Welcome to mirror list, hosted at ThFree Co, Russian Federation.

kernel_light.h « kernel « cycles « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 5091eac41db6f4a34ee93de0fa11129161a2f767 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
/*
 * Copyright 2011, Blender Foundation.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

CCL_NAMESPACE_BEGIN

/* Light Sample result */

typedef struct LightSample {
	float3 P;			/* position on light, or direction for distant light */
	float3 Ng;			/* normal on light */
	float3 D;			/* direction from shading point to light */
	float t;			/* distance to light (FLT_MAX for distant light) */
	float pdf;			/* light sampling probability density function */
	float eval_fac;		/* intensity multiplier */
	int object;			/* object id for triangle/curve lights */
	int prim;			/* primitive id for triangle/curve ligths */
	int shader;			/* shader id */
	int lamp;			/* lamp id */
	LightType type;		/* type of light */
} LightSample;

/* Background Light */

#ifdef __BACKGROUND_MIS__

__device float3 background_light_sample(KernelGlobals *kg, float randu, float randv, float *pdf)
{
	/* for the following, the CDF values are actually a pair of floats, with the
	 * function value as X and the actual CDF as Y.  The last entry's function
	 * value is the CDF total. */
	int res = kernel_data.integrator.pdf_background_res;
	int cdf_count = res + 1;

	/* this is basically std::lower_bound as used by pbrt */
	int first = 0;
	int count = res;

	while(count > 0) {
		int step = count >> 1;
		int middle = first + step;

		if(kernel_tex_fetch(__light_background_marginal_cdf, middle).y < randv) {
			first = middle + 1;
			count -= step + 1;
		}
		else
			count = step;
	}

	int index_v = max(0, first - 1);
	kernel_assert(index_v >= 0 && index_v < res);

	float2 cdf_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v);
	float2 cdf_next_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v + 1);
	float2 cdf_last_v = kernel_tex_fetch(__light_background_marginal_cdf, res);

	/* importance-sampled V direction */
	float dv = (randv - cdf_v.y) / (cdf_next_v.y - cdf_v.y);
	float v = (index_v + dv) / res;

	/* this is basically std::lower_bound as used by pbrt */
	first = 0;
	count = res;
	while(count > 0) {
		int step = count >> 1;
		int middle = first + step;

		if(kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_count + middle).y < randu) {
			first = middle + 1;
			count -= step + 1;
		}
		else
			count = step;
	}

	int index_u = max(0, first - 1);
	kernel_assert(index_u >= 0 && index_u < res);

	float2 cdf_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_count + index_u);
	float2 cdf_next_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_count + index_u + 1);
	float2 cdf_last_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * cdf_count + res);

	/* importance-sampled U direction */
	float du = (randu - cdf_u.y) / (cdf_next_u.y - cdf_u.y);
	float u = (index_u + du) / res;

	/* compute pdf */
	float denom = cdf_last_u.x * cdf_last_v.x;
	float sin_theta = sinf(M_PI_F * v);

	if(sin_theta == 0.0f || denom == 0.0f)
		*pdf = 0.0f;
	else
		*pdf = (cdf_u.x * cdf_v.x)/(M_2PI_F * M_PI_F * sin_theta * denom);

	*pdf *= kernel_data.integrator.pdf_lights;

	/* compute direction */
	return -equirectangular_to_direction(u, v);
}

__device float background_light_pdf(KernelGlobals *kg, float3 direction)
{
	float2 uv = direction_to_equirectangular(direction);
	int res = kernel_data.integrator.pdf_background_res;

	float sin_theta = sinf(uv.y * M_PI_F);

	if(sin_theta == 0.0f)
		return 0.0f;

	int index_u = clamp(float_to_int(uv.x * res), 0, res - 1);
	int index_v = clamp(float_to_int(uv.y * res), 0, res - 1);

