Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'source/gameengine/GameLogic/SCA_RandomActuator.cpp')
-rw-r--r--source/gameengine/GameLogic/SCA_RandomActuator.cpp630
1 files changed, 630 insertions, 0 deletions
diff --git a/source/gameengine/GameLogic/SCA_RandomActuator.cpp b/source/gameengine/GameLogic/SCA_RandomActuator.cpp
new file mode 100644
index 00000000000..50acf24251f
--- /dev/null
+++ b/source/gameengine/GameLogic/SCA_RandomActuator.cpp
@@ -0,0 +1,630 @@
+/**
+ * Set random/camera stuff
+ *
+ * $Id$
+ *
+ * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version. The Blender
+ * Foundation also sells licenses for use in proprietary software under
+ * the Blender License. See http://www.blender.org/BL/ for information
+ * about this.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software Foundation,
+ * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
+ * All rights reserved.
+ *
+ * The Original Code is: all of this file.
+ *
+ * Contributor(s): none yet.
+ *
+ * ***** END GPL/BL DUAL LICENSE BLOCK *****
+ */
+
+#include "BoolValue.h"
+#include "IntValue.h"
+#include "FloatValue.h"
+#include "SCA_IActuator.h"
+#include "SCA_RandomActuator.h"
+#include "math.h"
+
+#include "MT_Transform.h"
+/* ------------------------------------------------------------------------- */
+/* Native functions */
+/* ------------------------------------------------------------------------- */
+
+SCA_RandomActuator::SCA_RandomActuator(SCA_IObject *gameobj,
+ long seed,
+ SCA_RandomActuator::KX_RANDOMACT_MODE mode,
+ float para1,
+ float para2,
+ const STR_String &propName,
+ PyTypeObject* T)
+ : SCA_IActuator(gameobj, T),
+ m_distribution(mode),
+ m_propname(propName),
+ m_parameter1(para1),
+ m_parameter2(para2)
+{
+ m_base = new SCA_RandomNumberGenerator(seed);
+ m_counter = 0;
+ enforceConstraints();
+}
+
+
+
+SCA_RandomActuator::~SCA_RandomActuator()
+{
+ /* intentionally empty */
+}
+
+
+
+CValue* SCA_RandomActuator::GetReplica()
+{
+ SCA_RandomActuator* replica = new SCA_RandomActuator(*this);
+ replica->ProcessReplica();
+ CValue::AddDataToReplica(replica);
+
+ return replica;
+}
+
+
+
+bool SCA_RandomActuator::Update(double curtime,double deltatime)
+{
+ bool result = false;
+ bool bNegativeEvent = IsNegativeEvent();
+
+ RemoveAllEvents();
+
+
+ CValue *tmpval;
+
+ if (bNegativeEvent)
+ return false; // do nothing on negative events
+
+ switch (m_distribution) {
+ case KX_RANDOMACT_BOOL_CONST: {
+ /* un petit peu filthy */
+ bool res = !(m_parameter1 < 0.5);
+ tmpval = new CBoolValue(res);
+ }
+ break;
+ case KX_RANDOMACT_BOOL_UNIFORM: {
+ /* flip a coin */
+ bool res;
+ if (m_counter > 31) {
+ m_previous = m_base->Draw();
+ res = ((m_previous & 0x1) == 0);
+ m_counter = 1;
+ } else {
+ res = (((m_previous >> m_counter) & 0x1) == 0);
+ m_counter++;
+ }
+ tmpval = new CBoolValue(res);
+ }
+ break;
+ case KX_RANDOMACT_BOOL_BERNOUILLI: {
+ /* 'percentage' */
+ bool res;
+ res = (m_base->DrawFloat() < m_parameter1);
