < 0 || i >= EULER_SIZE){
PyErr_SetString(PyExc_IndexError, "euler[attribute] = x: array assignment index out of range\n");
return -1;
}
@@ -427,9 +444,9 @@ static PyObject *Euler_slice(EulerObject * self, int begin, int end)
if(!BaseMath_ReadCallback(self))
return NULL;
- CLAMP(begin, 0, 3);
- if (end<0) end= 4+end;
- CLAMP(end, 0, 3);
+ CLAMP(begin, 0, EULER_SIZE);
+ if (end<0) end= (EULER_SIZE + 1) + end;
+ CLAMP(end, 0, EULER_SIZE);
begin = MIN2(begin,end);
list = PyList_New(end - begin);
@@ -442,64 +459,123 @@ static PyObject *Euler_slice(EulerObject * self, int begin, int end)
}
//----------------------------object[z:y]------------------------
//sequence slice (set)
-static int Euler_ass_slice(EulerObject * self, int begin, int end,
- PyObject * seq)
+static int Euler_ass_slice(EulerObject * self, int begin, int end, PyObject * seq)
{
- int i, y, size = 0;
- float eul[3];
- PyObject *e;
+ int i, size;
+ float eul[EULER_SIZE];
if(!BaseMath_ReadCallback(self))
return -1;
- CLAMP(begin, 0, 3);
- if (end<0) end= 4+end;
- CLAMP(end, 0, 3);
+ CLAMP(begin, 0, EULER_SIZE);
+ if (end<0) end= (EULER_SIZE + 1) + end;
+ CLAMP(end, 0, EULER_SIZE);
begin = MIN2(begin,end);
- size = PySequence_Length(seq);
+ if((size=mathutils_array_parse(eul, 0, EULER_SIZE, seq, "mathutils.Euler[begin:end] = []")) == -1)
+ return -1;
+
if(size != (end - begin)){
PyErr_SetString(PyExc_TypeError, "euler[begin:end] = []: size mismatch in slice assignment");
return -1;
}
- for (i = 0; i < size; i++) {
- e = PySequence_GetItem(seq, i);
- if (e == NULL) { // Failed to read sequence
- PyErr_SetString(PyExc_RuntimeError, "euler[begin:end] = []: unable to read sequence");
- return -1;
+ for(i= 0; i < EULER_SIZE; i++)
+ self->eul[begin + i] = eul[i];
+
+ BaseMath_WriteCallback(self);
+ return 0;
+}
+
+static PyObject *Euler_subscript(EulerObject *self, PyObject *item)
+{
+ if (PyIndex_Check(item)) {
+ Py_ssize_t i;
+ i = PyNumber_AsSsize_t(item, PyExc_IndexError);
+ if (i == -1 && PyErr_Occurred())
+ return NULL;
+ if (i < 0)
+ i += EULER_SIZE;
+ return Euler_item(self, i);
+ } else if (PySlice_Check(item)) {
+ Py_ssize_t start, stop, step, slicelength;
+
+ if (PySlice_GetIndicesEx((PySliceObject*)item, EULER_SIZE, &start, &stop, &step, &slicelength) < 0)
+ return NULL;
+
+ if (slicelength <= 0) {
+ return PyList_New(0);
+ }
+ else if (step == 1) {
+ return Euler_slice(self, start, stop);
}
+ else {
+ PyErr_SetString(PyExc_TypeError, "slice steps not supported with eulers");
+ return NULL;
+ }
+ }
+ else {
+ PyErr_Format(PyExc_TypeError,
+ "euler indices must be integers, not %.200s",
+ item->ob_type->tp_name);
+ return NULL;
+ }
+}
+
- eul[i] = (float)PyFloat_AsDouble(e);
- Py_DECREF(e);
+static int Euler_ass_subscript(EulerObject *self, PyObject *item, PyObject *value)
+{
+ if (PyIndex_Check(item)) {
+ Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
+ if (i == -1 && PyErr_Occurred())
+ return -1;
+ if (i < 0)
+ i += EULER_SIZE;
+ return Euler_ass_item(self, i, value);
+ }
+ else if (PySlice_Check(item)) {
+ Py_ssize_t start, stop, step, slicelength;
- if(eul[i]==-1 && PyErr_Occurred()) { // parsed item not a number
- PyErr_SetString(PyExc_TypeError, "euler[begin:end] = []: sequence argument not a number");
+ if (PySlice_GetIndicesEx((PySliceObject*)item, EULER_SIZE, &start, &stop, &step, &slicelength) < 0)
+ return -1;
+
+ if (step == 1)
+ return Euler_ass_slice(self, start, stop, value);
+ else {
+ PyErr_SetString(PyExc_TypeError, "slice steps not supported with euler");
return -1;
}
}
- //parsed well - now set in vector
- for(y = 0; y < 3; y++){
- self->eul[begin + y] = eul[y];
+ else {
+ PyErr_Format(PyExc_TypeError,
+ "euler indices must be integers, not %.200s",
+ item->ob_type->tp_name);
+ return -1;
}
-
- BaseMath_WriteCallback(self);
- return 0;
}
+
//-----------------PROTCOL DECLARATIONS--------------------------
static PySequenceMethods Euler_SeqMethods = {
- (lenfunc) Euler_len, /* sq_length */
- (binaryfunc) 0, /* sq_concat */
- (ssizeargfunc) 0, /* sq_repeat */
- (ssizeargfunc) Euler_item, /* sq_item */
- (ssizessizeargfunc) Euler_slice, /* sq_slice */
- (ssizeobjargproc) Euler_ass_item, /* sq_ass_item */
- (ssizessizeobjargproc) Euler_ass_slice, /* sq_ass_slice */
+ (lenfunc) Euler_len, /* sq_length */
+ (binaryfunc) NULL, /* sq_concat */
+ (ssizeargfunc) NULL, /* sq_repeat */
+ (ssizeargfunc) Euler_item, /* sq_item */
+ (ssizessizeargfunc) NULL, /* sq_slice, deprecated */
+ (ssizeobjargproc) Euler_ass_item, /* sq_ass_item */
+ (ssizessizeobjargproc) NULL, /* sq_ass_slice, deprecated */
+ (objobjproc) NULL, /* sq_contains */
+ (binaryfunc) NULL, /* sq_inplace_concat */
+ (ssizeargfunc) NULL, /* sq_inplace_repeat */
};
+static PyMappingMethods Euler_AsMapping = {
+ (lenfunc)Euler_len,
+ (binaryfunc)Euler_subscript,
+ (objobjargproc)Euler_ass_subscript
+};
/*
- * vector axis, vector.x/y/z/w
+ * euler axis, euler.x/y/z
*/
static PyObject *Euler_getAxis( EulerObject * self, void *type )
{
@@ -514,8 +590,12 @@ static int Euler_setAxis( EulerObject * self, PyObject * value, void * type )
/* rotation order */
static PyObject *Euler_getOrder(EulerObject *self, void *type)
{
- static char order[][4] = {"XYZ", "XZY", "YXZ", "YZX", "ZXY", "ZYX"};
- return PyUnicode_FromString(order[self->order]);
+ const char order[][4] = {"XYZ", "XZY", "YXZ", "YZX", "ZXY", "ZYX"};
+
+ if(!BaseMath_ReadCallback(self)) /* can read order too */
+ return NULL;
+
+ return PyUnicode_FromString(order[self->order-EULER_ORDER_XYZ]);
}
static int Euler_setOrder( EulerObject * self, PyObject * value, void * type )
@@ -523,15 +603,11 @@ static int Euler_setOrder( EulerObject * self, PyObject * value, void * type )
char *order_str= _PyUnicode_AsString(value);
short order= euler_order_from_string(order_str, "euler.order");
- if(order < 0)
+ if(order == -1)
return -1;
- if(self->cb_user) {
- PyErr_SetString(PyExc_TypeError, "euler.order: assignment is not allowed on eulers with an owner");
- return -1;
- }
-
self->order= order;
+ BaseMath_WriteCallback(self); /* order can be written back */
return 0;
}
@@ -539,13 +615,13 @@ static int Euler_setOrder( EulerObject * self, PyObject * value, void * type )
/* Python attributes get/set structure: */
/*****************************************************************************/
static PyGetSetDef Euler_getseters[] = {
- {"x", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler X axis in radians. **type** float", (void *)0},
- {"y", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler Y axis in radians. **type** float", (void *)1},
- {"z", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler Z axis in radians. **type** float", (void *)2},
- {"order", (getter)Euler_getOrder, (setter)Euler_setOrder, "Euler rotation order. **type** string in ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX']", (void *)NULL},
+ {"x", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler X axis in radians.\n\n:type: float", (void *)0},
+ {"y", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler Y axis in radians.\n\n:type: float", (void *)1},
+ {"z", (getter)Euler_getAxis, (setter)Euler_setAxis, "Euler Z axis in radians.\n\n:type: float", (void *)2},
+ {"order", (getter)Euler_getOrder, (setter)Euler_setOrder, "Euler rotation order.\n\n:type: string in ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX']", (void *)NULL},
{"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, BaseMathObject_Wrapped_doc, NULL},
- {"_owner", (getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
+ {"owner", (getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
};
@@ -556,7 +632,7 @@ static struct PyMethodDef Euler_methods[] = {
{"unique", (PyCFunction) Euler_Unique, METH_NOARGS, Euler_Unique_doc},
{"to_matrix", (PyCFunction) Euler_ToMatrix, METH_NOARGS, Euler_ToMatrix_doc},
{"to_quat", (PyCFunction) Euler_ToQuat, METH_NOARGS, Euler_ToQuat_doc},
- {"rotate", (PyCFunction) Euler_Rotate, METH_VARARGS, NULL},
+ {"rotate", (PyCFunction) Euler_Rotate, METH_VARARGS, Euler_Rotate_doc},
{"make_compatible", (PyCFunction) Euler_MakeCompatible, METH_O, Euler_MakeCompatible_doc},
{"__copy__", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc},
{"copy", (PyCFunction) Euler_copy, METH_VARARGS, Euler_copy_doc},
@@ -580,7 +656,7 @@ PyTypeObject euler_Type = {
(reprfunc) Euler_repr, //tp_repr
0, //tp_as_number
&Euler_SeqMethods, //tp_as_sequence
- 0, //tp_as_mapping
+ &Euler_AsMapping, //tp_as_mapping
0, //tp_hash
0, //tp_call
0, //tp_str
@@ -624,7 +700,6 @@ PyTypeObject euler_Type = {
PyObject *newEulerObject(float *eul, short order, int type, PyTypeObject *base_type)
{
EulerObject *self;
- int x;
if(base_type) self = (EulerObject *)base_type->tp_alloc(base_type, 0);
else self = PyObject_NEW(EulerObject, &euler_Type);
@@ -633,20 +708,20 @@ PyObject *newEulerObject(float *eul, short order, int type, PyTypeObject *base_t
self->cb_user= NULL;
self->cb_type= self->cb_subtype= 0;
- if(type == Py_WRAP){
+ if(type == Py_WRAP) {
self->eul = eul;
self->wrapped = Py_WRAP;
- }else if (type == Py_NEW){
- self->eul = PyMem_Malloc(3 * sizeof(float));
- if(!eul) { //new empty
- for(x = 0; x < 3; x++) {
- self->eul[x] = 0.0f;
- }
- }else{
- VECCOPY(self->eul, eul);
- }
+ }
+ else if (type == Py_NEW){
+ self->eul = PyMem_Malloc(EULER_SIZE * sizeof(float));
+ if(eul)
+ copy_v3_v3(self->eul, eul);
+ else
+ zero_v3(self->eul);
+
self->wrapped = Py_NEW;
- }else{ //bad type
+ }
+ else{
return NULL;
}
diff --git a/source/blender/python/generic/euler.h b/source/blender/python/generic/mathutils_euler.h
index 994a5f1780e..b8523c3b661 100644
--- a/source/blender/python/generic/euler.h
+++ b/source/blender/python/generic/mathutils_euler.h
@@ -37,14 +37,7 @@ extern PyTypeObject euler_Type;
#define EulerObject_Check(_v) PyObject_TypeCheck((_v), &euler_Type)
typedef struct {
- PyObject_VAR_HEAD
- float *eul; /*1D array of data */
- PyObject *cb_user; /* if this vector references another object, otherwise NULL, *Note* this owns its reference */
- unsigned char cb_type; /* which user funcs do we adhere to, RNA, GameObject, etc */
- unsigned char cb_subtype; /* subtype: location, rotation... to avoid defining many new functions for every attribute of the same type */
- unsigned char wrapped; /* wrapped data type? */
- /* end BaseMathObject */
-
+ BASE_MATH_MEMBERS(eul)
unsigned char order; /* rotation order */
} EulerObject;
diff --git a/source/blender/python/generic/matrix.c b/source/blender/python/generic/mathutils_matrix.c
index 216139dc44f..3b8c7d3122a 100644
--- a/source/blender/python/generic/matrix.c
+++ b/source/blender/python/generic/mathutils_matrix.c
@@ -25,7 +25,7 @@
* ***** END GPL LICENSE BLOCK *****
*/
-#include "Mathutils.h"
+#include "mathutils.h"
#include "BKE_utildefines.h"
#include "BLI_math.h"
@@ -37,60 +37,60 @@ static PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject*
/* matrix vector callbacks */
int mathutils_matrix_vector_cb_index= -1;
-static int mathutils_matrix_vector_check(PyObject *self_p)
+static int mathutils_matrix_vector_check(BaseMathObject *bmo)
{
- MatrixObject *self= (MatrixObject*)self_p;
+ MatrixObject *self= (MatrixObject *)bmo->cb_user;
return BaseMath_ReadCallback(self);
}
-static int mathutils_matrix_vector_get(PyObject *self_p, int subtype, float *vec_from)
+static int mathutils_matrix_vector_get(BaseMathObject *bmo, int subtype)
{
- MatrixObject *self= (MatrixObject*)self_p;
+ MatrixObject *self= (MatrixObject *)bmo->cb_user;
int i;
if(!BaseMath_ReadCallback(self))
return 0;
- for(i=0; i<self->colSize; i++)
- vec_from[i]= self->matrix[subtype][i];
+ for(i=0; i < self->colSize; i++)
+ bmo->data[i]= self->matrix[subtype][i];
return 1;
}
-static int mathutils_matrix_vector_set(PyObject *self_p, int subtype, float *vec_to)
+static int mathutils_matrix_vector_set(BaseMathObject *bmo, int subtype)
{
- MatrixObject *self= (MatrixObject*)self_p;
+ MatrixObject *self= (MatrixObject *)bmo->cb_user;
int i;
if(!BaseMath_ReadCallback(self))
return 0;
- for(i=0; i<self->colSize; i++)
- self->matrix[subtype][i]= vec_to[i];
+ for(i=0; i < self->colSize; i++)
+ self->matrix[subtype][i]= bmo->data[i];
BaseMath_WriteCallback(self);
return 1;
}
-static int mathutils_matrix_vector_get_index(PyObject *self_p, int subtype, float *vec_from, int index)
+static int mathutils_matrix_vector_get_index(BaseMathObject *bmo, int subtype, int index)
{
- MatrixObject *self= (MatrixObject*)self_p;
+ MatrixObject *self= (MatrixObject *)bmo->cb_user;
if(!BaseMath_ReadCallback(self))
return 0;
- vec_from[index]= self->matrix[subtype][index];
+ bmo->data[index]= self->matrix[subtype][index];
return 1;
}
-static int mathutils_matrix_vector_set_index(PyObject *self_p, int subtype, float *vec_to, int index)
+static int mathutils_matrix_vector_set_index(BaseMathObject *bmo, int subtype, int index)
{
- MatrixObject *self= (MatrixObject*)self_p;
+ MatrixObject *self= (MatrixObject *)bmo->cb_user;
if(!BaseMath_ReadCallback(self))
return 0;
- self->matrix[subtype][index]= vec_to[index];
+ self->matrix[subtype][index]= bmo->data[index];
BaseMath_WriteCallback(self);
return 1;
@@ -105,7 +105,7 @@ Mathutils_Callback mathutils_matrix_vector_cb = {
};
/* matrix vector callbacks, this is so you can do matrix[i][j] = val */
-//----------------------------------Mathutils.Matrix() -----------------
+//----------------------------------mathutils.Matrix() -----------------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
//create a new matrix type
static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
@@ -118,8 +118,8 @@ static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
float scalar;
argSize = PyTuple_GET_SIZE(args);
- if(argSize > 4){ //bad arg nums
- PyErr_SetString(PyExc_AttributeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
+ if(argSize > MATRIX_MAX_DIM) { //bad arg nums
+ PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
return NULL;
} else if (argSize == 0) { //return empty 4D matrix
return (PyObject *) newMatrixObject(NULL, 4, 4, Py_NEW, NULL);
@@ -141,13 +141,13 @@ static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
if (PySequence_Check(argObject)) { //seq?