	/* pdfs in V direction */
	float2 cdf_last_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * (res + 1) + res);
	float2 cdf_last_v = kernel_tex_fetch(__light_background_marginal_cdf, res);

	float denom = cdf_last_u.x * cdf_last_v.x;

	if(denom == 0.0f)
		return 0.0f;

	/* pdfs in U direction */
	float2 cdf_u = kernel_tex_fetch(__light_background_conditional_cdf, index_v * (res + 1) + index_u);
	float2 cdf_v = kernel_tex_fetch(__light_background_marginal_cdf, index_v);

	float pdf = (cdf_u.x * cdf_v.x)/(M_2PI_F * M_PI_F * sin_theta * denom);

	return pdf * kernel_data.integrator.pdf_lights;
}
#endif

/* Regular Light */

__device float3 disk_light_sample(float3 v, float randu, float randv)
{
	float3 ru, rv;

	make_orthonormals(v, &ru, &rv);
	to_unit_disk(&randu, &randv);

	return ru*randu + rv*randv;
}

__device float3 distant_light_sample(float3 D, float radius, float randu, float randv)
{
	return normalize(D + disk_light_sample(D, randu, randv)*radius);
}

__device float3 sphere_light_sample(float3 P, float3 center, float radius, float randu, float randv)
{
	return disk_light_sample(normalize(P - center), randu, randv)*radius;
}

__device float3 area_light_sample(float3 axisu, float3 axisv, float randu, float randv)
{
	randu = randu - 0.5f;
	randv = randv - 0.5f;

	return axisu*randu + axisv*randv;
}

__device float spot_light_attenuation(float4 data1, float4 data2, LightSample *ls)
{
	float3 dir = make_float3(data2.y, data2.z, data2.w);
	float3 I = ls->Ng;

	float spot_angle = data1.w;
	float spot_smooth = data2.x;

	float attenuation = dot(dir, I);

	if(attenuation <= spot_angle) {
		attenuation = 0.0f;
	}
	else {
		float t = attenuation - spot_angle;

		if(t < spot_smooth && spot_smooth != 0.0f)
			attenuation *= smoothstepf(t/spot_smooth);
	}

	return attenuation;
}

__device float lamp_light_pdf(KernelGlobals *kg, const float3 Ng, const float3 I, float t)
{
	float cos_pi = dot(Ng, I);

	if(cos_pi <= 0.0f)
		return 0.0f;
	
	return t*t/cos_pi;
}

__device void lamp_light_sample(KernelGlobals *kg, int lamp,
	float randu, float randv, float3 P, LightSample *ls)
{
	float4 data0 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 0);
	float4 data1 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 1);

	LightType type = (LightType)__float_as_int(data0.x);
	ls->type = type;
	ls->shader = __float_as_int(data1.x);
	ls->object = ~0;
	ls->prim = ~0;
	ls->lamp = lamp;

	if(type == LIGHT_DISTANT) {
		/* distant light */
		float3 lightD = make_float3(data0.y, data0.z, data0.w);
		float3 D = lightD;
		float radius = data1.y;
		float invarea = data1.w;

		if(radius > 0.0f)
			D = distant_light_sample(D, radius, randu, randv);

		ls->P = D;
		ls->Ng = D;
		ls->D = -D;
		ls->t = FLT_MAX;

		float costheta = dot(lightD, D);
		ls->pdf = invarea/(costheta*costheta*costheta);
		ls->eval_fac = ls->pdf*kernel_data.integrator.inv_pdf_lights;
	}
#ifdef __BACKGROUND_MIS__
	else if(type == LIGHT_BACKGROUND) {
		/* infinite area light (e.g. light dome or env light) */
		float3 D = background_light_sample(kg, randu, randv, &ls->pdf);

		ls->P = D;
		ls->Ng = D;
		ls->D = -D;
		ls->t = FLT_MAX;
		ls->eval_fac = 1.0f;
	}
#endif
	else {
		ls->P = make_float3(data0.y, data0.z, data0.w);