+ tmpval = new CBoolValue(res);
+ }
+ break;
+ case KX_RANDOMACT_INT_CONST: {
+ /* constant */
+ tmpval = new CIntValue((int) floor(m_parameter1));
+ }
+ break;
+ case KX_RANDOMACT_INT_UNIFORM: {
+ /* uniform (toss a die) */
+ int res;
+ /* The [0, 1] interval is projected onto the [min, max+1] domain, */
+ /* and then rounded. */
+ res = (int) floor( ((m_parameter2 - m_parameter1 + 1) * m_base->DrawFloat())
+ + m_parameter1);
+ tmpval = new CIntValue(res);
+ }
+ break;
+ case KX_RANDOMACT_INT_POISSON: {
+ /* poisson (queues) */
+ /* If x_1, x_2, ... is a sequence of random numbers with uniform */
+ /* distribution between zero and one, k is the first integer for */
+ /* which the product x_1*x_2*...*x_k < exp(-\lamba). */
+ float a = 0.0, b = 0.0;
+ int res = 0;
+ /* The - sign is important here! The number to test for, a, must be */
+ /* between 0 and 1. */
+ a = exp(-m_parameter1);
+ /* a quickly reaches 0.... so we guard explicitly for that. */
+ if (a < FLT_MIN) a = FLT_MIN;
+ b = m_base->DrawFloat();
+ while (b >= a) {
+ b = b * m_base->DrawFloat();
+ res++;
+ };
+ tmpval = new CIntValue(res);
+ }
+ break;
+ case KX_RANDOMACT_FLOAT_CONST: {
+ /* constant */
+ tmpval = new CFloatValue(m_parameter1);
+ }
+ break;
+ case KX_RANDOMACT_FLOAT_UNIFORM: {
+ float res = ((m_parameter2 - m_parameter1) * m_base->DrawFloat())
+ + m_parameter1;
+ tmpval = new CFloatValue(res);
+ }
+ break;
+ case KX_RANDOMACT_FLOAT_NORMAL: {
+ /* normal (big numbers): para1 = mean, para2 = std dev */
+
+ /*
+
+ 070301 - nzc - Changed the termination condition. I think I
+ made a small mistake here, but it only affects distro's where
+ the seed equals 0. In that case, the algorithm locks. Let's
+ just guard that case separately.
+
+ */
+
+ float x = 0.0, y = 0.0, s = 0.0, t = 0.0;
+ if (m_base->GetSeed() == 0) {
+ /*
+
+ 070301 - nzc
+ Just taking the mean here seems reasonable.
+
+ */
+ tmpval = new CFloatValue(m_parameter1);
+ } else {
+ /*
+
+ 070301 - nzc
+ Now, with seed != 0, we will most assuredly get some
+ sensible values. The termination condition states two
+ things:
+ 1. s >= 0 is not allowed: to prevent the distro from
+ getting a bias towards high values. This is a small
+ correction, really, and might also be left out.
+ 2. s == 0 is not allowed: to prevent a division by zero
+ when renormalising the drawn value to the desired
+ distribution shape. As a side effect, the distro will
+ never yield the exact mean.
+ I am not sure whether this is consistent, since the error
+ cause by #2 is of the same magnitude as the one
+ prevented by #1. The error introduced into the SD will be
+ improved, though. By how much? Hard to say... If you like
+ the maths, feel free to analyse. Be aware that this is
+ one of the really old standard algorithms. I think the
+ original came in Fortran, was translated to Pascal, and
+ then someone came up with the C code. My guess it that
+ this will be quite sufficient here.