if(seqSize){ //0 at first
if(PySequence_Length(argObject) != seqSize){ //seq size not same
- PyErr_SetString(PyExc_AttributeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
+ PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
return NULL;
}
}
seqSize = PySequence_Length(argObject);
}else{ //arg not a sequence
- PyErr_SetString(PyExc_TypeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
+ PyErr_SetString(PyExc_TypeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
return NULL;
}
}
@@ -155,14 +155,14 @@ static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
for (i = 0; i < argSize; i++){
m = PyTuple_GET_ITEM(args, i);
if (m == NULL) { // Failed to read sequence
- PyErr_SetString(PyExc_RuntimeError, "Mathutils.Matrix(): failed to parse arguments...\n");
+ PyErr_SetString(PyExc_RuntimeError, "mathutils.Matrix(): failed to parse arguments...\n");
return NULL;
}
for (j = 0; j < seqSize; j++) {
s = PySequence_GetItem(m, j);
if (s == NULL) { // Failed to read sequence
- PyErr_SetString(PyExc_RuntimeError, "Mathutils.Matrix(): failed to parse arguments...\n");
+ PyErr_SetString(PyExc_RuntimeError, "mathutils.Matrix(): failed to parse arguments...\n");
return NULL;
}
@@ -170,7 +170,7 @@ static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
Py_DECREF(s);
if(scalar==-1 && PyErr_Occurred()) { // parsed item is not a number
- PyErr_SetString(PyExc_AttributeError, "Mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
+ PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
return NULL;
}
@@ -181,6 +181,438 @@ static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
return newMatrixObject(matrix, argSize, seqSize, Py_NEW, NULL);
}
+/*-----------------------CLASS-METHODS----------------------------*/
+
+//----------------------------------mathutils.RotationMatrix() ----------
+//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
+static char C_Matrix_Rotation_doc[] =
+".. classmethod:: Rotation(angle, size, axis)\n"
+"\n"
+" Create a matrix representing a rotation.\n"
+"\n"
+" :arg angle: The angle of rotation desired, in radians.\n"
+" :type angle: float\n"
+" :arg size: The size of the rotation matrix to construct [2, 4].\n"
+" :type size: int\n"
+" :arg axis: a string in ['X', 'Y', 'Z'] or a 3D Vector Object (optional when size is 2).\n"
+" :type axis: string or :class:`Vector`\n"
+" :return: A new rotation matrix.\n"
+" :rtype: :class:`Matrix`\n";
+
+static PyObject *C_Matrix_Rotation(PyObject *cls, PyObject *args)
+{
+ VectorObject *vec= NULL;
+ char *axis= NULL;
+ int matSize;
+ float angle = 0.0f;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+
+ if(!PyArg_ParseTuple(args, "fi|O", &angle, &matSize, &vec)) {
+ PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(angle, size, axis): expected float int and a string or vector\n");
+ return NULL;
+ }
+
+ if(vec && !VectorObject_Check(vec)) {
+ axis= _PyUnicode_AsString((PyObject *)vec);
+ if(axis==NULL || axis[0]=='\0' || axis[1]!='\0' || axis[0] < 'X' || axis[0] > 'Z') {
+ PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(): 3rd argument axis value must be a 3D vector or a string in 'X', 'Y', 'Z'\n");
+ return NULL;
+ }
+ else {
+ /* use the string */
+ vec= NULL;
+ }
+ }
+
+ while (angle<-(Py_PI*2))
+ angle+=(Py_PI*2);
+ while (angle>(Py_PI*2))
+ angle-=(Py_PI*2);
+
+ if(matSize != 2 && matSize != 3 && matSize != 4) {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
+ return NULL;
+ }
+ if(matSize == 2 && (vec != NULL)) {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
+ return NULL;
+ }
+ if((matSize == 3 || matSize == 4) && (axis == NULL) && (vec == NULL)) {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
+ return NULL;
+ }
+ if(vec) {
+ if(vec->size != 3) {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): the vector axis must be a 3D vector\n");
+ return NULL;
+ }
+
+ if(!BaseMath_ReadCallback(vec))
+ return NULL;
+
+ }
+
+ /* check for valid vector/axis above */
+ if(vec) {
+ axis_angle_to_mat3( (float (*)[3])mat,vec->vec, angle);
+ }
+ else if(matSize == 2) {
+ //2D rotation matrix
+ mat[0] = (float) cos (angle);
+ mat[1] = (float) sin (angle);
+ mat[2] = -((float) sin(angle));
+ mat[3] = (float) cos(angle);
+ } else if(strcmp(axis, "X") == 0) {
+ //rotation around X
+ mat[0] = 1.0f;
+ mat[4] = (float) cos(angle);
+ mat[5] = (float) sin(angle);
+ mat[7] = -((float) sin(angle));
+ mat[8] = (float) cos(angle);
+ } else if(strcmp(axis, "Y") == 0) {
+ //rotation around Y
+ mat[0] = (float) cos(angle);
+ mat[2] = -((float) sin(angle));
+ mat[4] = 1.0f;
+ mat[6] = (float) sin(angle);
+ mat[8] = (float) cos(angle);
+ } else if(strcmp(axis, "Z") == 0) {
+ //rotation around Z
+ mat[0] = (float) cos(angle);
+ mat[1] = (float) sin(angle);
+ mat[3] = -((float) sin(angle));
+ mat[4] = (float) cos(angle);
+ mat[8] = 1.0f;
+ }
+ else {
+ /* should never get here */
+ PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): unknown error\n");
+ return NULL;
+ }
+
+ if(matSize == 4) {
+ //resize matrix
+ mat[10] = mat[8];
+ mat[9] = mat[7];
+ mat[8] = mat[6];
+ mat[7] = 0.0f;
+ mat[6] = mat[5];
+ mat[5] = mat[4];
+ mat[4] = mat[3];
+ mat[3] = 0.0f;
+ }
+ //pass to matrix creation
+ return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
+}
+
+
+static char C_Matrix_Translation_doc[] =
+".. classmethod:: Translation(vector)\n"
+"\n"
+" Create a matrix representing a translation.\n"
+"\n"
+" :arg vector: The translation vector.\n"
+" :type vector: :class:`Vector`\n"
+" :return: An identity matrix with a translation.\n"
+" :rtype: :class:`Matrix`\n";
+
+static PyObject *C_Matrix_Translation(PyObject *cls, VectorObject * vec)
+{
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+
+ if(!VectorObject_Check(vec)) {
+ PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): expected vector\n");
+ return NULL;
+ }
+ if(vec->size != 3 && vec->size != 4) {
+ PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
+ return NULL;
+ }
+
+ if(!BaseMath_ReadCallback(vec))
+ return NULL;
+
+ //create a identity matrix and add translation
+ unit_m4((float(*)[4]) mat);
+ mat[12] = vec->vec[0];
+ mat[13] = vec->vec[1];
+ mat[14] = vec->vec[2];
+
+ return newMatrixObject(mat, 4, 4, Py_NEW, (PyTypeObject *)cls);
+}
+//----------------------------------mathutils.ScaleMatrix() -------------
+//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
+static char C_Matrix_Scale_doc[] =
+".. classmethod:: Scale(factor, size, axis)\n"
+"\n"
+" Create a matrix representing a scaling.\n"
+"\n"
+" :arg factor: The factor of scaling to apply.\n"
+" :type factor: float\n"
+" :arg size: The size of the scale matrix to construct [2, 4].\n"
+" :type size: int\n"
+" :arg axis: Direction to influence scale. (optional).\n"
+" :type axis: :class:`Vector`\n"
+" :return: A new scale matrix.\n"
+" :rtype: :class:`Matrix`\n";
+
+static PyObject *C_Matrix_Scale(PyObject *cls, PyObject *args)
+{
+ VectorObject *vec = NULL;
+ float norm = 0.0f, factor;
+ int matSize, x;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+
+ if(!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
+ PyErr_SetString(PyExc_TypeError, "mathutils.ScaleMatrix(): expected float int and optional vector\n");
+ return NULL;
+ }
+ if(matSize != 2 && matSize != 3 && matSize != 4) {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
+ return NULL;
+ }
+ if(vec) {
+ if(vec->size > 2 && matSize == 2) {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
+ return NULL;
+ }
+
+ if(!BaseMath_ReadCallback(vec))
+ return NULL;
+
+ }
+ if(vec == NULL) { //scaling along axis
+ if(matSize == 2) {
+ mat[0] = factor;
+ mat[3] = factor;
+ } else {
+ mat[0] = factor;
+ mat[4] = factor;
+ mat[8] = factor;
+ }
+ } else { //scaling in arbitrary direction
+ //normalize arbitrary axis
+ for(x = 0; x < vec->size; x++) {
+ norm += vec->vec[x] * vec->vec[x];
+ }
+ norm = (float) sqrt(norm);
+ for(x = 0; x < vec->size; x++) {
+ vec->vec[x] /= norm;
+ }
+ if(matSize == 2) {
+ mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
+ mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
+ mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
+ mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
+ } else {
+ mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
+ mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
+ mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
+ mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
+ mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
+ mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
+ mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
+ mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
+ mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
+ }
+ }
+ if(matSize == 4) {
+ //resize matrix
+ mat[10] = mat[8];
+ mat[9] = mat[7];
+ mat[8] = mat[6];
+ mat[7] = 0.0f;
+ mat[6] = mat[5];
+ mat[5] = mat[4];
+ mat[4] = mat[3];
+ mat[3] = 0.0f;
+ }
+ //pass to matrix creation
+ return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
+}
+//----------------------------------mathutils.OrthoProjectionMatrix() ---
+//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
+static char C_Matrix_OrthoProjection_doc[] =
+".. classmethod:: OrthoProjection(plane, size, axis)\n"
+"\n"
+" Create a matrix to represent an orthographic projection.\n"
+"\n"
+" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ', 'R'], where a single axis is for a 2D matrix and 'R' requires axis is given.\n"
+" :type plane: string\n"
+" :arg size: The size of the projection matrix to construct [2, 4].\n"
+" :type size: int\n"
+" :arg axis: Arbitrary perpendicular plane vector (optional).\n"
+" :type axis: :class:`Vector`\n"
+" :return: A new projection matrix.\n"
+" :rtype: :class:`Matrix`\n";
+static PyObject *C_Matrix_OrthoProjection(PyObject *cls, PyObject *args)
+{
+ VectorObject *vec = NULL;
+ char *plane;
+ int matSize, x;
+ float norm = 0.0f;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+
+ if(!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
+ PyErr_SetString(PyExc_TypeError, "mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
+ return NULL;
+ }
+ if(matSize != 2 && matSize != 3 && matSize != 4) {
+ PyErr_SetString(PyExc_AttributeError,"mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
+ return NULL;
+ }
+ if(vec) {
+ if(vec->size > 2 && matSize == 2) {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
+ return NULL;
+ }
+
+ if(!BaseMath_ReadCallback(vec))
+ return NULL;
+
+ }
+ if(vec == NULL) { //ortho projection onto cardinal plane
+ if((strcmp(plane, "X") == 0) && matSize == 2) {
+ mat[0] = 1.0f;
+ } else if((strcmp(plane, "Y") == 0) && matSize == 2) {
+ mat[3] = 1.0f;
+ } else if((strcmp(plane, "XY") == 0) && matSize > 2) {
+ mat[0] = 1.0f;
+ mat[4] = 1.0f;
+ } else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
+ mat[0] = 1.0f;
+ mat[8] = 1.0f;
+ } else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
+ mat[4] = 1.0f;
+ mat[8] = 1.0f;
+ } else {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: X, Y, XY, XZ, YZ\n");
+ return NULL;
+ }
+ } else { //arbitrary plane
+ //normalize arbitrary axis
+ for(x = 0; x < vec->size; x++) {
+ norm += vec->vec[x] * vec->vec[x];
+ }
+ norm = (float) sqrt(norm);
+ for(x = 0; x < vec->size; x++) {
+ vec->vec[x] /= norm;
+ }
+ if((strcmp(plane, "R") == 0) && matSize == 2) {
+ mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
+ mat[1] = -(vec->vec[0] * vec->vec[1]);
+ mat[2] = -(vec->vec[0] * vec->vec[1]);
+ mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
+ } else if((strcmp(plane, "R") == 0) && matSize > 2) {
+ mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
+ mat[1] = -(vec->vec[0] * vec->vec[1]);
+ mat[2] = -(vec->vec[0] * vec->vec[2]);
+ mat[3] = -(vec->vec[0] * vec->vec[1]);
+ mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
+ mat[5] = -(vec->vec[1] * vec->vec[2]);
+ mat[6] = -(vec->vec[0] * vec->vec[2]);
+ mat[7] = -(vec->vec[1] * vec->vec[2]);
+ mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
+ } else {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
+ return NULL;
+ }
+ }
+ if(matSize == 4) {
+ //resize matrix
+ mat[10] = mat[8];
+ mat[9] = mat[7];
+ mat[8] = mat[6];
+ mat[7] = 0.0f;
+ mat[6] = mat[5];
+ mat[5] = mat[4];
+ mat[4] = mat[3];
+ mat[3] = 0.0f;
+ }
+ //pass to matrix creation
+ return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
+}
+
+static char C_Matrix_Shear_doc[] =
+".. classmethod:: Shear(plane, factor, size)\n"
+"\n"
+" Create a matrix to represent an shear transformation.\n"
+"\n"
+" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'], where a single axis is for a 2D matrix.\n"
+" :type plane: string\n"
+" :arg factor: The factor of shear to apply.\n"
+" :type factor: float\n"
+" :arg size: The size of the shear matrix to construct [2, 4].\n"
+" :type size: int\n"
+" :return: A new shear matrix.\n"
+" :rtype: :class:`Matrix`\n";
+
+static PyObject *C_Matrix_Shear(PyObject *cls, PyObject *args)
+{
+ int matSize;
+ char *plane;
+ float factor;
+ float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
+
+ if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
+ PyErr_SetString(PyExc_TypeError,"mathutils.ShearMatrix(): expected string float and int\n");
+ return NULL;
+ }
+ if(matSize != 2 && matSize != 3 && matSize != 4) {
+ PyErr_SetString(PyExc_AttributeError,"mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
+ return NULL;
+ }
+
+ if((strcmp(plane, "X") == 0)
+ && matSize == 2) {
+ mat[0] = 1.0f;
+ mat[2] = factor;
+ mat[3] = 1.0f;
+ } else if((strcmp(plane, "Y") == 0) && matSize == 2) {
+ mat[0] = 1.0f;
+ mat[1] = factor;
+ mat[3] = 1.0f;
+ } else if((strcmp(plane, "XY") == 0) && matSize > 2) {
+ mat[0] = 1.0f;
+ mat[4] = 1.0f;
+ mat[6] = factor;
+ mat[7] = factor;
+ } else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
+ mat[0] = 1.0f;
+ mat[3] = factor;
+ mat[4] = 1.0f;
+ mat[5] = factor;
+ mat[8] = 1.0f;
+ } else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
+ mat[0] = 1.0f;
+ mat[1] = factor;
+ mat[2] = factor;
+ mat[4] = 1.0f;
+ mat[8] = 1.0f;
+ } else {
+ PyErr_SetString(PyExc_AttributeError, "mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
+ return NULL;
+ }
+ if(matSize == 4) {
+ //resize matrix
+ mat[10] = mat[8];
+ mat[9] = mat[7];
+ mat[8] = mat[6];
+ mat[7] = 0.0f;
+ mat[6] = mat[5];
+ mat[5] = mat[4];
+ mat[4] = mat[3];
+ mat[3] = 0.0f;
+ }
+ //pass to matrix creation
+ return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
+}
+
/* assumes rowsize == colsize is checked and the read callback has run */
static float matrix_determinant(MatrixObject * self)
{
@@ -245,7 +677,7 @@ static char Matrix_toEuler_doc[] =
PyObject *Matrix_toEuler(MatrixObject * self, PyObject *args)
{
char *order_str= NULL;
- short order= 0;
+ short order= EULER_ORDER_XYZ;
float eul[3], eul_compatf[3];
EulerObject *eul_compat = NULL;
@@ -262,7 +694,7 @@ PyObject *Matrix_toEuler(MatrixObject * self, PyObject *args)
if(!BaseMath_ReadCallback(eul_compat))
return NULL;
- VECCOPY(eul_compatf, eul_compat->eul);
+ copy_v3_v3(eul_compatf, eul_compat->eul);
}
/*must be 3-4 cols, 3-4 rows, square matrix*/
@@ -279,16 +711,16 @@ PyObject *Matrix_toEuler(MatrixObject * self, PyObject *args)
if(order_str) {
order= euler_order_from_string(order_str, "Matrix.to_euler()");
- if(order < 0)
+ if(order == -1)
return NULL;
}
if(eul_compat) {
- if(order == 0) mat3_to_compatible_eul( eul, eul_compatf, mat);
+ if(order == 1) mat3_to_compatible_eul( eul, eul_compatf, mat);
else mat3_to_compatible_eulO(eul, eul_compatf, order, mat);
}
else {
- if(order == 0) mat3_to_eul(eul, mat);
+ if(order == 1) mat3_to_eul(eul, mat);
else mat3_to_eulO(eul, order, mat);
}
@@ -321,11 +753,6 @@ PyObject *Matrix_Resize4x4(MatrixObject * self)
PyErr_SetString(PyExc_MemoryError, "matrix.resize4x4(): problem allocating pointer space");
return NULL;
}
- self->matrix = PyMem_Realloc(self->matrix, (sizeof(float *) * 4));
- if(self->matrix == NULL) {
- PyErr_SetString(PyExc_MemoryError, "matrix.resize4x4(): problem allocating pointer space");
- return NULL;
- }
/*set row pointers*/
for(x = 0; x < 4; x++) {
self->matrix[x] = self->contigPtr + (x * 4);