		if(type == LIGHT_POINT || type == LIGHT_SPOT) {
			float radius = data1.y;

			if(radius > 0.0f)
				/* sphere light */
				ls->P += sphere_light_sample(P, ls->P, radius, randu, randv);

			ls->D = normalize_len(ls->P - P, &ls->t);
			ls->Ng = -ls->D;

			float invarea = data1.z;
			ls->eval_fac = (0.25f*M_1_PI_F)*invarea;
			ls->pdf = invarea;

			if(type == LIGHT_SPOT) {
				/* spot light attenuation */
				float4 data2 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 2);
				ls->eval_fac *= spot_light_attenuation(data1, data2, ls);
			}
		}
		else {
			/* area light */
			float4 data2 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 2);
			float4 data3 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 3);

			float3 axisu = make_float3(data1.y, data1.z, data1.w);
			float3 axisv = make_float3(data2.y, data2.z, data2.w);
			float3 D = make_float3(data3.y, data3.z, data3.w);

			ls->P += area_light_sample(axisu, axisv, randu, randv);
			ls->Ng = D;
			ls->D = normalize_len(ls->P - P, &ls->t);

			float invarea = data2.x;

			ls->eval_fac = 0.25f*invarea;
			ls->pdf = invarea;
		}

		ls->eval_fac *= kernel_data.integrator.inv_pdf_lights;
		ls->pdf *= lamp_light_pdf(kg, ls->Ng, -ls->D, ls->t);
	}
}

__device bool lamp_light_eval(KernelGlobals *kg, int lamp, float3 P, float3 D, float t, LightSample *ls)
{
	float4 data0 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 0);
	float4 data1 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 1);

	LightType type = (LightType)__float_as_int(data0.x);
	ls->type = type;
	ls->shader = __float_as_int(data1.x);
	ls->object = ~0;
	ls->prim = ~0;
	ls->lamp = lamp;

	if(!(ls->shader & SHADER_USE_MIS))
		return false;

	if(type == LIGHT_DISTANT) {
		/* distant light */
		float radius = data1.y;

		if(radius == 0.0f)
			return false;
		if(t != FLT_MAX)
			return false;

		/* a distant light is infinitely far away, but equivalent to a disk
		 * shaped light exactly 1 unit away from the current shading point.
		 *
		 *     radius              t^2/cos(theta)
		 *  <---------->           t = sqrt(1^2 + tan(theta)^2)
		 *       tan(th)           area = radius*radius*pi
		 *       <----->
		 *        \    |           (1 + tan(theta)^2)/cos(theta)
		 *         \   |           (1 + tan(acos(cos(theta)))^2)/cos(theta)
		 *       t  \th| 1         simplifies to
		 *           \-|           1/(cos(theta)^3)
		 *            \|           magic!
		 *             P
		 */

		float3 lightD = make_float3(data0.y, data0.z, data0.w);
		float costheta = dot(-lightD, D);
		float cosangle = data1.z;

		if(costheta < cosangle)
			return false;

		ls->P = -D;
		ls->Ng = -D;
		ls->D = D;
		ls->t = FLT_MAX;

		float invarea = data1.w;
		ls->pdf = invarea/(costheta*costheta*costheta);
		ls->eval_fac = ls->pdf;
	}
	else if(type == LIGHT_POINT || type == LIGHT_SPOT) {
		float3 lightP = make_float3(data0.y, data0.z, data0.w);
		float radius = data1.y;