+
+ */
+ do
+ {
+ x = 2.0 * m_base->DrawFloat() - 1.0;
+ y = 2.0 * m_base->DrawFloat() - 1.0;
+ s = x*x + y*y;
+ } while ( (s >= 1.0) || (s == 0.0) );
+ t = x * sqrt( (-2.0 * log(s)) / s);
+ tmpval = new CFloatValue(m_parameter1 + m_parameter2 * t);
+ }
+ }
+ break;
+ case KX_RANDOMACT_FLOAT_NEGATIVE_EXPONENTIAL: {
+ /* 1st order fall-off. I am very partial to using the half-life as */
+ /* controlling parameter. Using the 'normal' exponent is not very */
+ /* intuitive... */
+ /* tmpval = new CFloatValue( (1.0 / m_parameter1) */
+ tmpval = new CFloatValue( (m_parameter1)
+ * (-log(1.0 - m_base->DrawFloat())) );
+
+ }
+ break;
+ default:
+ ; /* unknown distribution... */
+ }
+
+ /* Round up: assign it */
+ CValue *prop = GetParent()->GetProperty(m_propname);
+ if (prop) {
+ prop->SetValue(tmpval);
+ }
+ tmpval->Release();
+
+ return false;
+}
+
+void SCA_RandomActuator::enforceConstraints() {
+ /* The constraints that are checked here are the ones fundamental to */
+ /* the various distributions. Limitations of the algorithms are checked */
+ /* elsewhere (or they should be... ). */
+ switch (m_distribution) {
+ case KX_RANDOMACT_BOOL_CONST:
+ case KX_RANDOMACT_BOOL_UNIFORM:
+ case KX_RANDOMACT_INT_CONST:
+ case KX_RANDOMACT_INT_UNIFORM:
+ case KX_RANDOMACT_FLOAT_UNIFORM:
+ case KX_RANDOMACT_FLOAT_CONST:
+ ; /* Nothing to be done here. We allow uniform distro's to have */
+ /* 'funny' domains, i.e. max < min. This does not give problems. */
+ break;
+ case KX_RANDOMACT_BOOL_BERNOUILLI:
+ /* clamp to [0, 1] */
+ if (m_parameter1 < 0.0) {
+ m_parameter1 = 0.0;
+ } else if (m_parameter1 > 1.0) {
+ m_parameter1 = 1.0;
+ }
+ break;
+ case KX_RANDOMACT_INT_POISSON:
+ /* non-negative */
+ if (m_parameter1 < 0.0) {
+ m_parameter1 = 0.0;
+ }
+ break;
+ case KX_RANDOMACT_FLOAT_NORMAL:
+ /* standard dev. is non-negative */
+ if (m_parameter2 < 0.0) {
+ m_parameter2 = 0.0;
+ }
+ break;
+ case KX_RANDOMACT_FLOAT_NEGATIVE_EXPONENTIAL:
+ /* halflife must be non-negative */
+ if (m_parameter1 < 0.0) {
+ m_parameter1 = 0.0;
+ }
+ break;
+ default:
+ ; /* unknown distribution... */
+ }
+}
+
+/* ------------------------------------------------------------------------- */
+/* Python functions */
+/* ------------------------------------------------------------------------- */
+
+/* Integration hooks ------------------------------------------------------- */
+PyTypeObject SCA_RandomActuator::Type = {
+ PyObject_HEAD_INIT(&PyType_Type)
+ 0,
+ "SCA_RandomActuator",
+ sizeof(SCA_RandomActuator),
+ 0,
+ PyDestructor,
+ 0,
+ __getattr,
+ __setattr,
+ 0, //&MyPyCompare,
+ __repr,
+ 0, //&cvalue_as_number,
+ 0,
+ 0,
+ 0,
+ 0
+};
+
+PyParentObject SCA_RandomActuator::Parents[] = {
+ &SCA_RandomActuator::Type,
+ &SCA_IActuator::Type,
+ &SCA_ILogicBrick::Type,
+ &CValue::Type,
+ NULL
+};
+
+PyMethodDef SCA_RandomActuator::Methods[] = {
+ {"setSeed", (PyCFunction) SCA_RandomActuator::sPySetSeed, METH_VARARGS, SetSeed_doc},
+ {"getSeed", (PyCFunction) SCA_RandomActuator::sPyGetSeed, METH_VARARGS, GetSeed_doc},
+ {"getPara1", (PyCFunction) SCA_RandomActuator::sPyGetPara1, METH_VARARGS, GetPara1_doc},
+ {"getPara2", (PyCFunction) SCA_RandomActuator::sPyGetPara2, METH_VARARGS, GetPara2_doc},