@@ -728,27 +1155,25 @@ PyObject *Matrix_copy(MatrixObject * self)
static PyObject *Matrix_repr(MatrixObject * self)
{
int x, y;
- char buffer[48], str[1024];
+ char str[1024]="Matrix((", *str_p;
if(!BaseMath_ReadCallback(self))
return NULL;
-
- BLI_strncpy(str,"",1024);
+
+ str_p= &str[8];
+
for(x = 0; x < self->colSize; x++){
- sprintf(buffer, "[");
- strcat(str,buffer);
for(y = 0; y < (self->rowSize - 1); y++) {
- sprintf(buffer, "%.6f, ", self->matrix[y][x]);
- strcat(str,buffer);
+ str_p += sprintf(str_p, "%f, ", self->matrix[y][x]);
}
if(x < (self->colSize-1)){
- sprintf(buffer, "%.6f](matrix [row %d])\n", self->matrix[y][x], x);
- strcat(str,buffer);
- }else{
- sprintf(buffer, "%.6f](matrix [row %d])", self->matrix[y][x], x);
- strcat(str,buffer);
+ str_p += sprintf(str_p, "%f), (", self->matrix[y][x]);
+ }
+ else{
+ str_p += sprintf(str_p, "%f)", self->matrix[y][x]);
}
}
+ strcat(str_p, ")");
return PyUnicode_FromString(str);
}
@@ -1101,7 +1526,6 @@ static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
return NULL;
}
else /* if(mat1) { */ {
-
if(VectorObject_Check(m2)) { /* MATRIX*VECTOR */
return column_vector_multiplication(mat1, (VectorObject *)m2); /* vector update done inside the function */
}
@@ -1133,13 +1557,16 @@ static PyObject* Matrix_inv(MatrixObject *self)
/*-----------------PROTOCOL DECLARATIONS--------------------------*/
static PySequenceMethods Matrix_SeqMethods = {
- (lenfunc) Matrix_len, /* sq_length */
- (binaryfunc) 0, /* sq_concat */
- (ssizeargfunc) 0, /* sq_repeat */
- (ssizeargfunc) Matrix_item, /* sq_item */
- (ssizessizeargfunc) Matrix_slice, /* sq_slice */
- (ssizeobjargproc) Matrix_ass_item, /* sq_ass_item */
- (ssizessizeobjargproc) Matrix_ass_slice, /* sq_ass_slice */
+ (lenfunc) Matrix_len, /* sq_length */
+ (binaryfunc) NULL, /* sq_concat */
+ (ssizeargfunc) NULL, /* sq_repeat */
+ (ssizeargfunc) Matrix_item, /* sq_item */
+ (ssizessizeargfunc) Matrix_slice, /* sq_slice, deprecated TODO, replace */
+ (ssizeobjargproc) Matrix_ass_item, /* sq_ass_item */
+ (ssizessizeobjargproc) Matrix_ass_slice, /* sq_ass_slice, deprecated TODO, replace */
+ (objobjproc) NULL, /* sq_contains */
+ (binaryfunc) NULL, /* sq_inplace_concat */
+ (ssizeargfunc) NULL, /* sq_inplace_repeat */
};
@@ -1304,12 +1731,12 @@ static PyObject *Matrix_getIsNegative( MatrixObject * self, void *type )
/* Python attributes get/set structure: */
/*****************************************************************************/
static PyGetSetDef Matrix_getseters[] = {
- {"row_size", (getter)Matrix_getRowSize, (setter)NULL, "The row size of the matrix (readonly). **type** int", NULL},
- {"col_size", (getter)Matrix_getColSize, (setter)NULL, "The column size of the matrix (readonly). **type** int", NULL},
- {"median_scale", (getter)Matrix_getMedianScale, (setter)NULL, "The average scale applied to each axis (readonly). **type** float", NULL},
- {"is_negative", (getter)Matrix_getIsNegative, (setter)NULL, "True if this matrix results in a negative scale, 3x3 and 4x4 only, (readonly). **type** bool", NULL},
+ {"row_size", (getter)Matrix_getRowSize, (setter)NULL, "The row size of the matrix (readonly).\n\n:type: int", NULL},
+ {"col_size", (getter)Matrix_getColSize, (setter)NULL, "The column size of the matrix (readonly).\n\n:type: int", NULL},
+ {"median_scale", (getter)Matrix_getMedianScale, (setter)NULL, "The average scale applied to each axis (readonly).\n\n:type: float", NULL},
+ {"is_negative", (getter)Matrix_getIsNegative, (setter)NULL, "True if this matrix results in a negative scale, 3x3 and 4x4 only, (readonly).\n\n:type: bool", NULL},
{"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, BaseMathObject_Wrapped_doc, NULL},
- {"_owner",(getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
+ {"owner",(getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
};
@@ -1330,6 +1757,13 @@ static struct PyMethodDef Matrix_methods[] = {
{"to_quat", (PyCFunction) Matrix_toQuat, METH_NOARGS, Matrix_toQuat_doc},
{"copy", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
{"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
+
+ /* class methods */
+ {"Rotation", (PyCFunction) C_Matrix_Rotation, METH_VARARGS | METH_CLASS, C_Matrix_Rotation_doc},
+ {"Scale", (PyCFunction) C_Matrix_Scale, METH_VARARGS | METH_CLASS, C_Matrix_Scale_doc},
+ {"Shear", (PyCFunction) C_Matrix_Shear, METH_VARARGS | METH_CLASS, C_Matrix_Shear_doc},
+ {"Translation", (PyCFunction) C_Matrix_Translation, METH_O | METH_CLASS, C_Matrix_Translation_doc},
+ {"OrthoProjection", (PyCFunction) C_Matrix_OrthoProjection, METH_VARARGS | METH_CLASS, C_Matrix_OrthoProjection_doc},
{NULL, NULL, 0, NULL}
};
@@ -1425,12 +1859,6 @@ PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type, PyType
if(type == Py_WRAP){
self->contigPtr = mat;
- /*create pointer array*/
- self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
- if(self->matrix == NULL) { /*allocation failure*/
- PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space");
- return NULL;
- }
/*pointer array points to contigous memory*/
for(x = 0; x < rowSize; x++) {
self->matrix[x] = self->contigPtr + (x * colSize);
@@ -1442,13 +1870,6 @@ PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type, PyType
PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space\n");
return NULL;
}
- /*create pointer array*/
- self->matrix = PyMem_Malloc(rowSize * sizeof(float *));
- if(self->matrix == NULL) { /*allocation failure*/
- PyMem_Free(self->contigPtr);
- PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space");
- return NULL;
- }
/*pointer array points to contigous memory*/
for(x = 0; x < rowSize; x++) {
self->matrix[x] = self->contigPtr + (x * colSize);
diff --git a/source/blender/python/generic/matrix.h b/source/blender/python/generic/mathutils_matrix.h
index b18a3e8e6fe..21538f8168e 100644
--- a/source/blender/python/generic/matrix.h
+++ b/source/blender/python/generic/mathutils_matrix.h
@@ -34,21 +34,14 @@
extern PyTypeObject matrix_Type;
#define MatrixObject_Check(_v) PyObject_TypeCheck((_v), &matrix_Type)
+#define MATRIX_MAX_DIM 4
-typedef float **ptRow;
-typedef struct _Matrix { /* keep aligned with BaseMathObject in Mathutils.h */
- PyObject_VAR_HEAD
- float *contigPtr; /*1D array of data (alias)*/
- PyObject *cb_user; /* if this vector references another object, otherwise NULL, *Note* this owns its reference */
- unsigned char cb_type; /* which user funcs do we adhere to, RNA, GameObject, etc */
- unsigned char cb_subtype; /* subtype: location, rotation... to avoid defining many new functions for every attribute of the same type */
- unsigned char wrapped; /*is wrapped data?*/
- /* end BaseMathObject */
+typedef struct {
+ BASE_MATH_MEMBERS(contigPtr)
unsigned char rowSize;
unsigned int colSize;
- ptRow matrix; /*ptr to the contigPtr (accessor)*/
-
+ float *matrix[MATRIX_MAX_DIM]; /* ptr to the contigPtr (accessor) */
} MatrixObject;
/*struct data contains a pointer to the actual data that the
diff --git a/source/blender/python/generic/quat.c b/source/blender/python/generic/mathutils_quat.c
index 36d01e7aa9f..553844b6ee5 100644
--- a/source/blender/python/generic/quat.c
+++ b/source/blender/python/generic/mathutils_quat.c
@@ -26,12 +26,37 @@
* ***** END GPL LICENSE BLOCK *****
*/
-#include "Mathutils.h"
+#include "mathutils.h"
#include "BLI_math.h"
#include "BKE_utildefines.h"
+#define QUAT_SIZE 4
+
//-----------------------------METHODS------------------------------
+
+/* note: BaseMath_ReadCallback must be called beforehand */
+static PyObject *Quaternion_ToTupleExt(QuaternionObject *self, int ndigits)
+{
+ PyObject *ret;
+ int i;
+
+ ret= PyTuple_New(QUAT_SIZE);
+
+ if(ndigits >= 0) {
+ for(i= 0; i < QUAT_SIZE; i++) {
+ PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round((double)self->quat[i], ndigits)));
+ }
+ }
+ else {
+ for(i= 0; i < QUAT_SIZE; i++) {
+ PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->quat[i]));
+ }
+ }
+
+ return ret;
+}
+
static char Quaternion_ToEuler_doc[] =
".. method:: to_euler(order, euler_compat)\n"
"\n"
@@ -48,7 +73,7 @@ static PyObject *Quaternion_ToEuler(QuaternionObject * self, PyObject *args)
{
float eul[3];
char *order_str= NULL;
- short order= 0;
+ short order= EULER_ORDER_XYZ;
EulerObject *eul_compat = NULL;
if(!PyArg_ParseTuple(args, "|sO!:to_euler", &order_str, &euler_Type, &eul_compat))
@@ -60,7 +85,7 @@ static PyObject *Quaternion_ToEuler(QuaternionObject * self, PyObject *args)
if(order_str) {
order= euler_order_from_string(order_str, "Matrix.to_euler()");
- if(order < 0)
+ if(order == -1)
return NULL;
}
@@ -72,19 +97,19 @@ static PyObject *Quaternion_ToEuler(QuaternionObject * self, PyObject *args)
quat_to_mat3(mat, self->quat);
- if(order == 0) mat3_to_compatible_eul(eul, eul_compat->eul, mat);
- else mat3_to_compatible_eulO(eul, eul_compat->eul, order, mat);
+ if(order == EULER_ORDER_XYZ) mat3_to_compatible_eul(eul, eul_compat->eul, mat);
+ else mat3_to_compatible_eulO(eul, eul_compat->eul, order, mat);
}
else {
- if(order == 0) quat_to_eul(eul, self->quat);
- else quat_to_eulO(eul, order, self->quat);
+ if(order == EULER_ORDER_XYZ) quat_to_eul(eul, self->quat);
+ else quat_to_eulO(eul, order, self->quat);
}
return newEulerObject(eul, order, Py_NEW, NULL);
}
//----------------------------Quaternion.toMatrix()------------------
static char Quaternion_ToMatrix_doc[] =
-".. method:: to_matrix(other)\n"
+".. method:: to_matrix()\n"
"\n"
" Return a matrix representation of the quaternion.\n"
"\n"
@@ -115,7 +140,7 @@ static char Quaternion_Cross_doc[] =
static PyObject *Quaternion_Cross(QuaternionObject * self, QuaternionObject * value)
{
- float quat[4];
+ float quat[QUAT_SIZE];
if (!QuaternionObject_Check(value)) {
PyErr_SetString( PyExc_TypeError, "quat.cross(value): expected a quaternion argument" );
@@ -165,9 +190,7 @@ static char Quaternion_Difference_doc[] =
static PyObject *Quaternion_Difference(QuaternionObject * self, QuaternionObject * value)
{
- float quat[4], tempQuat[4];
- double dot = 0.0f;
- int x;
+ float quat[QUAT_SIZE];
if (!QuaternionObject_Check(value)) {
PyErr_SetString( PyExc_TypeError, "quat.difference(value): expected a quaternion argument" );
@@ -177,18 +200,8 @@ static PyObject *Quaternion_Difference(QuaternionObject * self, QuaternionObject
if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
return NULL;
- tempQuat[0] = self->quat[0];
- tempQuat[1] = - self->quat[1];
- tempQuat[2] = - self->quat[2];
- tempQuat[3] = - self->quat[3];
+ rotation_between_quats_to_quat(quat, self->quat, value->quat);
- dot = sqrt(tempQuat[0] * tempQuat[0] + tempQuat[1] * tempQuat[1] +
- tempQuat[2] * tempQuat[2] + tempQuat[3] * tempQuat[3]);
-
- for(x = 0; x < 4; x++) {
- tempQuat[x] /= (float)(dot * dot);
- }
- mul_qt_qtqt(quat, tempQuat, value->quat);
return newQuaternionObject(quat, Py_NEW, NULL);
}
@@ -207,7 +220,7 @@ static char Quaternion_Slerp_doc[] =
static PyObject *Quaternion_Slerp(QuaternionObject *self, PyObject *args)
{
QuaternionObject *value;
- float quat[4], fac;
+ float quat[QUAT_SIZE], fac;
if(!PyArg_ParseTuple(args, "O!f:slerp", &quaternion_Type, &value, &fac)) {
PyErr_SetString(PyExc_TypeError, "quat.slerp(): expected Quaternion types and float");
@@ -351,14 +364,19 @@ static PyObject *Quaternion_copy(QuaternionObject * self)
//print the object to screen
static PyObject *Quaternion_repr(QuaternionObject * self)
{
- char str[64];
-
+ PyObject *ret, *tuple;
+
if(!BaseMath_ReadCallback(self))
return NULL;
- sprintf(str, "[%.6f, %.6f, %.6f, %.6f](quaternion)", self->quat[0], self->quat[1], self->quat[2], self->quat[3]);
- return PyUnicode_FromString(str);
+ tuple= Quaternion_ToTupleExt(self, -1);
+
+ ret= PyUnicode_FromFormat("Quaternion(%R)", tuple);
+
+ Py_DECREF(tuple);
+ return ret;
}
+
//------------------------tp_richcmpr
//returns -1 execption, 0 false, 1 true
static PyObject* Quaternion_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
@@ -387,10 +405,10 @@ static PyObject* Quaternion_richcmpr(PyObject *objectA, PyObject *objectB, int c
switch (comparison_type){
case Py_EQ:
- result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, 4, 1);
+ result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, QUAT_SIZE, 1);
break;
case Py_NE:
- result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, 4, 1);
+ result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, QUAT_SIZE, 1);
if (result == 0){
result = 1;
}else{
@@ -413,15 +431,15 @@ static PyObject* Quaternion_richcmpr(PyObject *objectA, PyObject *objectB, int c
//sequence length
static int Quaternion_len(QuaternionObject * self)
{
- return 4;
+ return QUAT_SIZE;
}
//----------------------------object[]---------------------------
//sequence accessor (get)
static PyObject *Quaternion_item(QuaternionObject * self, int i)
{
- if(i<0) i= 4-i;
+ if(i<0) i= QUAT_SIZE-i;
- if(i < 0 || i >= 4) {
+ if(i < 0 || i >= QUAT_SIZE) {
PyErr_SetString(PyExc_IndexError, "quaternion[attribute]: array index out of range\n");
return NULL;
}
@@ -442,9 +460,9 @@ static int Quaternion_ass_item(QuaternionObject * self, int i, PyObject * ob)
return -1;
}
- if(i<0) i= 4-i;
+ if(i<0) i= QUAT_SIZE-i;
- if(i < 0 || i >= 4){
+ if(i < 0 || i >= QUAT_SIZE){
PyErr_SetString(PyExc_IndexError, "quaternion[attribute] = x: array assignment index out of range\n");
return -1;
}
@@ -465,9 +483,9 @@ static PyObject *Quaternion_slice(QuaternionObject * self, int begin, int end)
if(!BaseMath_ReadCallback(self))
return NULL;
- CLAMP(begin, 0, 4);
- if (end<0) end= 5+end;
- CLAMP(end, 0, 4);
+ CLAMP(begin, 0, QUAT_SIZE);
+ if (end<0) end= (QUAT_SIZE + 1) + end;
+ CLAMP(end, 0, QUAT_SIZE);
begin = MIN2(begin,end);
list = PyList_New(end - begin);
@@ -482,52 +500,107 @@ static PyObject *Quaternion_slice(QuaternionObject * self, int begin, int end)
//sequence slice (set)
static int Quaternion_ass_slice(QuaternionObject * self, int begin, int end, PyObject * seq)
{
- int i, y, size = 0;
- float quat[4];
- PyObject *q;
+ int i, size;
+ float quat[QUAT_SIZE];
if(!BaseMath_ReadCallback(self))
return -1;
- CLAMP(begin, 0, 4);
- if (end<0) end= 5+end;
- CLAMP(end, 0, 4);
+ CLAMP(begin, 0, QUAT_SIZE);
+ if (end<0) end= (QUAT_SIZE + 1) + end;
+ CLAMP(end, 0, QUAT_SIZE);
begin = MIN2(begin,end);
- size = PySequence_Length(seq);
+ if((size=mathutils_array_parse(quat, 0, QUAT_SIZE, seq, "mathutils.Quaternion[begin:end] = []")) == -1)
+ return -1;
+
if(size != (end - begin)){
- PyErr_SetString(PyExc_TypeError, "quaternion[begin:end] = []: size mismatch in slice assignment\n");
+ PyErr_SetString(PyExc_TypeError, "quaternion[begin:end] = []: size mismatch in slice assignment");
return -1;
}
- for (i = 0; i < size; i++) {
- q = PySequence_GetItem(seq, i);
- if (q == NULL) { // Failed to read sequence
- PyErr_SetString(PyExc_RuntimeError, "quaternion[begin:end] = []: unable to read sequence\n");
- return -1;
+ /* parsed well - now set in vector */
+ for(i= 0; i < size; i++)
+ self->quat[begin + i] = quat[i];
+
+ BaseMath_WriteCallback(self);
+ return 0;
+}
+
+
+static PyObject *Quaternion_subscript(QuaternionObject *self, PyObject *item)
+{
+ if (PyIndex_Check(item)) {
+ Py_ssize_t i;
+ i = PyNumber_AsSsize_t(item, PyExc_IndexError);
+ if (i == -1 && PyErr_Occurred())
+ return NULL;
+ if (i < 0)
+ i += QUAT_SIZE;
+ return Quaternion_item(self, i);
+ } else if (PySlice_Check(item)) {
+ Py_ssize_t start, stop, step, slicelength;
+
+ if (PySlice_GetIndicesEx((PySliceObject*)item, QUAT_SIZE, &start, &stop, &step, &slicelength) < 0)
+ return NULL;
+
+ if (slicelength <= 0) {
+ return PyList_New(0);
+ }
+ else if (step == 1) {
+ return Quaternion_slice(self, start, stop);
}
+ else {
+ PyErr_SetString(PyExc_TypeError, "slice steps not supported with quaternions");
+ return NULL;
+ }
+ }
+ else {
+ PyErr_Format(PyExc_TypeError,
+ "quaternion indices must be integers, not %.200s",
+ item->ob_type->tp_name);
+ return NULL;
+ }
+}
- quat[i]= (float)PyFloat_AsDouble(q);
- Py_DECREF(q);
- if(quat[i]==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
- PyErr_SetString(PyExc_TypeError, "quaternion[begin:end] = []: sequence argument not a number\n");
+static int Quaternion_ass_subscript(QuaternionObject *self, PyObject *item, PyObject *value)