		/* sphere light */
		if(radius == 0.0f)
			return false;

		if(!ray_aligned_disk_intersect(P, D, t,
			lightP, radius, &ls->P, &ls->t))
			return false;

		ls->Ng = -D;
		ls->D = D;

		float invarea = data1.z;
		ls->eval_fac = (0.25f*M_1_PI_F)*invarea;
		ls->pdf = invarea;

		if(type == LIGHT_SPOT) {
			/* spot light attentuation */
			float4 data2 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 2);
			ls->eval_fac *= spot_light_attenuation(data1, data2, ls);

			if(ls->eval_fac == 0.0f)
				return false;
		}
	}
	else if(type == LIGHT_AREA) {
		/* area light */
		float4 data2 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 2);
		float4 data3 = kernel_tex_fetch(__light_data, lamp*LIGHT_SIZE + 3);

		float invarea = data2.x;
		if(invarea == 0.0f)
			return false;

		float3 axisu = make_float3(data1.y, data1.z, data1.w);
		float3 axisv = make_float3(data2.y, data2.z, data2.w);
		float3 Ng = make_float3(data3.y, data3.z, data3.w);

		/* one sided */
		if(dot(D, Ng) >= 0.0f)
			return false;

		ls->P = make_float3(data0.y, data0.z, data0.w);

		if(!ray_quad_intersect(P, D, t,
			ls->P, axisu, axisv, &ls->P, &ls->t))
			return false;

		ls->D = D;
		ls->Ng = Ng;
		ls->pdf = invarea;
		ls->eval_fac = 0.25f*ls->pdf;
	}
	else
		return false;

	/* compute pdf */
	if(ls->t != FLT_MAX)
		ls->pdf *= lamp_light_pdf(kg, ls->Ng, -ls->D, ls->t);
	ls->eval_fac *= kernel_data.integrator.inv_pdf_lights;

	return true;
}

/* Triangle Light */

__device void object_transform_light_sample(KernelGlobals *kg, LightSample *ls, int object, float time)
{
#ifdef __INSTANCING__
	/* instance transform */
	if(object >= 0) {
#ifdef __OBJECT_MOTION__
		Transform itfm;
		Transform tfm = object_fetch_transform_motion_test(kg, object, time, &itfm);
#else
		Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
#endif

		ls->P = transform_point(&tfm, ls->P);
		ls->Ng = normalize(transform_direction(&tfm, ls->Ng));
	}
#endif
}

__device void triangle_light_sample(KernelGlobals *kg, int prim, int object,
	float randu, float randv, float time, LightSample *ls)
{
	/* triangle, so get position, normal, shader */
	ls->P = triangle_sample_MT(kg, prim, randu, randv);
	ls->Ng = triangle_normal_MT(kg, prim, &ls->shader);
	ls->object = object;
	ls->prim = prim;
	ls->lamp = ~0;
	ls->shader |= SHADER_USE_MIS;
	ls->t = 0.0f;
	ls->type = LIGHT_TRIANGLE;
	ls->eval_fac = 1.0f;

	object_transform_light_sample(kg, ls, object, time);
}

__device float triangle_light_pdf(KernelGlobals *kg,
	const float3 Ng, const float3 I, float t)
{
	float pdf = kernel_data.integrator.pdf_triangles;
	float cos_pi = fabsf(dot(Ng, I));

	if(cos_pi == 0.0f)
		return 0.0f;
	
	return t*t*pdf/cos_pi;
}

/* Curve Light */

#ifdef __HAIR__

__device void curve_segment_light_sample(KernelGlobals *kg, int prim, int object,
	int segment, float randu, float randv, float time, LightSample *ls)
{
	/* this strand code needs completion */
	float4 v00 = kernel_tex_fetch(__curves, prim);

	int k0 = __float_as_int(v00.x) + segment;
	int k1 = k0 + 1;

	float4 P1 = kernel_tex_fetch(__curve_keys, k0);
	float4 P2 = kernel_tex_fetch(__curve_keys, k1);

	float l = len(float4_to_float3(P2) - float4_to_float3(P1));

	float r1 = P1.w;
	float r2 = P2.w;
	float3 tg = (float4_to_float3(P2) - float4_to_float3(P1)) / l;
	float3 xc = make_float3(tg.x * tg.z, tg.y * tg.z, -(tg.x * tg.x + tg.y * tg.y));
	if (is_zero(xc))
		xc = make_float3(tg.x * tg.y, -(tg.x * tg.x + tg.z * tg.z), tg.z * tg.y);
	xc = normalize(xc);
	float3 yc = cross(tg, xc);
	float gd = ((r2 - r1)/l);