+ {"getDistribution", (PyCFunction) SCA_RandomActuator::sPyGetDistribution, METH_VARARGS, GetDistribution_doc},
+ {"setProperty", (PyCFunction) SCA_RandomActuator::sPySetProperty, METH_VARARGS, SetProperty_doc},
+ {"getProperty", (PyCFunction) SCA_RandomActuator::sPyGetProperty, METH_VARARGS, GetProperty_doc},
+ {"setBoolConst", (PyCFunction) SCA_RandomActuator::sPySetBoolConst, METH_VARARGS, SetBoolConst_doc},
+ {"setBoolUniform", (PyCFunction) SCA_RandomActuator::sPySetBoolUniform, METH_VARARGS, SetBoolUniform_doc},
+ {"setBoolBernouilli",(PyCFunction) SCA_RandomActuator::sPySetBoolBernouilli, METH_VARARGS, SetBoolBernouilli_doc},
+ {"setIntConst", (PyCFunction) SCA_RandomActuator::sPySetIntConst, METH_VARARGS, SetIntConst_doc},
+ {"setIntUniform", (PyCFunction) SCA_RandomActuator::sPySetIntUniform, METH_VARARGS, SetIntUniform_doc},
+ {"setIntPoisson", (PyCFunction) SCA_RandomActuator::sPySetIntPoisson, METH_VARARGS, SetIntPoisson_doc},
+ {"setFloatConst", (PyCFunction) SCA_RandomActuator::sPySetFloatConst, METH_VARARGS, SetFloatConst_doc},
+ {"setFloatUniform", (PyCFunction) SCA_RandomActuator::sPySetFloatUniform, METH_VARARGS, SetFloatUniform_doc},
+ {"setFloatNormal", (PyCFunction) SCA_RandomActuator::sPySetFloatNormal, METH_VARARGS, SetFloatNormal_doc},
+ {"setFloatNegativeExponential", (PyCFunction) SCA_RandomActuator::sPySetFloatNegativeExponential, METH_VARARGS, SetFloatNegativeExponential_doc},
+ {NULL,NULL} //Sentinel
+};
+
+PyObject* SCA_RandomActuator::_getattr(char* attr) {
+ _getattr_up(SCA_IActuator);
+}
+
+/* 1. setSeed */
+char SCA_RandomActuator::SetSeed_doc[] =
+"setSeed(seed)\n"
+"\t- seed: integer\n"
+"\tSet the initial seed of the generator. Equal seeds produce\n"
+"\tequal series. If the seed is 0, the generator will produce\n"
+"\tthe same value on every call.\n";
+PyObject* SCA_RandomActuator::PySetSeed(PyObject* self, PyObject* args, PyObject* kwds) {
+ long seedArg;
+ if(!PyArg_ParseTuple(args, "i", &seedArg)) {
+ return NULL;
+ }
+
+ m_base->SetSeed(seedArg);
+
+ Py_Return;
+}
+/* 2. getSeed */
+char SCA_RandomActuator::GetSeed_doc[] =
+"getSeed()\n"
+"\tReturns the initial seed of the generator. Equal seeds produce\n"
+"\tequal series.\n";
+PyObject* SCA_RandomActuator::PyGetSeed(PyObject* self, PyObject* args, PyObject* kwds) {
+ return PyInt_FromLong(m_base->GetSeed());
+}
+
+/* 4. getPara1 */
+char SCA_RandomActuator::GetPara1_doc[] =
+"getPara1()\n"
+"\tReturns the first parameter of the active distribution. Refer\n"
+"\tto the documentation of the generator types for the meaning\n"
+"\tof this value.";
+PyObject* SCA_RandomActuator::PyGetPara1(PyObject* self, PyObject* args, PyObject* kwds) {
+ return PyFloat_FromDouble(m_parameter1);
+}
+
+/* 6. getPara2 */
+char SCA_RandomActuator::GetPara2_doc[] =
+"getPara2()\n"
+"\tReturns the first parameter of the active distribution. Refer\n"
+"\tto the documentation of the generator types for the meaning\n"
+"\tof this value.";
+PyObject* SCA_RandomActuator::PyGetPara2(PyObject* self, PyObject* args, PyObject* kwds) {
+ return PyFloat_FromDouble(m_parameter2);
+}
+
+/* 8. getDistribution */
+char SCA_RandomActuator::GetDistribution_doc[] =
+"getDistribution()\n"
+"\tReturns the type of the active distribution.\n";