+{
+ if (PyIndex_Check(item)) {
+ Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
+ if (i == -1 && PyErr_Occurred())
return -1;
- }
+ if (i < 0)
+ i += QUAT_SIZE;
+ return Quaternion_ass_item(self, i, value);
}
- //parsed well - now set in vector
- for(y = 0; y < size; y++)
- self->quat[begin + y] = quat[y];
+ else if (PySlice_Check(item)) {
+ Py_ssize_t start, stop, step, slicelength;
- BaseMath_WriteCallback(self);
- return 0;
+ if (PySlice_GetIndicesEx((PySliceObject*)item, QUAT_SIZE, &start, &stop, &step, &slicelength) < 0)
+ return -1;
+
+ if (step == 1)
+ return Quaternion_ass_slice(self, start, stop, value);
+ else {
+ PyErr_SetString(PyExc_TypeError, "slice steps not supported with quaternion");
+ return -1;
+ }
+ }
+ else {
+ PyErr_Format(PyExc_TypeError,
+ "quaternion indices must be integers, not %.200s",
+ item->ob_type->tp_name);
+ return -1;
+ }
}
+
//------------------------NUMERIC PROTOCOLS----------------------
//------------------------obj + obj------------------------------
//addition
static PyObject *Quaternion_add(PyObject * q1, PyObject * q2)
{
- float quat[4];
+ float quat[QUAT_SIZE];
QuaternionObject *quat1 = NULL, *quat2 = NULL;
if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) {
@@ -548,7 +621,7 @@ static PyObject *Quaternion_add(PyObject * q1, PyObject * q2)
static PyObject *Quaternion_sub(PyObject * q1, PyObject * q2)
{
int x;
- float quat[4];
+ float quat[QUAT_SIZE];
QuaternionObject *quat1 = NULL, *quat2 = NULL;
if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) {
@@ -562,7 +635,7 @@ static PyObject *Quaternion_sub(PyObject * q1, PyObject * q2)
if(!BaseMath_ReadCallback(quat1) || !BaseMath_ReadCallback(quat2))
return NULL;
- for(x = 0; x < 4; x++) {
+ for(x = 0; x < QUAT_SIZE; x++) {
quat[x] = quat1->quat[x] - quat2->quat[x];
}
@@ -572,7 +645,7 @@ static PyObject *Quaternion_sub(PyObject * q1, PyObject * q2)
//mulplication
static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2)
{
- float quat[4], scalar;
+ float quat[QUAT_SIZE], scalar;
QuaternionObject *quat1 = NULL, *quat2 = NULL;
VectorObject *vec = NULL;
@@ -587,8 +660,9 @@ static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2)
return NULL;
}
- if(quat1 && quat2) { /* QUAT*QUAT (dot product) */
- return PyFloat_FromDouble(dot_qtqt(quat1->quat, quat2->quat));
+ if(quat1 && quat2) { /* QUAT*QUAT (cross product) */
+ mul_qt_qtqt(quat, quat1->quat, quat2->quat);
+ return newQuaternionObject(quat, Py_NEW, NULL);
}
/* the only case this can happen (for a supported type is "FLOAT*QUAT" ) */
@@ -604,12 +678,19 @@ static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2)
}
else { /* QUAT*SOMETHING */
if(VectorObject_Check(q2)){ /* QUAT*VEC */
+ float tvec[3];
vec = (VectorObject*)q2;
if(vec->size != 3){
PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: only 3D vector rotations currently supported\n");
return NULL;
}
- return quat_rotation((PyObject*)quat1, (PyObject*)vec); /* vector updating done inside the func */
+ if(!BaseMath_ReadCallback(vec)) {
+ return NULL;
+ }
+
+ copy_v3_v3(tvec, vec->vec);
+ mul_qt_v3(quat1->quat, tvec);
+ return newVectorObject(tvec, 3, Py_NEW, NULL);
}
scalar= PyFloat_AsDouble(q2);
@@ -626,50 +707,59 @@ static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2)
//-----------------PROTOCOL DECLARATIONS--------------------------
static PySequenceMethods Quaternion_SeqMethods = {
- (lenfunc) Quaternion_len, /* sq_length */
- (binaryfunc) 0, /* sq_concat */
- (ssizeargfunc) 0, /* sq_repeat */
- (ssizeargfunc) Quaternion_item, /* sq_item */
- (ssizessizeargfunc) Quaternion_slice, /* sq_slice */
- (ssizeobjargproc) Quaternion_ass_item, /* sq_ass_item */
- (ssizessizeobjargproc) Quaternion_ass_slice, /* sq_ass_slice */
+ (lenfunc) Quaternion_len, /* sq_length */
+ (binaryfunc) NULL, /* sq_concat */
+ (ssizeargfunc) NULL, /* sq_repeat */
+ (ssizeargfunc) Quaternion_item, /* sq_item */
+ (ssizessizeargfunc) NULL, /* sq_slice, deprecated */
+ (ssizeobjargproc) Quaternion_ass_item, /* sq_ass_item */
+ (ssizessizeobjargproc) NULL, /* sq_ass_slice, deprecated */
+ (objobjproc) NULL, /* sq_contains */
+ (binaryfunc) NULL, /* sq_inplace_concat */
+ (ssizeargfunc) NULL, /* sq_inplace_repeat */
+};
+
+static PyMappingMethods Quaternion_AsMapping = {
+ (lenfunc)Quaternion_len,
+ (binaryfunc)Quaternion_subscript,
+ (objobjargproc)Quaternion_ass_subscript
};
static PyNumberMethods Quaternion_NumMethods = {
- (binaryfunc) Quaternion_add, /*nb_add*/
- (binaryfunc) Quaternion_sub, /*nb_subtract*/
- (binaryfunc) Quaternion_mul, /*nb_multiply*/
- 0, /*nb_remainder*/
- 0, /*nb_divmod*/
- 0, /*nb_power*/
- (unaryfunc) 0, /*nb_negative*/
- (unaryfunc) 0, /*tp_positive*/
- (unaryfunc) 0, /*tp_absolute*/
- (inquiry) 0, /*tp_bool*/
- (unaryfunc) 0, /*nb_invert*/
- 0, /*nb_lshift*/
- (binaryfunc)0, /*nb_rshift*/
- 0, /*nb_and*/
- 0, /*nb_xor*/
- 0, /*nb_or*/
- 0, /*nb_int*/
- 0, /*nb_reserved*/
- 0, /*nb_float*/
- 0, /* nb_inplace_add */
- 0, /* nb_inplace_subtract */
- 0, /* nb_inplace_multiply */
- 0, /* nb_inplace_remainder */
- 0, /* nb_inplace_power */
- 0, /* nb_inplace_lshift */
- 0, /* nb_inplace_rshift */
- 0, /* nb_inplace_and */
- 0, /* nb_inplace_xor */
- 0, /* nb_inplace_or */
- 0, /* nb_floor_divide */
- 0, /* nb_true_divide */
- 0, /* nb_inplace_floor_divide */
- 0, /* nb_inplace_true_divide */
- 0, /* nb_index */
+ (binaryfunc) Quaternion_add, /*nb_add*/
+ (binaryfunc) Quaternion_sub, /*nb_subtract*/
+ (binaryfunc) Quaternion_mul, /*nb_multiply*/
+ 0, /*nb_remainder*/
+ 0, /*nb_divmod*/
+ 0, /*nb_power*/
+ (unaryfunc) 0, /*nb_negative*/
+ (unaryfunc) 0, /*tp_positive*/
+ (unaryfunc) 0, /*tp_absolute*/
+ (inquiry) 0, /*tp_bool*/
+ (unaryfunc) 0, /*nb_invert*/
+ 0, /*nb_lshift*/
+ (binaryfunc)0, /*nb_rshift*/
+ 0, /*nb_and*/
+ 0, /*nb_xor*/
+ 0, /*nb_or*/
+ 0, /*nb_int*/
+ 0, /*nb_reserved*/
+ 0, /*nb_float*/
+ 0, /* nb_inplace_add */
+ 0, /* nb_inplace_subtract */
+ 0, /* nb_inplace_multiply */
+ 0, /* nb_inplace_remainder */
+ 0, /* nb_inplace_power */
+ 0, /* nb_inplace_lshift */
+ 0, /* nb_inplace_rshift */
+ 0, /* nb_inplace_and */
+ 0, /* nb_inplace_xor */
+ 0, /* nb_inplace_or */
+ 0, /* nb_floor_divide */
+ 0, /* nb_true_divide */
+ 0, /* nb_inplace_floor_divide */
+ 0, /* nb_inplace_true_divide */
+ 0, /* nb_index */
};
static PyObject *Quaternion_getAxis( QuaternionObject * self, void *type )
@@ -684,125 +774,128 @@ static int Quaternion_setAxis( QuaternionObject * self, PyObject * value, void *
static PyObject *Quaternion_getMagnitude( QuaternionObject * self, void *type )
{
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
return PyFloat_FromDouble(sqrt(dot_qtqt(self->quat, self->quat)));
}
static PyObject *Quaternion_getAngle( QuaternionObject * self, void *type )
{
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
return PyFloat_FromDouble(2.0 * (saacos(self->quat[0])));
}
-static PyObject *Quaternion_getAxisVec( QuaternionObject * self, void *type )
+static int Quaternion_setAngle(QuaternionObject * self, PyObject * value, void * type)
{
- int i;
- float vec[3];
- double mag = self->quat[0] * (Py_PI / 180);
- mag = 2 * (saacos(mag));
- mag = sin(mag / 2);
- for(i = 0; i < 3; i++)
- vec[i] = (float)(self->quat[i + 1] / mag);
-
- normalize_v3(vec);
- //If the axis of rotation is 0,0,0 set it to 1,0,0 - for zero-degree rotations
- if( EXPP_FloatsAreEqual(vec[0], 0.0f, 10) &&
- EXPP_FloatsAreEqual(vec[1], 0.0f, 10) &&
- EXPP_FloatsAreEqual(vec[2], 0.0f, 10) ){
- vec[0] = 1.0f;
+ float axis[3];
+ float angle;
+
+ if(!BaseMath_ReadCallback(self))
+ return -1;
+
+ quat_to_axis_angle(axis, &angle, self->quat);
+
+ angle = PyFloat_AsDouble(value);
+
+ if(angle==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
+ PyErr_SetString(PyExc_TypeError, "quaternion.angle = value: float expected");
+ return -1;
}
- return (PyObject *) newVectorObject(vec, 3, Py_NEW, NULL);
+
+ /* If the axis of rotation is 0,0,0 set it to 1,0,0 - for zero-degree rotations */
+ if( EXPP_FloatsAreEqual(axis[0], 0.0f, 10) &&
+ EXPP_FloatsAreEqual(axis[1], 0.0f, 10) &&
+ EXPP_FloatsAreEqual(axis[2], 0.0f, 10)
+ ) {
+ axis[0] = 1.0f;
+ }
+
+ axis_angle_to_quat(self->quat, axis, angle);
+
+ if(!BaseMath_WriteCallback(self))
+ return -1;
+
+ return 0;
}
-//----------------------------------Mathutils.Quaternion() --------------
-static PyObject *Quaternion_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
+static PyObject *Quaternion_getAxisVec(QuaternionObject *self, void *type)
{
- PyObject *listObject = NULL, *n, *q;
- int size, i;
- float quat[4];
- double angle = 0.0f;
-
- size = PyTuple_GET_SIZE(args);
- if (size == 1 || size == 2) { //seq?
- listObject = PyTuple_GET_ITEM(args, 0);
- if (PySequence_Check(listObject)) {
- size = PySequence_Length(listObject);
- if ((size == 4 && PySequence_Length(args) !=1) ||
- (size == 3 && PySequence_Length(args) !=2) || (size >4 || size < 3)) {
- // invalid args/size
- PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- return NULL;
- }
- if(size == 3){ //get angle in axis/angle
- n = PySequence_GetItem(args, 1);
- if(n == NULL) { // parsed item not a number or getItem fail
- PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- return NULL;
- }
-
- angle = PyFloat_AsDouble(n);
- Py_DECREF(n);
-
- if (angle==-1 && PyErr_Occurred()) {
- PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- return NULL;
- }
- }
- }else{
- listObject = PyTuple_GET_ITEM(args, 1);
- if (size>1 && PySequence_Check(listObject)) {
- size = PySequence_Length(listObject);
- if (size != 3) {
- // invalid args/size
- PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- return NULL;
- }
- angle = PyFloat_AsDouble(PyTuple_GET_ITEM(args, 0));
-
- if (angle==-1 && PyErr_Occurred()) {
- PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- return NULL;
- }
- } else { // argument was not a sequence
- PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- return NULL;
- }
- }
- } else if (size == 0) { //returns a new empty quat
- return newQuaternionObject(NULL, Py_NEW, NULL);
- } else {
- listObject = args;
+ float axis[3];
+ float angle;
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ quat_to_axis_angle(axis, &angle, self->quat);
+
+ /* If the axis of rotation is 0,0,0 set it to 1,0,0 - for zero-degree rotations */
+ if( EXPP_FloatsAreEqual(axis[0], 0.0f, 10) &&
+ EXPP_FloatsAreEqual(axis[1], 0.0f, 10) &&
+ EXPP_FloatsAreEqual(axis[2], 0.0f, 10)
+ ) {
+ axis[0] = 1.0f;
}
- if (size == 3) { // invalid quat size
- if(PySequence_Length(args) != 2){
- PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- return NULL;
- }
- }else{
- if(size != 4){
- PyErr_SetString(PyExc_AttributeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- return NULL;
- }
+ return (PyObject *) newVectorObject(axis, 3, Py_NEW, NULL);
+}
+
+static int Quaternion_setAxisVec(QuaternionObject *self, PyObject *value, void *type)
+{
+ float axis[3];
+ float angle;
+
+ VectorObject *vec;
+
+ if(!BaseMath_ReadCallback(self))
+ return -1;
+
+ quat_to_axis_angle(axis, &angle, self->quat);
+
+ if(!VectorObject_Check(value)) {
+ PyErr_SetString(PyExc_TypeError, "quaternion.axis = value: expected a 3D Vector");
+ return -1;
}
+
+ vec= (VectorObject *)value;
+ if(!BaseMath_ReadCallback(vec))
+ return -1;
- for (i=0; i<size; i++) { //parse
- q = PySequence_GetItem(listObject, i);
- if (q == NULL) { // Failed to read sequence
- PyErr_SetString(PyExc_RuntimeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
- return NULL;
- }
+ axis_angle_to_quat(self->quat, vec->vec, angle);
+
+ if(!BaseMath_WriteCallback(self))
+ return -1;
+
+ return 0;
+}
+
+//----------------------------------mathutils.Quaternion() --------------
+static PyObject *Quaternion_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
+{
+ PyObject *seq= NULL;
+ float angle = 0.0f;
+ float quat[QUAT_SIZE]= {0.0f, 0.0f, 0.0f, 0.0f};
- quat[i] = PyFloat_AsDouble(q);
- Py_DECREF(q);
+ if(!PyArg_ParseTuple(args, "|Of:mathutils.Quaternion", &seq, &angle))
+ return NULL;
- if (quat[i]==-1 && PyErr_Occurred()) {
- PyErr_SetString(PyExc_TypeError, "Mathutils.Quaternion(): 4d numeric sequence expected or 3d vector and number\n");
+ switch(PyTuple_GET_SIZE(args)) {
+ case 0:
+ break;
+ case 1:
+ if (mathutils_array_parse(quat, QUAT_SIZE, QUAT_SIZE, seq, "mathutils.Quaternion()") == -1)
+ return NULL;
+ break;
+ case 2:
+ if (mathutils_array_parse(quat, 3, 3, seq, "mathutils.Quaternion()") == -1)
return NULL;
- }
- }
- if(size == 3) //calculate the quat based on axis/angle
axis_angle_to_quat(quat, quat, angle);
-
+ break;
+ /* PyArg_ParseTuple assures no more then 2 */
+ }
return newQuaternionObject(quat, Py_NEW, NULL);
}
@@ -829,15 +922,15 @@ static struct PyMethodDef Quaternion_methods[] = {
/* Python attributes get/set structure: */
/*****************************************************************************/
static PyGetSetDef Quaternion_getseters[] = {
- {"w", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion W value. **type** float", (void *)0},
- {"x", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion X axis. **type** float", (void *)1},
- {"y", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion Y axis. **type** float", (void *)2},
- {"z", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion Z axis. **type** float", (void *)3},
- {"magnitude", (getter)Quaternion_getMagnitude, (setter)NULL, "Size of the quaternion (readonly). **type** float", NULL},
- {"angle", (getter)Quaternion_getAngle, (setter)NULL, "angle of the quaternion (readonly). **type** float", NULL},
- {"axis",(getter)Quaternion_getAxisVec, (setter)NULL, "quaternion axis as a vector (readonly). **type** :class:`Vector`", NULL},
+ {"w", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion W value.\n\n:type: float", (void *)0},
+ {"x", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion X axis.\n\n:type: float", (void *)1},
+ {"y", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion Y axis.\n\n:type: float", (void *)2},
+ {"z", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion Z axis.\n\n:type: float", (void *)3},
+ {"magnitude", (getter)Quaternion_getMagnitude, (setter)NULL, "Size of the quaternion (readonly).\n\n:type: float", NULL},
+ {"angle", (getter)Quaternion_getAngle, (setter)Quaternion_setAngle, "angle of the quaternion.\n\n:type: float", NULL},
+ {"axis",(getter)Quaternion_getAxisVec, (setter)Quaternion_setAxisVec, "quaternion axis as a vector.\n\n:type: :class:`Vector`", NULL},
{"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, BaseMathObject_Wrapped_doc, NULL},
- {"_owner", (getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
+ {"owner", (getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
};
@@ -855,10 +948,10 @@ PyTypeObject quaternion_Type = {
0, //tp_getattr
0, //tp_setattr
0, //tp_compare
- (reprfunc) Quaternion_repr, //tp_repr
- &Quaternion_NumMethods, //tp_as_number
- &Quaternion_SeqMethods, //tp_as_sequence
- 0, //tp_as_mapping
+ (reprfunc) Quaternion_repr, //tp_repr
+ &Quaternion_NumMethods, //tp_as_number
+ &Quaternion_SeqMethods, //tp_as_sequence
+ &Quaternion_AsMapping, //tp_as_mapping
0, //tp_hash
0, //tp_call
0, //tp_str
@@ -914,7 +1007,7 @@ PyObject *newQuaternionObject(float *quat, int type, PyTypeObject *base_type)
self->quat = quat;
self->wrapped = Py_WRAP;
}else if (type == Py_NEW){
- self->quat = PyMem_Malloc(4 * sizeof(float));
+ self->quat = PyMem_Malloc(QUAT_SIZE * sizeof(float));
if(!quat) { //new empty
unit_qt(self->quat);
}else{
diff --git a/source/blender/python/generic/quat.h b/source/blender/python/generic/mathutils_quat.h
index 6e0c9d6dd1f..c9ec12d6152 100644
--- a/source/blender/python/generic/quat.h
+++ b/source/blender/python/generic/mathutils_quat.h
@@ -36,15 +36,8 @@
extern PyTypeObject quaternion_Type;
#define QuaternionObject_Check(_v) PyObject_TypeCheck((_v), &quaternion_Type)
-typedef struct { /* keep aligned with BaseMathObject in Mathutils.h */
- PyObject_VAR_HEAD
- float *quat; /* 1D array of data (alias) */
- PyObject *cb_user; /* if this vector references another object, otherwise NULL, *Note* this owns its reference */
- unsigned char cb_type; /* which user funcs do we adhere to, RNA, GameObject, etc */