	/* normal currently ignores gradient */
	ls->Ng = sinf(M_2PI_F * randv) * xc + cosf(M_2PI_F * randv) * yc;
	ls->P = randu * l * tg + (gd * l + r1) * ls->Ng;
	ls->object = object;
	ls->prim = prim;
	ls->lamp = ~0;
	ls->t = 0.0f;
	ls->type = LIGHT_STRAND;
	ls->eval_fac = 1.0f;
	ls->shader = __float_as_int(v00.z) | SHADER_USE_MIS;

	object_transform_light_sample(kg, ls, object, time);
}

#endif

/* Light Distribution */

__device int light_distribution_sample(KernelGlobals *kg, float randt)
{
	/* this is basically std::upper_bound as used by pbrt, to find a point light or
	 * triangle to emit from, proportional to area. a good improvement would be to
	 * also sample proportional to power, though it's not so well defined with
	 * OSL shaders. */
	int first = 0;
	int len = kernel_data.integrator.num_distribution + 1;

	while(len > 0) {
		int half_len = len >> 1;
		int middle = first + half_len;

		if(randt < kernel_tex_fetch(__light_distribution, middle).x) {
			len = half_len;
		}
		else {
			first = middle + 1;
			len = len - half_len - 1;
		}
	}

	/* clamping should not be needed but float rounding errors seem to
	 * make this fail on rare occasions */
	return clamp(first-1, 0, kernel_data.integrator.num_distribution-1);
}

/* Generic Light */

__device void light_sample(KernelGlobals *kg, float randt, float randu, float randv, float time, float3 P, LightSample *ls)
{
	/* sample index */
	int index = light_distribution_sample(kg, randt);

	/* fetch light data */
	float4 l = kernel_tex_fetch(__light_distribution, index);
	int prim = __float_as_int(l.y);

	if(prim >= 0) {
		int object = __float_as_int(l.w);
#ifdef __HAIR__
		int segment = __float_as_int(l.z) & SHADER_MASK;
#endif

#ifdef __HAIR__
		if (segment != SHADER_MASK)
			curve_segment_light_sample(kg, prim, object, segment, randu, randv, time, ls);
		else
#endif
			triangle_light_sample(kg, prim, object, randu, randv, time, ls);

		/* compute incoming direction, distance and pdf */
		ls->D = normalize_len(ls->P - P, &ls->t);
		ls->pdf = triangle_light_pdf(kg, ls->Ng, -ls->D, ls->t);
		ls->shader |= __float_as_int(l.z) & (~SHADER_MASK);
	}
	else {
		int lamp = -prim-1;
		lamp_light_sample(kg, lamp, randu, randv, P, ls);
	}
}

__device int light_select_num_samples(KernelGlobals *kg, int index)
{
	float4 data3 = kernel_tex_fetch(__light_data, index*LIGHT_SIZE + 3);
	return __float_as_int(data3.x);
}

__device void light_select(KernelGlobals *kg, int index, float randu, float randv, float3 P, LightSample *ls)
{
	lamp_light_sample(kg, index, randu, randv, P, ls);
}

__device int lamp_light_eval_sample(KernelGlobals *kg, float randt)
{
	/* sample index */
	int index = light_distribution_sample(kg, randt);

	/* fetch light data */
	float4 l = kernel_tex_fetch(__light_distribution, index);
	int prim = __float_as_int(l.y);

	if(prim < 0) {
		int lamp = -prim-1;
		return lamp;
	}
	else
		return ~0;
}

CCL_NAMESPACE_END