+PyObject* SCA_RandomActuator::PyGetDistribution(PyObject* self, PyObject* args, PyObject* kwds) {
+ return PyInt_FromLong(m_distribution);
+}
+
+/* 9. setProperty */
+char SCA_RandomActuator::SetProperty_doc[] =
+"setProperty(name)\n"
+"\t- name: string\n"
+"\tSet the property to which the random value is assigned. If the \n"
+"\tgenerator and property types do not match, the assignment is ignored.\n";
+PyObject* SCA_RandomActuator::PySetProperty(PyObject* self, PyObject* args, PyObject* kwds) {
+ char *nameArg;
+ if (!PyArg_ParseTuple(args, "s", &nameArg)) {
+ return NULL;
+ }
+
+ CValue* prop = GetParent()->FindIdentifier(nameArg);
+
+ if (prop) {
+ m_propname = nameArg;
+ prop->Release();
+ } else {
+ ; /* not found ... */
+ }
+
+ Py_Return;
+}
+/* 10. getProperty */
+char SCA_RandomActuator::GetProperty_doc[] =
+"getProperty(name)\n"
+"\tReturn the property to which the random value is assigned. If the \n"
+"\tgenerator and property types do not match, the assignment is ignored.\n";
+PyObject* SCA_RandomActuator::PyGetProperty(PyObject* self, PyObject* args, PyObject* kwds) {
+ return PyString_FromString(m_propname);
+}
+
+/* 11. setBoolConst */
+char SCA_RandomActuator::SetBoolConst_doc[] =
+"setBoolConst(value)\n"
+"\t- value: 0 or 1\n"
+"\tSet this generator to produce a constant boolean value.\n";
+PyObject* SCA_RandomActuator::PySetBoolConst(PyObject* self,
+ PyObject* args,
+ PyObject* kwds) {
+ int paraArg;
+ if(!PyArg_ParseTuple(args, "i", &paraArg)) {
+ return NULL;
+ }
+
+ m_distribution = KX_RANDOMACT_BOOL_CONST;
+ if (paraArg == KX_TRUE) {
+ m_parameter1 = 1;
+ }
+
+ Py_Return;
+}
+/* 12. setBoolUniform, */
+char SCA_RandomActuator::SetBoolUniform_doc[] =
+"setBoolUniform()\n"
+"\tSet this generator to produce true and false, each with 50%% chance of occuring\n";
+PyObject* SCA_RandomActuator::PySetBoolUniform(PyObject* self,
+ PyObject* args,
+ PyObject* kwds) {
+ /* no args */
+ m_distribution = KX_RANDOMACT_BOOL_UNIFORM;
+ enforceConstraints();
+ Py_Return;
+}
+/* 13. setBoolBernouilli, */
+char SCA_RandomActuator::SetBoolBernouilli_doc[] =
+"setBoolBernouilli(value)\n"
+"\t- value: a float between 0 and 1\n"
+"\tReturn false value * 100%% of the time.\n";
+PyObject* SCA_RandomActuator::PySetBoolBernouilli(PyObject* self,
+ PyObject* args,
+ PyObject* kwds) {
+ float paraArg;
+ if(!PyArg_ParseTuple(args, "f", &paraArg)) {
+ return NULL;
+ }
+
+ m_distribution = KX_RANDOMACT_BOOL_CONST;
+ m_parameter1 = paraArg;
+ enforceConstraints();
+ Py_Return;
+}
+/* 14. setIntConst,*/
+char SCA_RandomActuator::SetIntConst_doc[] =
+"setIntConst(value)\n"
+"\t- value: integer\n"
+"\tAlways return value\n";
+PyObject* SCA_RandomActuator::PySetIntConst(PyObject* self,
+ PyObject* args,
+ PyObject* kwds) {
+ int paraArg;
+ if(!PyArg_ParseTuple(args, "i", &paraArg)) {
+ return NULL;
+ }
+
+ m_distribution = KX_RANDOMACT_INT_CONST;
+ m_parameter1 = paraArg;
+ enforceConstraints();
+ Py_Return;
+}
+/* 15. setIntUniform,*/
+char SCA_RandomActuator::SetIntUniform_doc[] =
+"setIntUniform(lower_bound, upper_bound)\n"
+"\t- lower_bound: integer\n"
+"\t- upper_bound: integer\n"
+"\tReturn a random integer between lower_bound and\n"
+"\tupper_bound. The boundaries are included.\n";
+PyObject* SCA_RandomActuator::PySetIntUniform(PyObject* self,