- unsigned char cb_subtype; /* subtype: location, rotation... to avoid defining many new functions for every attribute of the same type */
- unsigned char wrapped; /* wrapped data type? */
- /* end BaseMathObject */
-
+typedef struct {
+ BASE_MATH_MEMBERS(quat)
} QuaternionObject;
/*struct data contains a pointer to the actual data that the
diff --git a/source/blender/python/generic/vector.c b/source/blender/python/generic/mathutils_vector.c
index fa26946a682..7b73a7501bb 100644
--- a/source/blender/python/generic/vector.c
+++ b/source/blender/python/generic/mathutils_vector.c
@@ -25,7 +25,7 @@
* ***** END GPL LICENSE BLOCK *****
*/
-#include "Mathutils.h"
+#include "mathutils.h"
#include "BLI_blenlib.h"
#include "BKE_utildefines.h"
@@ -39,56 +39,28 @@
#define SWIZZLE_VALID_AXIS 0x4
#define SWIZZLE_AXIS 0x3
-static PyObject *row_vector_multiplication(VectorObject* vec, MatrixObject * mat); /* utility func */
+static int row_vector_multiplication(float rvec[4], VectorObject* vec, MatrixObject * mat); /* utility func */
+static PyObject *Vector_ToTupleExt(VectorObject *self, int ndigits);
-//----------------------------------Mathutils.Vector() ------------------
+//----------------------------------mathutils.Vector() ------------------
// Supports 2D, 3D, and 4D vector objects both int and float values
// accepted. Mixed float and int values accepted. Ints are parsed to float
static PyObject *Vector_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
- PyObject *listObject = NULL;
- int size, i;
- float vec[4], f;
- PyObject *v;
-
- size = PyTuple_GET_SIZE(args); /* we know its a tuple because its an arg */
- if (size == 1) {
- listObject = PyTuple_GET_ITEM(args, 0);
- if (PySequence_Check(listObject)) {
- size = PySequence_Length(listObject);
- } else { // Single argument was not a sequence
- PyErr_SetString(PyExc_TypeError, "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
+ float vec[4]= {0.0f, 0.0f, 0.0f, 0.0f};
+ int size= 3; /* default to a 3D vector */
+
+ switch(PyTuple_GET_SIZE(args)) {
+ case 0:
+ break;
+ case 1:
+ if((size=mathutils_array_parse(vec, 2, 4, PyTuple_GET_ITEM(args, 0), "mathutils.Vector()")) == -1)
return NULL;
- }
- } else if (size == 0) {
- //returns a new empty 3d vector
- return newVectorObject(NULL, 3, Py_NEW, type);
- } else {
- listObject = args;
- }
-
- if (size<2 || size>4) { // Invalid vector size
- PyErr_SetString(PyExc_AttributeError, "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
+ break;
+ default:
+ PyErr_SetString(PyExc_TypeError, "mathutils.Vector(): more then a single arg given");
return NULL;
}
-
- for (i=0; i<size; i++) {
- v=PySequence_GetItem(listObject, i);
- if (v==NULL) { // Failed to read sequence
- PyErr_SetString(PyExc_RuntimeError, "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
- return NULL;
- }
-
- f= PyFloat_AsDouble(v);
- if(f==-1 && PyErr_Occurred()) { // parsed item not a number
- Py_DECREF(v);
- PyErr_SetString(PyExc_TypeError, "Mathutils.Vector(): 2-4 floats or ints expected (optionally in a sequence)\n");
- return NULL;
- }
-
- vec[i]= f;
- Py_DECREF(v);
- }
return newVectorObject(vec, size, Py_NEW, type);
}
@@ -101,7 +73,7 @@ static char Vector_Zero_doc[] =
" :return: an instance of itself\n"
" :rtype: :class:`Vector`\n";
-static PyObject *Vector_Zero(VectorObject * self)
+static PyObject *Vector_Zero(VectorObject *self)
{
int i;
for(i = 0; i < self->size; i++) {
@@ -125,7 +97,7 @@ static char Vector_Normalize_doc[] =
"\n"
" .. note:: Normalize works for vectors of all sizes, however 4D Vectors w axis is left untouched.\n";
-static PyObject *Vector_Normalize(VectorObject * self)
+static PyObject *Vector_Normalize(VectorObject *self)
{
int i;
float norm = 0.0f;
@@ -156,7 +128,7 @@ static char Vector_Resize2D_doc[] =
" :return: an instance of itself\n"
" :rtype: :class:`Vector`\n";
-static PyObject *Vector_Resize2D(VectorObject * self)
+static PyObject *Vector_Resize2D(VectorObject *self)
{
if(self->wrapped==Py_WRAP) {
PyErr_SetString(PyExc_TypeError, "vector.resize2D(): cannot resize wrapped data - only python vectors\n");
@@ -186,7 +158,7 @@ static char Vector_Resize3D_doc[] =
" :return: an instance of itself\n"
" :rtype: :class:`Vector`\n";
-static PyObject *Vector_Resize3D(VectorObject * self)
+static PyObject *Vector_Resize3D(VectorObject *self)
{
if (self->wrapped==Py_WRAP) {
PyErr_SetString(PyExc_TypeError, "vector.resize3D(): cannot resize wrapped data - only python vectors\n");
@@ -219,7 +191,7 @@ static char Vector_Resize4D_doc[] =
" :return: an instance of itself\n"
" :rtype: :class:`Vector`\n";
-static PyObject *Vector_Resize4D(VectorObject * self)
+static PyObject *Vector_Resize4D(VectorObject *self)
{
if(self->wrapped==Py_WRAP) {
PyErr_SetString(PyExc_TypeError, "vector.resize4D(): cannot resize wrapped data - only python vectors");
@@ -248,37 +220,56 @@ static PyObject *Vector_Resize4D(VectorObject * self)
/*----------------------------Vector.toTuple() ------------------ */
static char Vector_ToTuple_doc[] =
-".. method:: to_tuple(precision)\n"
+".. method:: to_tuple(precision=-1)\n"
"\n"
" Return this vector as a tuple with.\n"
"\n"
-" :arg precision: The number to round the value to in [0, 21].\n"
+" :arg precision: The number to round the value to in [-1, 21].\n"
" :type precision: int\n"
" :return: the values of the vector rounded by *precision*\n"
" :rtype: tuple\n";
-static PyObject *Vector_ToTuple(VectorObject * self, PyObject *value)
+/* note: BaseMath_ReadCallback must be called beforehand */
+static PyObject *Vector_ToTupleExt(VectorObject *self, int ndigits)
{
- int ndigits= PyLong_AsSsize_t(value);
- int x;
-
PyObject *ret;
+ int i;
- if(ndigits > 22 || ndigits < 0) { /* accounts for non ints */
- PyErr_SetString(PyExc_TypeError, "vector.to_tuple(ndigits): ndigits must be between 0 and 21");
- return NULL;
+ ret= PyTuple_New(self->size);
+
+ if(ndigits >= 0) {
+ for(i = 0; i < self->size; i++) {
+ PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round((double)self->vec[i], ndigits)));
+ }
+ }
+ else {
+ for(i = 0; i < self->size; i++) {
+ PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->vec[i]));
+ }
}
- if(!BaseMath_ReadCallback(self))
- return NULL;
+ return ret;
+}
- ret= PyTuple_New(self->size);
+static PyObject *Vector_ToTuple(VectorObject *self, PyObject *args)
+{
+ int ndigits= 0;
- for(x = 0; x < self->size; x++) {
- PyTuple_SET_ITEM(ret, x, PyFloat_FromDouble(double_round((double)self->vec[x], ndigits)));
+ if(!PyArg_ParseTuple(args, "|i:to_tuple", &ndigits))
+ return NULL;
+
+ if(ndigits > 22 || ndigits < 0) {
+ PyErr_SetString(PyExc_ValueError, "vector.to_tuple(ndigits): ndigits must be between 0 and 21");
+ return NULL;
}
- return ret;
+ if(PyTuple_GET_SIZE(args)==0)
+ ndigits= -1;
+
+ if(!BaseMath_ReadCallback(self))
+ return NULL;
+
+ return Vector_ToTupleExt(self, ndigits);
}
/*----------------------------Vector.toTrackQuat(track, up) ---------------------- */
@@ -291,19 +282,18 @@ static char Vector_ToTrackQuat_doc[] =
" :type track: string\n"
" :arg up: Up axis in ['X', 'Y', 'Z'].\n"
" :type up: string\n"
-" :return: rotation from the vector and the track and up axis."
+" :return: rotation from the vector and the track and up axis.\n"
" :rtype: :class:`Quaternion`\n";
-static PyObject *Vector_ToTrackQuat( VectorObject * self, PyObject * args )
+static PyObject *Vector_ToTrackQuat(VectorObject *self, PyObject *args )
{
float vec[3], quat[4];
char *strack, *sup;
short track = 2, up = 1;
- if(!PyArg_ParseTuple( args, "|ss:to_track_quat", &strack, &sup)) {
- PyErr_SetString( PyExc_TypeError, "expected optional two strings\n" );
+ if(!PyArg_ParseTuple( args, "|ss:to_track_quat", &strack, &sup))
return NULL;
- }
+
if (self->size != 3) {
PyErr_SetString( PyExc_TypeError, "only for 3D vectors\n" );
return NULL;
@@ -413,7 +403,7 @@ static char Vector_Reflect_doc[] =
" :return: The reflected vector matching the size of this vector.\n"
" :rtype: :class:`Vector`\n";
-static PyObject *Vector_Reflect( VectorObject * self, VectorObject * value )
+static PyObject *Vector_Reflect(VectorObject *self, VectorObject *value )
{
float mirror[3], vec[3];
float reflect[3] = {0.0f, 0.0f, 0.0f};
@@ -454,7 +444,7 @@ static char Vector_Cross_doc[] =
"\n"
" .. note:: both vectors must be 3D\n";
-static PyObject *Vector_Cross( VectorObject * self, VectorObject * value )
+static PyObject *Vector_Cross(VectorObject *self, VectorObject *value )
{
VectorObject *vecCross = NULL;
@@ -486,7 +476,7 @@ static char Vector_Dot_doc[] =
" :return: The dot product.\n"
" :rtype: :class:`Vector`\n";
-static PyObject *Vector_Dot( VectorObject * self, VectorObject * value )
+static PyObject *Vector_Dot(VectorObject *self, VectorObject *value )
{
double dot = 0.0;
int x;
@@ -510,21 +500,29 @@ static PyObject *Vector_Dot( VectorObject * self, VectorObject * value )
return PyFloat_FromDouble(dot);
}
-static char Vector_Angle_doc[] =
-".. function:: angle(other)\n"
+static char Vector_angle_doc[] =
+".. function:: angle(other, fallback)\n"
"\n"
" Return the angle between two vectors.\n"
"\n"
+" :arg other: another vector to compare the angle with\n"
" :type other: :class:`Vector`\n"
-" :return angle: angle in radians\n"
+" :arg fallback: return this value when the angle cant be calculated (zero length vector)\n"
+" :type fallback: any\n"
+" :return: angle in radians or fallback when given\n"
" :rtype: float\n"
"\n"
" .. note:: Zero length vectors raise an :exc:`AttributeError`.\n";
-static PyObject *Vector_Angle(VectorObject * self, VectorObject * value)
+static PyObject *Vector_angle(VectorObject *self, PyObject *args)
{
+ VectorObject *value;
double dot = 0.0f, angleRads, test_v1 = 0.0f, test_v2 = 0.0f;
int x, size;
+ PyObject *fallback= NULL;
+ if(!PyArg_ParseTuple(args, "O!|O:angle", &vector_Type, &value, &fallback))
+ return NULL;
+
if (!VectorObject_Check(value)) {
PyErr_SetString( PyExc_TypeError, "vec.angle(value): expected a vector argument" );
return NULL;
@@ -546,8 +544,15 @@ static PyObject *Vector_Angle(VectorObject * self, VectorObject * value)
test_v2 += value->vec[x] * value->vec[x];
}
if (!test_v1 || !test_v2){
- PyErr_SetString(PyExc_AttributeError, "vector.angle(other): zero length vectors are not acceptable arguments\n");
- return NULL;
+ /* avoid exception */
+ if(fallback) {
+ Py_INCREF(fallback);
+ return fallback;
+ }
+ else {
+ PyErr_SetString(PyExc_ValueError, "vector.angle(other): zero length vectors have no valid angle\n");
+ return NULL;
+ }
}
//dot product
@@ -573,7 +578,7 @@ static char Vector_Difference_doc[] =
"\n"
" .. note:: 2D vectors raise an :exc:`AttributeError`.\n";;
-static PyObject *Vector_Difference( VectorObject * self, VectorObject * value )
+static PyObject *Vector_Difference(VectorObject *self, VectorObject *value )
{
float quat[4], vec_a[3], vec_b[3];
@@ -603,11 +608,12 @@ static char Vector_Project_doc[] =
"\n"
" Return the projection of this vector onto the *other*.\n"
"\n"
+" :arg other: second vector.\n"
" :type other: :class:`Vector`\n"
-" :return projection: the parallel projection vector\n"
+" :return: the parallel projection vector\n"
" :rtype: :class:`Vector`\n";
-static PyObject *Vector_Project(VectorObject * self, VectorObject * value)
+static PyObject *Vector_Project(VectorObject *self, VectorObject *value)
{
float vec[4];
double dot = 0.0f, dot2 = 0.0f;
@@ -643,7 +649,6 @@ static PyObject *Vector_Project(VectorObject * self, VectorObject * value)
return newVectorObject(vec, size, Py_NEW, NULL);
}
-//----------------------------------Mathutils.MidpointVecs() -------------
static char Vector_Lerp_doc[] =
".. function:: lerp(other, factor)\n"
"\n"
@@ -656,16 +661,15 @@ static char Vector_Lerp_doc[] =
" :return: The interpolated rotation.\n"
" :rtype: :class:`Vector`\n";
-static PyObject *Vector_Lerp(VectorObject * self, PyObject * args)
+static PyObject *Vector_Lerp(VectorObject *self, PyObject *args)
{
VectorObject *vec2 = NULL;
float fac, ifac, vec[4];
int x;
- if(!PyArg_ParseTuple(args, "O!f:lerp", &vector_Type, &vec2, &fac)) {
- PyErr_SetString(PyExc_TypeError, "vector.lerp(): expects a vector of the same size and float");
+ if(!PyArg_ParseTuple(args, "O!f:lerp", &vector_Type, &vec2, &fac))
return NULL;
- }
+
if(self->size != vec2->size) {
PyErr_SetString(PyExc_AttributeError, "vector.lerp(): expects (2) vector objects of the same size");
return NULL;
@@ -693,7 +697,7 @@ static char Vector_copy_doc[] =
"\n"
" .. note:: use this to get a copy of a wrapped vector with no reference to the original data.\n";
-static PyObject *Vector_copy(VectorObject * self)
+static PyObject *Vector_copy(VectorObject *self)
{
if(!BaseMath_ReadCallback(self))
return NULL;
@@ -703,38 +707,29 @@ static PyObject *Vector_copy(VectorObject * self)
/*----------------------------print object (internal)-------------
print the object to screen */
-static PyObject *Vector_repr(VectorObject * self)
+static PyObject *Vector_repr(VectorObject *self)
{
- int i;
- char buffer[48], str[1024];
+ PyObject *ret, *tuple;
if(!BaseMath_ReadCallback(self))
return NULL;
-
- BLI_strncpy(str,"[",1024);
- for(i = 0; i < self->size; i++){
- if(i < (self->size - 1)){
- sprintf(buffer, "%.6f, ", self->vec[i]);
- strcat(str,buffer);
- }else{
- sprintf(buffer, "%.6f", self->vec[i]);
- strcat(str,buffer);
- }
- }
- strcat(str, "](vector)");
- return PyUnicode_FromString(str);
+ tuple= Vector_ToTupleExt(self, -1);
+ ret= PyUnicode_FromFormat("Vector(%R)", tuple);
+ Py_DECREF(tuple);
+ return ret;
}
+
/*---------------------SEQUENCE PROTOCOLS------------------------
----------------------------len(object)------------------------
sequence length*/
-static int Vector_len(VectorObject * self)
+static int Vector_len(VectorObject *self)
{
return self->size;
}
/*----------------------------object[]---------------------------
sequence accessor (get)*/
-static PyObject *Vector_item(VectorObject * self, int i)
+static PyObject *Vector_item(VectorObject *self, int i)
{
if(i<0) i= self->size-i;
@@ -751,10 +746,10 @@ static PyObject *Vector_item(VectorObject * self, int i)
}
/*----------------------------object[]-------------------------
sequence accessor (set)*/
-static int Vector_ass_item(VectorObject * self, int i, PyObject * ob)
+static int Vector_ass_item(VectorObject *self, int i, PyObject * ob)
{
- float scalar= (float)PyFloat_AsDouble(ob);
- if(scalar==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
+ float scalar;
+ if((scalar=PyFloat_AsDouble(ob))==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
PyErr_SetString(PyExc_TypeError, "vector[index] = x: index argument not a number\n");
return -1;
}
@@ -774,7 +769,7 @@ static int Vector_ass_item(VectorObject * self, int i, PyObject * ob)
/*----------------------------object[z:y]------------------------
sequence slice (get) */
-static PyObject *Vector_slice(VectorObject * self, int begin, int end)
+static PyObject *Vector_slice(VectorObject *self, int begin, int end)
{
PyObject *list = NULL;
int count;
@@ -796,7 +791,7 @@ static PyObject *Vector_slice(VectorObject * self, int begin, int end)
}
/*----------------------------object[z:y]------------------------
sequence slice (set) */
-static int Vector_ass_slice(VectorObject * self, int begin, int end,
+static int Vector_ass_slice(VectorObject *self, int begin, int end,
PyObject * seq)
{
int i, y, size = 0;
@@ -824,8 +819,7 @@ static int Vector_ass_slice(VectorObject * self, int begin, int end,
return -1;
}
- scalar= (float)PyFloat_AsDouble(v);
- if(scalar==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
+ if((scalar=PyFloat_AsDouble(v)) == -1.0f && PyErr_Occurred()) { /* parsed item not a number */
Py_DECREF(v);
PyErr_SetString(PyExc_TypeError, "vector[begin:end] = []: sequence argument not a number\n");
return -1;
@@ -1008,7 +1002,11 @@ static PyObject *Vector_mul(PyObject * v1, PyObject * v2)
return PyFloat_FromDouble(dot);
}
- /*swap so vec1 is always the vector */
+ /* swap so vec1 is always the vector */
+ /* note: it would seem from this code that the matrix multiplication below
+ * is communicative. however the matrix class will always handle the
+ * (matrix * vector) case so we can ignore it here.
+ * This is NOT so for Quaternions: TODO, check if communicative (vec * quat) is correct */
if (vec2) {
vec1= vec2;
v2= v1;
@@ -1016,15 +1014,25 @@ static PyObject *Vector_mul(PyObject * v1, PyObject * v2)
if (MatrixObject_Check(v2)) {
/* VEC * MATRIX */
- return row_vector_multiplication(vec1, (MatrixObject*)v2);
+ float tvec[4];
+ if(row_vector_multiplication(tvec, vec1, (MatrixObject*)v2) == -1)
+ return NULL;
+ return newVectorObject(tvec, vec1->size, Py_NEW, NULL);
} else if (QuaternionObject_Check(v2)) {
- QuaternionObject *quat = (QuaternionObject*)v2; /* quat_rotation validates */
+ /* VEC * QUAT */
+ QuaternionObject *quat2 = (QuaternionObject*)v2;
+ float tvec[4];
if(vec1->size != 3) {
PyErr_SetString(PyExc_TypeError, "Vector multiplication: only 3D vector rotations (with quats) currently supported\n");
return NULL;
}
- return quat_rotation((PyObject*)vec1, (PyObject*)quat);
+ if(!BaseMath_ReadCallback(quat2)) {
+ return NULL;
+ }
+ copy_v3_v3(tvec, vec1->vec);
+ mul_qt_v3(quat2->quat, tvec);
+ return newVectorObject(tvec, 3, Py_NEW, NULL);
}
else if (((scalar= PyFloat_AsDouble(v2)) == -1.0 && PyErr_Occurred())==0) { /* VEC*FLOAT */
int i;
@@ -1055,42 +1063,20 @@ static PyObject *Vector_imul(PyObject * v1, PyObject * v2)
/* only support vec*=float and vec*=mat
vec*=vec result is a float so that wont work */
if (MatrixObject_Check(v2)) {
- float vecCopy[4];
- int x,y, size = vec->size;
- MatrixObject *mat= (MatrixObject*)v2;
-
- if(!BaseMath_ReadCallback(mat))
+ float tvec[4];
+ if(row_vector_multiplication(tvec, vec, (MatrixObject*)v2) == -1)
return NULL;
-
- if(mat->colSize != size){
- if(mat->rowSize == 4 && vec->size != 3){
- PyErr_SetString(PyExc_AttributeError, "vector * matrix: matrix column size and the vector size must be the same");
- return NULL;
- } else {
- vecCopy[3] = 1.0f;
- }
- }
-
- for(i = 0; i < size; i++){
- vecCopy[i] = vec->vec[i];
- }
-
- size = MIN2(size, mat->colSize);
-
- /*muliplication*/
- for(x = 0, i = 0; x < size; x++, i++) {
- double dot = 0.0f;
- for(y = 0; y < mat->rowSize; y++) {
- dot += mat->matrix[y][x] * vecCopy[y];
- }
- vec->vec[i] = (float)dot;
- }
+
+ i= vec->size - 1;
+ do {
+ vec->vec[i] = tvec[i];
+ } while(i--);
}
else if (((scalar= PyFloat_AsDouble(v2)) == -1.0 && PyErr_Occurred())==0) { /* VEC*=FLOAT */
-
- for(i = 0; i < vec->size; i++) {
+ i= vec->size - 1;
+ do {
vec->vec[i] *= scalar;
- }
+ } while(i--);
}
else {
PyErr_SetString(PyExc_TypeError, "Vector multiplication: arguments not acceptable for this operation\n");
@@ -1118,14 +1104,13 @@ static PyObject *Vector_div(PyObject * v1, PyObject * v2)
if(!BaseMath_ReadCallback(vec1))
return NULL;
-
- scalar = (float)PyFloat_AsDouble(v2);
- if(scalar== -1.0f && PyErr_Occurred()) { /* parsed item not a number */
+
+ if((scalar=PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred()) { /* parsed item not a number */
PyErr_SetString(PyExc_TypeError, "Vector division: Vector must be divided by a float\n");
return NULL;
}
- if(scalar==0.0) { /* not a vector */
+ if(scalar==0.0) {
PyErr_SetString(PyExc_ZeroDivisionError, "Vector division: divide by zero error.\n");
return NULL;
}
@@ -1147,13 +1132,12 @@ static PyObject *Vector_idiv(PyObject * v1, PyObject * v2)
if(!BaseMath_ReadCallback(vec1))
return NULL;
- scalar = (float)PyFloat_AsDouble(v2);
- if(scalar==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
+ if((scalar=PyFloat_AsDouble(v2)) == -1.0f && PyErr_Occurred()) { /* parsed item not a number */
PyErr_SetString(PyExc_TypeError, "Vector division: Vector must be divided by a float\n");
return NULL;
}
-
- if(scalar==0.0) { /* not a vector */
+
+ if(scalar==0.0) {
PyErr_SetString(PyExc_ZeroDivisionError, "Vector division: divide by zero error.\n");
return NULL;
}
@@ -1283,13 +1267,16 @@ static PyObject* Vector_richcmpr(PyObject *objectA, PyObject *objectB, int compa
/*-----------------PROTCOL DECLARATIONS--------------------------*/
static PySequenceMethods Vector_SeqMethods = {
- (lenfunc) Vector_len, /* sq_length */
- (binaryfunc) 0, /* sq_concat */
- (ssizeargfunc) 0, /* sq_repeat */
- (ssizeargfunc) Vector_item, /* sq_item */
- NULL, /* py3 deprecated slice func */
- (ssizeobjargproc) Vector_ass_item, /* sq_ass_item */
- NULL, /* py3 deprecated slice assign func */
+ (lenfunc) Vector_len, /* sq_length */
+ (binaryfunc) 0, /* sq_concat */
+ (ssizeargfunc) 0, /* sq_repeat */
+ (ssizeargfunc) Vector_item, /* sq_item */
+ NULL, /* py3 deprecated slice func */
+ (ssizeobjargproc) Vector_ass_item, /* sq_ass_item */
+ NULL, /* py3 deprecated slice assign func */
+ (objobjproc) NULL, /* sq_contains */
+ (binaryfunc) NULL, /* sq_inplace_concat */
+ (ssizeargfunc) NULL, /* sq_inplace_repeat */
};
static PyObject *Vector_subscript(VectorObject* self, PyObject* item)
@@ -1408,18 +1395,18 @@ static PyNumberMethods Vector_NumMethods = {
* vector axis, vector.x/y/z/w
*/
-static PyObject *Vector_getAxis( VectorObject * self, void *type )
+static PyObject *Vector_getAxis(VectorObject *self, void *type )
{
return Vector_item(self, GET_INT_FROM_POINTER(type));
}
-static int Vector_setAxis( VectorObject * self, PyObject * value, void * type )
+static int Vector_setAxis(VectorObject *self, PyObject * value, void * type )
{
return Vector_ass_item(self, GET_INT_FROM_POINTER(type), value);
}
/* vector.length */
-static PyObject *Vector_getLength( VectorObject * self, void *type )
+static PyObject *Vector_getLength(VectorObject *self, void *type )
{
double dot = 0.0f;
int i;
@@ -1433,25 +1420,24 @@ static PyObject *Vector_getLength( VectorObject * self, void *type )
return PyFloat_FromDouble(sqrt(dot));
}
-static int Vector_setLength( VectorObject * self, PyObject * value )
+static int Vector_setLength(VectorObject *self, PyObject * value )
{
double dot = 0.0f, param;
int i;
if(!BaseMath_ReadCallback(self))
return -1;
-
- param= PyFloat_AsDouble( value );
- if(param==-1.0 && PyErr_Occurred()) {
+
+ if((param=PyFloat_AsDouble(value)) == -1.0 && PyErr_Occurred()) {
PyErr_SetString(PyExc_TypeError, "length must be set to a number");
return -1;
}
- if (param < 0) {
+ if (param < 0.0f) {
PyErr_SetString( PyExc_TypeError, "cannot set a vectors length to a negative value" );
return -1;
}
- if (param==0) {
+ if (param == 0.0f) {
for(i = 0; i < self->size; i++){
self->vec[i]= 0;
}
@@ -1476,7 +1462,7 @@ static int Vector_setLength( VectorObject * self, PyObject * value )
self->vec[i]= self->vec[i] / (float)dot;
}
- BaseMath_WriteCallback(self); /* checked alredy */
+ BaseMath_WriteCallback(self); /* checked already */
return 0;
}
@@ -1484,10 +1470,10 @@ static int Vector_setLength( VectorObject * self, PyObject * value )
/* Get a new Vector according to the provided swizzle. This function has little
error checking, as we are in control of the inputs: the closure is set by us
in Vector_createSwizzleGetSeter. */
-static PyObject *Vector_getSwizzle(VectorObject * self, void *closure)
+static PyObject *Vector_getSwizzle(VectorObject *self, void *closure)
{
- size_t axisA;
- size_t axisB;
+ size_t axis_to;
+ size_t axis_from;
float vec[MAX_DIMENSIONS];
unsigned int swizzleClosure;
@@ -1495,22 +1481,22 @@ static PyObject *Vector_getSwizzle(VectorObject * self, void *closure)
return NULL;
/* Unpack the axes from the closure into an array. */
- axisA = 0;
+ axis_to = 0;
swizzleClosure = GET_INT_FROM_POINTER(closure);
while (swizzleClosure & SWIZZLE_VALID_AXIS)
{
- axisB = swizzleClosure & SWIZZLE_AXIS;
- if(axisB >= self->size) {
+ axis_from = swizzleClosure & SWIZZLE_AXIS;
+ if(axis_from >= self->size) {
PyErr_SetString(PyExc_AttributeError, "Error: vector does not have specified axis.");
return NULL;
}
- vec[axisA] = self->vec[axisB];
+ vec[axis_to] = self->vec[axis_from];
swizzleClosure = swizzleClosure >> SWIZZLE_BITS_PER_AXIS;
- axisA++;
+ axis_to++;
}
- return newVectorObject(vec, axisA, Py_NEW, Py_TYPE(self));
+ return newVectorObject(vec, axis_to, Py_NEW, Py_TYPE(self));
}
/* Set the items of this vector using a swizzle.
@@ -1523,18 +1509,18 @@ static PyObject *Vector_getSwizzle(VectorObject * self, void *closure)
Returns 0 on success and -1 on failure. On failure, the vector will be
unchanged. */
-static int Vector_setSwizzle(VectorObject * self, PyObject * value, void *closure)
+static int Vector_setSwizzle(VectorObject *self, PyObject * value, void *closure)
{
- VectorObject *vecVal = NULL;
- PyObject *item;
- size_t listLen;
+ size_t size_from;
float scalarVal;
- size_t axisB;
- size_t axisA;
+ size_t axis_from;
+ size_t axis_to;
+
unsigned int swizzleClosure;
- float vecTemp[MAX_DIMENSIONS];
+ float tvec[MAX_DIMENSIONS];
+ float vec_assign[MAX_DIMENSIONS];
if(!BaseMath_ReadCallback(self))
return -1;
@@ -1542,95 +1528,48 @@ static int Vector_setSwizzle(VectorObject * self, PyObject * value, void *closur
/* Check that the closure can be used with this vector: even 2D vectors have
swizzles defined for axes z and w, but they would be invalid. */
swizzleClosure = GET_INT_FROM_POINTER(closure);
+ axis_from= 0;
while (swizzleClosure & SWIZZLE_VALID_AXIS)
{
- axisA = swizzleClosure & SWIZZLE_AXIS;
- if (axisA >= self->size)
+ axis_to = swizzleClosure & SWIZZLE_AXIS;
+ if (axis_to >= self->size)
{
PyErr_SetString(PyExc_AttributeError, "Error: vector does not have specified axis.\n");
return -1;
}
swizzleClosure = swizzleClosure >> SWIZZLE_BITS_PER_AXIS;
+ axis_from++;
}
-
- if (VectorObject_Check(value))
- {
- /* Copy vector contents onto swizzled axes. */
- vecVal = (VectorObject*) value;
- axisB = 0;
- swizzleClosure = GET_INT_FROM_POINTER(closure);
- while (swizzleClosure & SWIZZLE_VALID_AXIS && axisB < vecVal->size)
- {
- axisA = swizzleClosure & SWIZZLE_AXIS;
-
- if(axisB >= vecVal->size) {
- PyErr_SetString(PyExc_AttributeError, "Error: vector does not have specified axis.");
- return -1;
- }
-
- vecTemp[axisA] = vecVal->vec[axisB];
-
- swizzleClosure = swizzleClosure >> SWIZZLE_BITS_PER_AXIS;
- axisB++;
- }
- if(axisB != vecVal->size) {
- PyErr_SetString(PyExc_AttributeError, "Error: vector size does not match swizzle.\n");
- return -1;
- }
+ if (((scalarVal=PyFloat_AsDouble(value)) == -1 && PyErr_Occurred())==0) {
+ int i;
+ for(i=0; i < MAX_DIMENSIONS; i++)
+ vec_assign[i]= scalarVal;
- memcpy(self->vec, vecTemp, axisB * sizeof(float));
- /* continue with BaseMathObject_WriteCallback at the end */
+ size_from= axis_from;
+ }
+ else if((size_from=mathutils_array_parse(vec_assign, 2, 4, value, "mathutils.Vector.**** = swizzle assignment")) == -1) {
+ return -1;
}
- else if (PyList_Check(value))
- {
- /* Copy list contents onto swizzled axes. */
- listLen = PyList_Size(value);
- swizzleClosure = GET_INT_FROM_POINTER(closure);
- axisB = 0;
- while (swizzleClosure & SWIZZLE_VALID_AXIS && axisB < listLen)
- {
- item = PyList_GetItem(value, axisB);
- scalarVal = (float)PyFloat_AsDouble(item);
-
- if (scalarVal==-1.0 && PyErr_Occurred()) {
- PyErr_SetString(PyExc_AttributeError, "Error: list item could not be used as a float.\n");
- return -1;
- }
-
-
- axisA = swizzleClosure & SWIZZLE_AXIS;
- vecTemp[axisA] = scalarVal;
-
- swizzleClosure = swizzleClosure >> SWIZZLE_BITS_PER_AXIS;
- axisB++;
- }
-
- if(axisB != listLen) {
- PyErr_SetString(PyExc_AttributeError, "Error: list size does not match swizzle.\n");
- return -1;
- }
- memcpy(self->vec, vecTemp, axisB * sizeof(float));
- /* continue with BaseMathObject_WriteCallback at the end */
+ if(axis_from != size_from) {
+ PyErr_SetString(PyExc_AttributeError, "Error: vector size does not match swizzle.\n");
+ return -1;
}
- else if (((scalarVal = (float)PyFloat_AsDouble(value)) == -1.0 && PyErr_Occurred())==0)
+
+ /* Copy vector contents onto swizzled axes. */
+ axis_from = 0;
+ swizzleClosure = GET_INT_FROM_POINTER(closure);
+ while (swizzleClosure & SWIZZLE_VALID_AXIS)
{
- /* Assign the same value to each axis. */
- swizzleClosure = GET_INT_FROM_POINTER(closure);
- while (swizzleClosure & SWIZZLE_VALID_AXIS)
- {
- axisA = swizzleClosure & SWIZZLE_AXIS;
- self->vec[axisA] = scalarVal;
-
- swizzleClosure = swizzleClosure >> SWIZZLE_BITS_PER_AXIS;
- }
- /* continue with BaseMathObject_WriteCallback at the end */
- }
- else {
- PyErr_SetString( PyExc_TypeError, "Expected a Vector, list or scalar value." );
- return -1;
+ axis_to = swizzleClosure & SWIZZLE_AXIS;
+ tvec[axis_to] = vec_assign[axis_from];
+ swizzleClosure = swizzleClosure >> SWIZZLE_BITS_PER_AXIS;
+ axis_from++;
}
+
+ memcpy(self->vec, tvec, axis_from * sizeof(float));
+ /* continue with BaseMathObject_WriteCallback at the end */
if(!BaseMath_WriteCallback(self))
return -1;
@@ -1642,14 +1581,14 @@ static int Vector_setSwizzle(VectorObject * self, PyObject * value, void *closur
/* Python attributes get/set structure: */
/*****************************************************************************/
static PyGetSetDef Vector_getseters[] = {
- {"x", (getter)Vector_getAxis, (setter)Vector_setAxis, "Vector X axis. **type** float", (void *)0},
- {"y", (getter)Vector_getAxis, (setter)Vector_setAxis, "Vector Y axis. **type** float", (void *)1},
- {"z", (getter)Vector_getAxis, (setter)Vector_setAxis, "Vector Z axis (3D Vectors only). **type** float", (void *)2},
- {"w", (getter)Vector_getAxis, (setter)Vector_setAxis, "Vector W axis (4D Vectors only). **type** float", (void *)3},
- {"length", (getter)Vector_getLength, (setter)Vector_setLength, "Vector Length. **type** float", NULL},
- {"magnitude", (getter)Vector_getLength, (setter)Vector_setLength, "Vector Length. **type** float", NULL},
+ {"x", (getter)Vector_getAxis, (setter)Vector_setAxis, "Vector X axis.\n\n:type: float", (void *)0},
+ {"y", (getter)Vector_getAxis, (setter)Vector_setAxis, "Vector Y axis.\n\n:type: float", (void *)1},
+ {"z", (getter)Vector_getAxis, (setter)Vector_setAxis, "Vector Z axis (3D Vectors only).\n\n:type: float", (void *)2},
+ {"w", (getter)Vector_getAxis, (setter)Vector_setAxis, "Vector W axis (4D Vectors only).\n\n:type: float", (void *)3},
+ {"length", (getter)Vector_getLength, (setter)Vector_setLength, "Vector Length.\n\n:type: float", NULL},
+ {"magnitude", (getter)Vector_getLength, (setter)Vector_setLength, "Vector Length.\n\n:type: float", NULL},
{"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, BaseMathObject_Wrapped_doc, NULL},
- {"_owner", (getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
+ {"owner", (getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
/* autogenerated swizzle attrs, see python script below */
{"xx", (getter)Vector_getSwizzle, (setter)NULL, NULL, SET_INT_IN_POINTER(((0|SWIZZLE_VALID_AXIS) | ((0|SWIZZLE_VALID_AXIS)<<SWIZZLE_BITS_PER_AXIS)))}, // 36
@@ -2038,37 +1977,37 @@ if len(unique) != len(items):
// [2][5][8]
// [3][6][9]
//vector/matrix multiplication IS NOT COMMUTATIVE!!!!