+ PyObject* args,
+ PyObject* kwds) {
+ int paraArg1, paraArg2;
+ if(!PyArg_ParseTuple(args, "ii", &paraArg1, &paraArg2)) {
+ return NULL;
+ }
+
+ m_distribution = KX_RANDOMACT_INT_UNIFORM;
+ m_parameter1 = paraArg1;
+ m_parameter2 = paraArg2;
+ enforceConstraints();
+ Py_Return;
+}
+/* 16. setIntPoisson, */
+char SCA_RandomActuator::SetIntPoisson_doc[] =
+"setIntPoisson(value)\n"
+"\t- value: float\n"
+"\tReturn a Poisson-distributed number. This performs a series\n"
+"\tof Bernouilli tests with parameter value. It returns the\n"
+"\tnumber of tries needed to achieve succes.\n";
+PyObject* SCA_RandomActuator::PySetIntPoisson(PyObject* self,
+ PyObject* args,
+ PyObject* kwds) {
+ float paraArg;
+ if(!PyArg_ParseTuple(args, "f", &paraArg)) {
+ return NULL;
+ }
+
+ m_distribution = KX_RANDOMACT_INT_POISSON;
+ m_parameter1 = paraArg;
+ enforceConstraints();
+ Py_Return;
+}
+/* 17. setFloatConst,*/
+char SCA_RandomActuator::SetFloatConst_doc[] =
+"setFloatConst(value)\n"
+"\t- value: float\n"
+"\tAlways return value\n";
+PyObject* SCA_RandomActuator::PySetFloatConst(PyObject* self,
+ PyObject* args,
+ PyObject* kwds) {
+ float paraArg;
+ if(!PyArg_ParseTuple(args, "f", &paraArg)) {
+ return NULL;
+ }
+
+ m_distribution = KX_RANDOMACT_FLOAT_CONST;
+ m_parameter1 = paraArg;
+ enforceConstraints();
+ Py_Return;
+}
+/* 18. setFloatUniform, */
+char SCA_RandomActuator::SetFloatUniform_doc[] =
+"setFloatUniform(lower_bound, upper_bound)\n"
+"\t- lower_bound: float\n"
+"\t- upper_bound: float\n"
+"\tReturn a random integer between lower_bound and\n"
+"\tupper_bound.\n";
+PyObject* SCA_RandomActuator::PySetFloatUniform(PyObject* self,
+ PyObject* args,
+ PyObject* kwds) {
+ float paraArg1, paraArg2;
+ if(!PyArg_ParseTuple(args, "ff", &paraArg1, &paraArg2)) {
+ return NULL;
+ }
+
+ m_distribution = KX_RANDOMACT_FLOAT_UNIFORM;
+ m_parameter1 = paraArg1;
+ m_parameter2 = paraArg2;
+ enforceConstraints();
+ Py_Return;
+}
+/* 19. setFloatNormal, */
+char SCA_RandomActuator::SetFloatNormal_doc[] =
+"setFloatNormal(mean, standard_deviation)\n"
+"\t- mean: float\n"
+"\t- standard_deviation: float\n"
+"\tReturn normal-distributed numbers. The average is mean, and the\n"
+"\tdeviation from the mean is characterized by standard_deviation.\n";
+PyObject* SCA_RandomActuator::PySetFloatNormal(PyObject* self,
+ PyObject* args,
+ PyObject* kwds) {
+ float paraArg1, paraArg2;
+ if(!PyArg_ParseTuple(args, "ff", &paraArg1, &paraArg2)) {
+ return NULL;
+ }
+
+ m_distribution = KX_RANDOMACT_FLOAT_NORMAL;
+ m_parameter1 = paraArg1;
+ m_parameter2 = paraArg2;
+ enforceConstraints();
+ Py_Return;
+}
+/* 20. setFloatNegativeExponential, */
+char SCA_RandomActuator::SetFloatNegativeExponential_doc[] =
+"setFloatNegativeExponential(half_life)\n"
+"\t- half_life: float\n"
+"\tReturn negative-exponentially distributed numbers. The half-life 'time'\n"
+"\tis characterized by half_life.\n";
+PyObject* SCA_RandomActuator::PySetFloatNegativeExponential(PyObject* self,
+ PyObject* args,
+ PyObject* kwds) {
+ float paraArg;
+ if(!PyArg_ParseTuple(args, "f", &paraArg)) {
+ return NULL;
+ }
+
+ m_distribution = KX_RANDOMACT_FLOAT_NEGATIVE_EXPONENTIAL;
+ m_parameter1 = paraArg;
+ enforceConstraints();
+ Py_Return;
+}
+
+/* eof */