-static PyObject *row_vector_multiplication(VectorObject* vec, MatrixObject * mat)
+static int row_vector_multiplication(float rvec[4], VectorObject* vec, MatrixObject * mat)
{
- float vecNew[4], vecCopy[4];
+ float vecCopy[4];
double dot = 0.0f;
int x, y, z = 0, vec_size = vec->size;
if(mat->colSize != vec_size){
if(mat->colSize == 4 && vec_size != 3){
PyErr_SetString(PyExc_AttributeError, "vector * matrix: matrix column size and the vector size must be the same");
- return NULL;
+ return -1;
}else{
vecCopy[3] = 1.0f;
}
}
if(!BaseMath_ReadCallback(vec) || !BaseMath_ReadCallback(mat))
- return NULL;
+ return -1;
for(x = 0; x < vec_size; x++){
vecCopy[x] = vec->vec[x];
}
- vecNew[3] = 1.0f;
+ rvec[3] = 1.0f;
//muliplication
for(x = 0; x < mat->rowSize; x++) {
for(y = 0; y < mat->colSize; y++) {
dot += mat->matrix[x][y] * vecCopy[y];
}
- vecNew[z++] = (float)dot;
+ rvec[z++] = (float)dot;
dot = 0.0f;
}
- return newVectorObject(vecNew, vec_size, Py_NEW, NULL);
+ return 0;
}
/*----------------------------Vector.negate() -------------------- */
@@ -2080,7 +2019,7 @@ static char Vector_Negate_doc[] =
" :return: an instance of itself\n"
" :rtype: :class:`Vector`\n";
-static PyObject *Vector_Negate(VectorObject * self)
+static PyObject *Vector_Negate(VectorObject *self)
{
int i;
if(!BaseMath_ReadCallback(self))
@@ -2089,7 +2028,7 @@ static PyObject *Vector_Negate(VectorObject * self)
for(i = 0; i < self->size; i++)
self->vec[i] = -(self->vec[i]);
- BaseMath_WriteCallback(self); // alredy checked for error
+ BaseMath_WriteCallback(self); // already checked for error
Py_INCREF(self);
return (PyObject*)self;
@@ -2102,12 +2041,12 @@ static struct PyMethodDef Vector_methods[] = {
{"resize2D", (PyCFunction) Vector_Resize2D, METH_NOARGS, Vector_Resize2D_doc},
{"resize3D", (PyCFunction) Vector_Resize3D, METH_NOARGS, Vector_Resize3D_doc},
{"resize4D", (PyCFunction) Vector_Resize4D, METH_NOARGS, Vector_Resize4D_doc},
- {"to_tuple", (PyCFunction) Vector_ToTuple, METH_O, Vector_ToTuple_doc},
+ {"to_tuple", (PyCFunction) Vector_ToTuple, METH_VARARGS, Vector_ToTuple_doc},
{"to_track_quat", ( PyCFunction ) Vector_ToTrackQuat, METH_VARARGS, Vector_ToTrackQuat_doc},
{"reflect", ( PyCFunction ) Vector_Reflect, METH_O, Vector_Reflect_doc},
{"cross", ( PyCFunction ) Vector_Cross, METH_O, Vector_Cross_doc},
{"dot", ( PyCFunction ) Vector_Dot, METH_O, Vector_Dot_doc},
- {"angle", ( PyCFunction ) Vector_Angle, METH_O, Vector_Angle_doc},
+ {"angle", ( PyCFunction ) Vector_angle, METH_VARARGS, Vector_angle_doc},
{"difference", ( PyCFunction ) Vector_Difference, METH_O, Vector_Difference_doc},
{"project", ( PyCFunction ) Vector_Project, METH_O, Vector_Project_doc},
{"lerp", ( PyCFunction ) Vector_Lerp, METH_VARARGS, Vector_Lerp_doc},
@@ -2130,7 +2069,7 @@ PyTypeObject vector_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
/* For printing, in format "<module>.<name>" */
"vector", /* char *tp_name; */
- sizeof( VectorObject ), /* int tp_basicsize; */
+ sizeof(VectorObject), /* int tp_basicsize; */
0, /* tp_itemsize; For allocation */
/* Methods to implement standard operations */
diff --git a/source/blender/python/generic/vector.h b/source/blender/python/generic/mathutils_vector.h
index fd95f5a6750..42b9849dd3f 100644
--- a/source/blender/python/generic/vector.h
+++ b/source/blender/python/generic/mathutils_vector.h
@@ -1,4 +1,5 @@
-/* $Id$
+/*
+ * $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
@@ -35,14 +36,8 @@
extern PyTypeObject vector_Type;
#define VectorObject_Check(_v) PyObject_TypeCheck((_v), &vector_Type)
-typedef struct { /* keep aligned with BaseMathObject in Mathutils.h */
- PyObject_VAR_HEAD
- float *vec; /*1D array of data (alias), wrapped status depends on wrapped status */
- PyObject *cb_user; /* if this vector references another object, otherwise NULL, *Note* this owns its reference */
- unsigned char cb_type; /* which user funcs do we adhere to, RNA, GameObject, etc */
- unsigned char cb_subtype; /* subtype: location, rotation... to avoid defining many new functions for every attribute of the same type */
- unsigned char wrapped; /* wrapped data type? */
- /* end BaseMathObject */
+typedef struct {
+ BASE_MATH_MEMBERS(vec)
unsigned char size; /* vec size 2,3 or 4 */
} VectorObject;
diff --git a/source/blender/python/generic/noise.c b/source/blender/python/generic/noise.c
new file mode 100644
index 00000000000..4a09cbb58d8
--- /dev/null
+++ b/source/blender/python/generic/noise.c
@@ -0,0 +1,760 @@
+/**
+ * $Id$
+ *
+ * Blender.Noise BPython module implementation.
+ * This submodule has functions to generate noise of various types.
+ *
+ * ***** BEGIN GPL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+ *
+ * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
+ * All rights reserved.
+ *
+ * This is a new part of Blender.
+ *
+ * Contributor(s): eeshlo
+ *
+ * ***** END GPL LICENSE BLOCK *****
+*/
+
+/************************/
+/* Blender Noise Module */
+/************************/
+
+#include <Python.h>
+#include "structseq.h"
+
+#include "BLI_blenlib.h"
+#include "DNA_texture_types.h"
+/*-----------------------------------------*/
+/* 'mersenne twister' random number generator */
+
+/*
+ A C-program for MT19937, with initialization improved 2002/2/10.
+ Coded by Takuji Nishimura and Makoto Matsumoto.
+ This is a faster version by taking Shawn Cokus's optimization,
+ Matthe Bellew's simplification, Isaku Wada's real version.
+
+ Before using, initialize the state by using init_genrand(seed)
+ or init_by_array(init_key, key_length).
+
+ Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
+ All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ 1. Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ 3. The names of its contributors may not be used to endorse or promote
+ products derived from this software without specific prior written
+ permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+ Any feedback is very welcome.
+ http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
+ email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
+*/
+
+/* 2.5 update
+ * Noise.setRandomSeed --> seed_set
+ * Noise.randuvec --> random_unit_vector
+ * Noise.vNoise --> noise_vector
+ * Noise.vTurbulence --> turbulence_vector
+ * Noise.multiFractal --> multi_fractal
+ * Noise.cellNoise --> cell
+ * Noise.cellNoiseV --> cell_vector
+ * Noise.vlNoise --> vl_vector
+ * Noise.heteroTerrain --> hetero_terrain
+ * Noise.hybridMFractal --> hybrid_multi_fractal
+ * Noise.fBm --> fractal
+ * Noise.ridgedMFractal --> ridged_multi_fractal
+ *
+ * Const's *
+ * Noise.NoiseTypes --> types
+ * Noise.DistanceMetrics --> distance_metrics
+ */
+
+/* Period parameters */
+#define N 624
+#define M 397
+#define MATRIX_A 0x9908b0dfUL /* constant vector a */
+#define UMASK 0x80000000UL /* most significant w-r bits */
+#define LMASK 0x7fffffffUL /* least significant r bits */
+#define MIXBITS(u,v) (((u) & UMASK) | ((v) & LMASK))
+#define TWIST(u,v) ((MIXBITS(u,v) >> 1) ^ ((v)&1UL ? MATRIX_A : 0UL))
+
+static unsigned long state[N]; /* the array for the state vector */
+static int left = 1;
+static int initf = 0;
+static unsigned long *next;
+
+PyObject *Noise_Init(void);
+
+/* initializes state[N] with a seed */
+static void init_genrand(unsigned long s)
+{
+ int j;
+ state[0] = s & 0xffffffffUL;
+ for(j = 1; j < N; j++) {
+ state[j] =
+ (1812433253UL *
+ (state[j - 1] ^ (state[j - 1] >> 30)) + j);
+ /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
+ /* In the previous versions, MSBs of the seed affect */
+ /* only MSBs of the array state[]. */
+ /* 2002/01/09 modified by Makoto Matsumoto */
+ state[j] &= 0xffffffffUL; /* for >32 bit machines */
+ }
+ left = 1;
+ initf = 1;
+}
+
+static void next_state(void)
+{
+ unsigned long *p = state;
+ int j;
+
+ /* if init_genrand() has not been called, */
+ /* a default initial seed is used */
+ if(initf == 0)
+ init_genrand(5489UL);
+
+ left = N;
+ next = state;
+
+ for(j = N - M + 1; --j; p++)
+ *p = p[M] ^ TWIST(p[0], p[1]);
+
+ for(j = M; --j; p++)
+ *p = p[M - N] ^ TWIST(p[0], p[1]);
+
+ *p = p[M - N] ^ TWIST(p[0], state[0]);
+}
+
+/*------------------------------------------------------------*/
+
+static void setRndSeed(int seed)
+{
+ if(seed == 0)
+ init_genrand(time(NULL));
+ else
+ init_genrand(seed);
+}
+
+/* float number in range [0, 1) using the mersenne twister rng */
+static float frand()
+{
+ unsigned long y;
+
+ if(--left == 0)
+ next_state();
+ y = *next++;
+
+ /* Tempering */
+ y ^= (y >> 11);
+ y ^= (y << 7) & 0x9d2c5680UL;
+ y ^= (y << 15) & 0xefc60000UL;
+ y ^= (y >> 18);
+
+ return (float) y / 4294967296.f;
+}
+
+/*------------------------------------------------------------*/
+
+/* returns random unit vector */
+static void randuvec(float v[3])
+{
+ float r;
+ v[2] = 2.f * frand() - 1.f;
+ if((r = 1.f - v[2] * v[2]) > 0.f) {
+ float a = (float)(6.283185307f * frand());
+ r = (float)sqrt(r);
+ v[0] = (float)(r * cos(a));
+ v[1] = (float)(r * sin(a));
+ } else
+ v[2] = 1.f;
+}
+
+static PyObject *Noise_random(PyObject * self)
+{
+ return PyFloat_FromDouble(frand());
+}
+
+static PyObject *Noise_random_unit_vector(PyObject * self)
+{
+ float v[3] = {0.0f, 0.0f, 0.0f};
+ randuvec(v);
+ return Py_BuildValue("[fff]", v[0], v[1], v[2]);
+}
+
+/*---------------------------------------------------------------------*/
+
+/* Random seed init. Only used for MT random() & randuvec() */
+
+static PyObject *Noise_seed_set(PyObject * self, PyObject * args)
+{
+ int s;
+ if(!PyArg_ParseTuple(args, "i:seed_set", &s))
+ return NULL;
+ setRndSeed(s);
+ Py_RETURN_NONE;
+}
+
+/*-------------------------------------------------------------------------*/
+
+/* General noise */
+
+static PyObject *Noise_noise(PyObject * self, PyObject * args)
+{
+ float x, y, z;
+ int nb = 1;
+ if(!PyArg_ParseTuple(args, "(fff)|i:noise", &x, &y, &z, &nb))
+ return NULL;
+
+ return PyFloat_FromDouble((2.0 * BLI_gNoise(1.0, x, y, z, 0, nb) - 1.0));
+}
+
+/*-------------------------------------------------------------------------*/
+
+/* General Vector noise */
+
+static void noise_vector(float x, float y, float z, int nb, float v[3])
+{
+ /* Simply evaluate noise at 3 different positions */
+ v[0] = (float)(2.0 * BLI_gNoise(1.f, x + 9.321f, y - 1.531f, z - 7.951f, 0,
+ nb) - 1.0);
+ v[1] = (float)(2.0 * BLI_gNoise(1.f, x, y, z, 0, nb) - 1.0);
+ v[2] = (float)(2.0 * BLI_gNoise(1.f, x + 6.327f, y + 0.1671f, z - 2.672f, 0,
+ nb) - 1.0);
+}
+
+static PyObject *Noise_vector(PyObject * self, PyObject * args)
+{
+ float x, y, z, v[3];
+ int nb = 1;
+ if(!PyArg_ParseTuple(args, "(fff)|i:vector", &x, &y, &z, &nb))
+ return NULL;
+ noise_vector(x, y, z, nb, v);
+ return Py_BuildValue("[fff]", v[0], v[1], v[2]);
+}
+
+/*---------------------------------------------------------------------------*/
+
+/* General turbulence */
+
+static float turb(float x, float y, float z, int oct, int hard, int nb,
+ float ampscale, float freqscale)
+{
+ float amp, out, t;
+ int i;
+ amp = 1.f;
+ out = (float)(2.0 * BLI_gNoise(1.f, x, y, z, 0, nb) - 1.0);
+ if(hard)
+ out = (float)fabs(out);
+ for(i = 1; i < oct; i++) {
+ amp *= ampscale;
+ x *= freqscale;
+ y *= freqscale;
+ z *= freqscale;
+ t = (float)(amp * (2.0 * BLI_gNoise(1.f, x, y, z, 0, nb) - 1.0));
+ if(hard)
+ t = (float)fabs(t);
+ out += t;
+ }
+ return out;
+}
+
+static PyObject *Noise_turbulence(PyObject * self, PyObject * args)
+{
+ float x, y, z;
+ int oct, hd, nb = 1;
+ float as = 0.5, fs = 2.0;
+ if(!PyArg_ParseTuple(args, "(fff)ii|iff:turbulence", &x, &y, &z, &oct, &hd, &nb, &as, &fs))
+ return NULL;
+
+ return PyFloat_FromDouble(turb(x, y, z, oct, hd, nb, as, fs));
+}
+
+/*--------------------------------------------------------------------------*/
+
+/* Turbulence Vector */
+
+static void vTurb(float x, float y, float z, int oct, int hard, int nb,
+ float ampscale, float freqscale, float v[3])
+{
+ float amp, t[3];
+ int i;
+ amp = 1.f;
+ noise_vector(x, y, z, nb, v);
+ if(hard) {
+ v[0] = (float)fabs(v[0]);
+ v[1] = (float)fabs(v[1]);
+ v[2] = (float)fabs(v[2]);
+ }
+ for(i = 1; i < oct; i++) {
+ amp *= ampscale;
+ x *= freqscale;
+ y *= freqscale;
+ z *= freqscale;
+ noise_vector(x, y, z, nb, t);
+ if(hard) {
+ t[0] = (float)fabs(t[0]);
+ t[1] = (float)fabs(t[1]);
+ t[2] = (float)fabs(t[2]);
+ }
+ v[0] += amp * t[0];
+ v[1] += amp * t[1];
+ v[2] += amp * t[2];
+ }
+}
+
+static PyObject *Noise_turbulence_vector(PyObject * self, PyObject * args)
+{
+ float x, y, z, v[3];
+ int oct, hd, nb = 1;
+ float as = 0.5, fs = 2.0;
+ if(!PyArg_ParseTuple(args, "(fff)ii|iff:turbulence_vector", &x, &y, &z, &oct, &hd, &nb, &as, &fs))
+ return NULL;
+ vTurb(x, y, z, oct, hd, nb, as, fs, v);
+ return Py_BuildValue("[fff]", v[0], v[1], v[2]);
+}
+
+/*---------------------------------------------------------------------*/
+
+/* F. Kenton Musgrave's fractal functions */
+
+static PyObject *Noise_fractal(PyObject * self, PyObject * args)
+{
+ float x, y, z, H, lac, oct;
+ int nb = 1;
+ if(!PyArg_ParseTuple(args, "(fff)fff|i:fractal", &x, &y, &z, &H, &lac, &oct, &nb))
+ return NULL;
+ return PyFloat_FromDouble(mg_fBm(x, y, z, H, lac, oct, nb));
+}
+
+/*------------------------------------------------------------------------*/
+
+static PyObject *Noise_multi_fractal(PyObject * self, PyObject * args)
+{
+ float x, y, z, H, lac, oct;
+ int nb = 1;
+ if(!PyArg_ParseTuple(args, "(fff)fff|i:multi_fractal", &x, &y, &z, &H, &lac, &oct, &nb))
+ return NULL;
+
+ return PyFloat_FromDouble(mg_MultiFractal(x, y, z, H, lac, oct, nb));
+}
+
+/*------------------------------------------------------------------------*/
+
+static PyObject *Noise_vl_vector(PyObject * self, PyObject * args)
+{
+ float x, y, z, d;
+ int nt1 = 1, nt2 = 1;
+ if(!PyArg_ParseTuple(args, "(fff)f|ii:vl_vector", &x, &y, &z, &d, &nt1, &nt2))
+ return NULL;
+ return PyFloat_FromDouble(mg_VLNoise(x, y, z, d, nt1, nt2));
+}
+
+/*-------------------------------------------------------------------------*/
+
+static PyObject *Noise_hetero_terrain(PyObject * self, PyObject * args)
+{
+ float x, y, z, H, lac, oct, ofs;
+ int nb = 1;
+ if(!PyArg_ParseTuple(args, "(fff)ffff|i:hetero_terrain", &x, &y, &z, &H, &lac, &oct, &ofs, &nb))
+ return NULL;
+
+ return PyFloat_FromDouble(mg_HeteroTerrain(x, y, z, H, lac, oct, ofs, nb));
+}
+
+/*-------------------------------------------------------------------------*/
+
+static PyObject *Noise_hybrid_multi_fractal(PyObject * self, PyObject * args)
+{
+ float x, y, z, H, lac, oct, ofs, gn;
+ int nb = 1;
+ if(!PyArg_ParseTuple(args, "(fff)fffff|i:hybrid_multi_fractal", &x, &y, &z, &H, &lac, &oct, &ofs, &gn, &nb))
+ return NULL;
+
+ return PyFloat_FromDouble(mg_HybridMultiFractal(x, y, z, H, lac, oct, ofs, gn, nb));
+}
+
+/*------------------------------------------------------------------------*/
+
+static PyObject *Noise_ridged_multi_fractal(PyObject * self, PyObject * args)
+{
+ float x, y, z, H, lac, oct, ofs, gn;
+ int nb = 1;
+ if(!PyArg_ParseTuple(args, "(fff)fffff|i:ridged_multi_fractal", &x, &y, &z, &H, &lac, &oct, &ofs, &gn, &nb))
+ return NULL;
+ return PyFloat_FromDouble(mg_RidgedMultiFractal(x, y, z, H, lac, oct, ofs, gn, nb));
+}
+
+/*-------------------------------------------------------------------------*/
+
+static PyObject *Noise_voronoi(PyObject * self, PyObject * args)
+{
+ float x, y, z, da[4], pa[12];
+ int dtype = 0;
+ float me = 2.5; /* default minkovsky exponent */
+ if(!PyArg_ParseTuple(args, "(fff)|if:voronoi", &x, &y, &z, &dtype, &me))
+ return NULL;
+ voronoi(x, y, z, da, pa, me, dtype);
+ return Py_BuildValue("[[ffff][[fff][fff][fff][fff]]]",
+ da[0], da[1], da[2], da[3],
+ pa[0], pa[1], pa[2],
+ pa[3], pa[4], pa[5],
+ pa[6], pa[7], pa[8], pa[9], pa[10], pa[11]);
+}
+
+/*-------------------------------------------------------------------------*/
+
+static PyObject *Noise_cell(PyObject * self, PyObject * args)
+{
+ float x, y, z;
+ if(!PyArg_ParseTuple(args, "(fff):cell", &x, &y, &z))
+ return NULL;
+
+ return PyFloat_FromDouble(cellNoise(x, y, z));
+}
+
+/*--------------------------------------------------------------------------*/
+
+static PyObject *Noise_cell_vector(PyObject * self, PyObject * args)
+{
+ float x, y, z, ca[3];
+ if(!PyArg_ParseTuple(args, "(fff):cell_vector", &x, &y, &z))
+ return NULL;
+ cellNoiseV(x, y, z, ca);
+ return Py_BuildValue("[fff]", ca[0], ca[1], ca[2]);
+}
+
+/*--------------------------------------------------------------------------*/
+/* For all other Blender modules, this stuff seems to be put in a header file.
+ This doesn't seem really appropriate to me, so I just put it here, feel free to change it.
+ In the original module I actually kept the docs stings with the functions themselves,
+ but I grouped them here so that it can easily be moved to a header if anyone thinks that is necessary. */
+
+static char random__doc__[] = "() No arguments.\n\n\
+Returns a random floating point number in the range [0, 1)";
+
+static char random_unit_vector__doc__[] =
+ "() No arguments.\n\nReturns a random unit vector (3-float list).";
+
+static char seed_set__doc__[] = "(seed value)\n\n\
+Initializes random number generator.\n\
+if seed is zero, the current time will be used instead.";
+
+static char noise__doc__[] = "((x,y,z) tuple, [noisetype])\n\n\
+Returns general noise of the optional specified type.\n\
+Optional argument noisetype determines the type of noise, STDPERLIN by default, see NoiseTypes.";
+
+static char noise_vector__doc__[] = "((x,y,z) tuple, [noisetype])\n\n\
+Returns noise vector (3-float list) of the optional specified type.\
+Optional argument noisetype determines the type of noise, STDPERLIN by default, see NoiseTypes.";
+
+static char turbulence__doc__[] =
+ "((x,y,z) tuple, octaves, hard, [noisebasis], [ampscale], [freqscale])\n\n\
+Returns general turbulence value using the optional specified noisebasis function.\n\
+octaves (integer) is the number of noise values added.\n\
+hard (bool), when false (0) returns 'soft' noise, when true (1) returns 'hard' noise (returned value always positive).\n\
+Optional arguments:\n\
+noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.\n\
+ampscale sets the amplitude scale value of the noise frequencies added, 0.5 by default.\n\
+freqscale sets the frequency scale factor, 2.0 by default.";
+
+static char turbulence_vector__doc__[] =
+ "((x,y,z) tuple, octaves, hard, [noisebasis], [ampscale], [freqscale])\n\n\
+Returns general turbulence vector (3-float list) using the optional specified noisebasis function.\n\
+octaves (integer) is the number of noise values added.\n\
+hard (bool), when false (0) returns 'soft' noise, when true (1) returns 'hard' noise (returned vector always positive).\n\
+Optional arguments:\n\
+noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.\n\
+ampscale sets the amplitude scale value of the noise frequencies added, 0.5 by default.\n\
+freqscale sets the frequency scale factor, 2.0 by default.";
+
+static char fractal__doc__[] =
+ "((x,y,z) tuple, H, lacunarity, octaves, [noisebasis])\n\n\
+Returns Fractal Brownian Motion noise value(fBm).\n\
+H is the fractal increment parameter.\n\
+lacunarity is the gap between successive frequencies.\n\
+octaves is the number of frequencies in the fBm.\n\
+Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
+
+static char multi_fractal__doc__[] =
+ "((x,y,z) tuple, H, lacunarity, octaves, [noisebasis])\n\n\
+Returns Multifractal noise value.\n\
+H determines the highest fractal dimension.\n\
+lacunarity is gap between successive frequencies.\n\
+octaves is the number of frequencies in the fBm.\n\
+Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
+
+static char vl_vector__doc__[] =
+ "((x,y,z) tuple, distortion, [noisetype1], [noisetype2])\n\n\
+Returns Variable Lacunarity Noise value, a distorted variety of noise.\n\
+distortion sets the amount of distortion.\n\
+Optional arguments noisetype1 and noisetype2 set the noisetype to distort and the noisetype used for the distortion respectively.\n\
+See NoiseTypes, both are STDPERLIN by default.";
+
+static char hetero_terrain__doc__[] =
+ "((x,y,z) tuple, H, lacunarity, octaves, offset, [noisebasis])\n\n\
+returns Heterogeneous Terrain value\n\
+H determines the fractal dimension of the roughest areas.\n\
+lacunarity is the gap between successive frequencies.\n\
+octaves is the number of frequencies in the fBm.\n\
+offset raises the terrain from 'sea level'.\n\
+Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
+
+static char hybrid_multi_fractal__doc__[] =
+ "((x,y,z) tuple, H, lacunarity, octaves, offset, gain, [noisebasis])\n\n\
+returns Hybrid Multifractal value.\n\
+H determines the fractal dimension of the roughest areas.\n\
+lacunarity is the gap between successive frequencies.\n\
+octaves is the number of frequencies in the fBm.\n\
+offset raises the terrain from 'sea level'.\n\
+gain scales the values.\n\
+Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
+
+static char ridged_multi_fractal__doc__[] =
+ "((x,y,z) tuple, H, lacunarity, octaves, offset, gain [noisebasis])\n\n\
+returns Ridged Multifractal value.\n\
+H determines the fractal dimension of the roughest areas.\n\
+lacunarity is the gap between successive frequencies.\n\
+octaves is the number of frequencies in the fBm.\n\
+offset raises the terrain from 'sea level'.\n\
+gain scales the values.\n\
+Optional argument noisebasis determines the type of noise used for the turbulence, STDPERLIN by default, see NoiseTypes.";
+
+static char voronoi__doc__[] =
+ "((x,y,z) tuple, distance_metric, [exponent])\n\n\
+returns a list, containing a list of distances in order of closest feature,\n\
+and a list containing the positions of the four closest features\n\
+Optional arguments:\n\
+distance_metric: see DistanceMetrics, default is DISTANCE\n\
+exponent is only used with MINKOVSKY, default is 2.5.";
+
+static char cell__doc__[] = "((x,y,z) tuple)\n\n\
+returns cellnoise float value.";
+
+static char cell_vector__doc__[] = "((x,y,z) tuple)\n\n\
+returns cellnoise vector/point/color (3-float list).";
+
+static char Noise__doc__[] = "Blender Noise and Turbulence Module\n\n\
+This module can be used to generate noise of various types.\n\
+This can be used for terrain generation, to create textures,\n\
+make animations more 'animated', object deformation, etc.\n\
+As an example, this code segment when scriptlinked to a framechanged event,\n\
+will make the camera sway randomly about, by changing parameters this can\n\
+look like anything from an earthquake to a very nervous or maybe even drunk cameraman...\n\
+(the camera needs an ipo with at least one Loc & Rot key for this to work!):\n\
+\n\
+\tfrom Blender import Get, Scene, Noise\n\
+\n\
+\t####################################################\n\
+\t# This controls jitter speed\n\
+\tsl = 0.025\n\
+\t# This controls the amount of position jitter\n\
+\tsp = 0.1\n\
+\t# This controls the amount of rotation jitter\n\
+\tsr = 0.25\n\
+\t####################################################\n\
+\n\
+\ttime = Get('curtime')\n\
+\tob = Scene.GetCurrent().getCurrentCamera()\n\
+\tps = (sl*time, sl*time, sl*time)\n\
+\t# To add jitter only when the camera moves, use this next line instead\n\
+\t#ps = (sl*ob.LocX, sl*ob.LocY, sl*ob.LocZ)\n\
+\trv = Noise.turbulence_vector(ps, 3, 0, Noise.NoiseTypes.NEWPERLIN)\n\
+\tob.dloc = (sp*rv[0], sp*rv[1], sp*rv[2])\n\
+\tob.drot = (sr*rv[0], sr*rv[1], sr*rv[2])\n\
+\n";
+
+/* Just in case, declarations for a header file */
+/*
+static PyObject *Noise_random(PyObject *self);
+static PyObject *Noise_random_unit_vector(PyObject *self);
+static PyObject *Noise_seed_set(PyObject *self, PyObject *args);
+static PyObject *Noise_noise(PyObject *self, PyObject *args);
+static PyObject *Noise_vector(PyObject *self, PyObject *args);
+static PyObject *Noise_turbulence(PyObject *self, PyObject *args);
+static PyObject *Noise_turbulence_vector(PyObject *self, PyObject *args);
+static PyObject *Noise_fractal(PyObject *self, PyObject *args);
+static PyObject *Noise_multi_fractal(PyObject *self, PyObject *args);
+static PyObject *Noise_vl_vector(PyObject *self, PyObject *args);
+static PyObject *Noise_hetero_terrain(PyObject *self, PyObject *args);
+static PyObject *Noise_hybrid_multi_fractal(PyObject *self, PyObject *args);
+static PyObject *Noise_ridged_multi_fractal(PyObject *self, PyObject *args);
+static PyObject *Noise_voronoi(PyObject *self, PyObject *args);
+static PyObject *Noise_cell(PyObject *self, PyObject *args);
+static PyObject *Noise_cell_vector(PyObject *self, PyObject *args);
+*/
+
+static PyMethodDef NoiseMethods[] = {
+ {"seed_set", (PyCFunction) Noise_seed_set, METH_VARARGS, seed_set__doc__},
+ {"random", (PyCFunction) Noise_random, METH_NOARGS, random__doc__},
+ {"random_unit_vector", (PyCFunction) Noise_random_unit_vector, METH_NOARGS, random_unit_vector__doc__},
+ {"noise", (PyCFunction) Noise_noise, METH_VARARGS, noise__doc__},
+ {"vector", (PyCFunction) Noise_vector, METH_VARARGS, noise_vector__doc__},
+ {"turbulence", (PyCFunction) Noise_turbulence, METH_VARARGS, turbulence__doc__},
+ {"turbulence_vector", (PyCFunction) Noise_turbulence_vector, METH_VARARGS, turbulence_vector__doc__},
+ {"fractal", (PyCFunction) Noise_fractal, METH_VARARGS, fractal__doc__},
+ {"multi_fractal", (PyCFunction) Noise_multi_fractal, METH_VARARGS, multi_fractal__doc__},
+ {"vl_vector", (PyCFunction) Noise_vl_vector, METH_VARARGS, vl_vector__doc__},
+ {"hetero_terrain", (PyCFunction) Noise_hetero_terrain, METH_VARARGS, hetero_terrain__doc__},
+ {"hybrid_multi_fractal", (PyCFunction) Noise_hybrid_multi_fractal, METH_VARARGS, hybrid_multi_fractal__doc__},
+ {"ridged_multi_fractal", (PyCFunction) Noise_ridged_multi_fractal, METH_VARARGS, ridged_multi_fractal__doc__},
+ {"voronoi", (PyCFunction) Noise_voronoi, METH_VARARGS, voronoi__doc__},
+ {"cell", (PyCFunction) Noise_cell, METH_VARARGS, cell__doc__},
+ {"cell_vector", (PyCFunction) Noise_cell_vector, METH_VARARGS, cell_vector__doc__},
+ {NULL, NULL, 0, NULL}
+};
+
+/*----------------------------------------------------------------------*/
+
+static struct PyModuleDef noise_module_def = {
+ PyModuleDef_HEAD_INIT,
+ "noise", /* m_name */
+ Noise__doc__, /* m_doc */
+ 0, /* m_size */
+ NoiseMethods, /* m_methods */
+ 0, /* m_reload */
+ 0, /* m_traverse */
+ 0, /* m_clear */
+ 0, /* m_free */
+};
+
+PyObject *Noise_Init(void)
+{
+ PyObject *submodule = PyModule_Create(&noise_module_def);
+ PyDict_SetItemString(PyImport_GetModuleDict(), noise_module_def.m_name, submodule);
+
+ /* use current time as seed for random number generator by default */
+ setRndSeed(0);
+
+ /* Constant noisetype dictionary */
+ if(submodule) {
+ static PyStructSequence_Field noise_types_fields[] = {
+ {"BLENDER", ""},
+ {"STDPERLIN", ""},
+ {"NEWPERLIN", ""},
+ {"VORONOI_F1", ""},
+ {"VORONOI_F2", ""},
+ {"VORONOI_F3", ""},
+ {"VORONOI_F4", ""},
+ {"VORONOI_F2F1", ""},
+ {"VORONOI_CRACKLE", ""},
+ {"CELLNOISE", ""},
+ {0}
+ };
+
+ static PyStructSequence_Desc noise_types_info_desc = {
+ "noise.types", /* name */
+ "Noise type", /* doc */
+ noise_types_fields, /* fields */
+ (sizeof(noise_types_fields)/sizeof(PyStructSequence_Field)) - 1
+ };
+
+ static PyTypeObject NoiseType;
+
+ PyObject *noise_types;
+
+ int pos = 0;
+
+ PyStructSequence_InitType(&NoiseType, &noise_types_info_desc);
+
+ noise_types = PyStructSequence_New(&NoiseType);
+ if (noise_types == NULL) {
+ return NULL;
+ }
+
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_BLENDER));
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_STDPERLIN));
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_NEWPERLIN));
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_VORONOI_F1));
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_VORONOI_F2));
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_VORONOI_F3));
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_VORONOI_F4));
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_VORONOI_F2F1));
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_VORONOI_CRACKLE));
+ PyStructSequence_SET_ITEM(noise_types, pos++, PyLong_FromLong(TEX_CELLNOISE));
+
+ PyModule_AddObject(submodule, "types", noise_types);
+ }
+
+ if(submodule) {
+ static PyStructSequence_Field distance_metrics_fields[] = {
+ {"DISTANCE", ""},
+ {"DISTANCE_SQUARED", ""},
+ {"MANHATTAN", ""},
+ {"CHEBYCHEV", ""},
+ {"MINKOVSKY_HALF", ""},
+ {"MINKOVSKY_FOUR", ""},
+ {"MINKOVSKY", ""},
+ {0}
+ };
+
+ static PyStructSequence_Desc noise_types_info_desc = {
+ "noise.distance_metrics", /* name */
+ "Distance Metrics for noise module.", /* doc */
+ distance_metrics_fields, /* fields */
+ (sizeof(distance_metrics_fields)/sizeof(PyStructSequence_Field)) - 1
+ };
+
+ static PyTypeObject DistanceMetrics;
+
+ PyObject *distance_metrics;
+
+ int pos = 0;
+
+ PyStructSequence_InitType(&DistanceMetrics, &noise_types_info_desc);
+
+ distance_metrics = PyStructSequence_New(&DistanceMetrics);
+ if (distance_metrics == NULL) {
+ return NULL;
+ }
+
+ PyStructSequence_SET_ITEM(distance_metrics, pos++, PyLong_FromLong(TEX_DISTANCE));
+ PyStructSequence_SET_ITEM(distance_metrics, pos++, PyLong_FromLong(TEX_DISTANCE_SQUARED));
+ PyStructSequence_SET_ITEM(distance_metrics, pos++, PyLong_FromLong(TEX_MANHATTAN));
+ PyStructSequence_SET_ITEM(distance_metrics, pos++, PyLong_FromLong(TEX_CHEBYCHEV));
+ PyStructSequence_SET_ITEM(distance_metrics, pos++, PyLong_FromLong(TEX_MINKOVSKY_HALF));
+ PyStructSequence_SET_ITEM(distance_metrics, pos++, PyLong_FromLong(TEX_MINKOVSKY_FOUR));
+ PyStructSequence_SET_ITEM(distance_metrics, pos++, PyLong_FromLong(TEX_MINKOVSKY));
+
+ PyModule_AddObject(submodule, "distance_metrics", distance_metrics);
+ }
+
+ return submodule;
+}