Welcome to mirror list, hosted at ThFree Co, Russian Federation.

lamps_lib.glsl « shaders « eevee « engines « draw « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 7281eb4cf2d9c36a15277bd25b34a6288cc3e60e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

uniform sampler2DArray shadowCubeTexture;
uniform sampler2DArray shadowCascadeTexture;

#define LAMPS_LIB

layout(std140) uniform shadow_block {
	ShadowData        shadows_data[MAX_SHADOW];
	ShadowCubeData    shadows_cube_data[MAX_SHADOW_CUBE];
	ShadowCascadeData shadows_cascade_data[MAX_SHADOW_CASCADE];
};

layout(std140) uniform light_block {
	LightData lights_data[MAX_LIGHT];
};

/* type */
#define POINT          0.0
#define SUN            1.0
#define SPOT           2.0
#define HEMI           3.0
#define AREA_RECT      4.0
/* Used to define the area lamp shape, doesn't directly correspond to a Blender lamp type. */
#define AREA_ELLIPSE 100.0

#if defined(SHADOW_VSM)
#define ShadowSample vec2
#define sample_cube(vec, id)    texture_octahedron(shadowCubeTexture, vec4(vec, id)).rg
#define sample_cascade(vec, id) texture(shadowCascadeTexture, vec3(vec, id)).rg
#elif defined(SHADOW_ESM)
#define ShadowSample float
#define sample_cube(vec, id)    texture_octahedron(shadowCubeTexture, vec4(vec, id)).r
#define sample_cascade(vec, id) texture(shadowCascadeTexture, vec3(vec, id)).r
#else
#define ShadowSample float
#define sample_cube(vec, id)    texture_octahedron(shadowCubeTexture, vec4(vec, id)).r
#define sample_cascade(vec, id) texture(shadowCascadeTexture, vec3(vec, id)).r
#endif

#if defined(SHADOW_VSM)
#define get_depth_delta(s) (dist - s.x)
#else
#define get_depth_delta(s) (dist - s)
#endif

/* ----------------------------------------------------------- */
/* ----------------------- Shadow tests ---------------------- */
/* ----------------------------------------------------------- */

#if defined(SHADOW_VSM)

float shadow_test(ShadowSample moments, float dist, ShadowData sd)
{
	float p = 0.0;

	if (dist <= moments.x)
		p = 1.0;

	float variance = moments.y - (moments.x * moments.x);
	variance = max(variance, sd.sh_bias / 10.0);

	float d = moments.x - dist;
	float p_max = variance / (variance + d * d);

	/* Now reduce light-bleeding by removing the [0, x] tail and linearly rescaling (x, 1] */
	p_max = clamp((p_max - sd.sh_bleed) / (1.0 - sd.sh_bleed), 0.0, 1.0);

	return max(p, p_max);
}

#elif defined(SHADOW_ESM)

float shadow_test(ShadowSample z, float dist, ShadowData sd)
{
	return saturate(exp(sd.sh_exp * (z - dist + sd.sh_bias)));
}

#else

float shadow_test(ShadowSample z, float dist, ShadowData sd)
{
	return step(0, z - dist + sd.sh_bias);
}

#endif

/* ----------------------------------------------------------- */
/* ----------------------- Shadow types ---------------------- */
/* ----------------------------------------------------------- */

float shadow_cubemap(ShadowData sd, ShadowCubeData scd, float texid, vec3 W)
{
	vec3 cubevec = W - scd.position.xyz;
	float dist = length(cubevec);

	/* If fragment is out of shadowmap range, do not occlude */
	/* XXX : we check radial distance against a cubeface distance.
	 * We loose quite a bit of valid area. */
	if (dist > sd.sh_far)
		return 1.0;

	cubevec /= dist;

	ShadowSample s = sample_cube(cubevec, texid);
	return shadow_test(s, dist, sd);
}

float evaluate_cascade(ShadowData sd, mat4 shadowmat, vec3 W, float range, float texid)
{
	vec4 shpos = shadowmat * vec4(W, 1.0);
	float dist = shpos.z * range;

	ShadowSample s = sample_cascade(shpos.xy, texid);
	float vis = shadow_test(s, dist, sd);

	/* If fragment is out of shadowmap range, do not occlude */
	if (shpos.z < 1.0 && shpos.z > 0.0) {
		return vis;
	}
	else {
		return 1.0;
	}
}

float shadow_cascade(ShadowData sd, ShadowCascadeData scd, float texid, vec3 W)
{
	vec4 view_z = vec4(dot(W - cameraPos, cameraForward));
	vec4 weights = smoothstep(scd.split_end_distances, scd.split_start_distances.yzwx, view_z);
	weights.yzw -= weights.xyz;

	vec4 vis = vec4(1.0);
	float range = abs(sd.sh_far - sd.sh_near); /* Same factor as in get_cascade_world_distance(). */

	/* Branching using (weights > 0.0) is reaally slooow on intel so avoid it for now. */
	/* TODO OPTI: Only do 2 samples and blend. */
	vis.x = evaluate_cascade(sd, scd.shadowmat[0], W, range, texid + 0);
	vis.y = evaluate_cascade(sd, scd.shadowmat[1], W, range, texid + 1);
	vis.z = evaluate_cascade(sd, scd.shadowmat[2], W, range, texid + 2);
	vis.w = evaluate_cascade(sd, scd.shadowmat[3], W, range, texid + 3);

	float weight_sum = dot(vec4(1.0), weights);
	if (weight_sum > 0.9999) {
		float vis_sum = dot(vec4(1.0), vis * weights);
		return vis_sum / weight_sum;
	}
	else {
		float vis_sum = dot(vec4(1.0), vis * step(0.001, weights));
		return mix(1.0, vis_sum, weight_sum);
	}
}

/* ----------------------------------------------------------- */
/* --------------------- Light Functions --------------------- */
/* ----------------------------------------------------------- */
#define MAX_MULTI_SHADOW 4

float light_visibility(LightData ld, vec3 W,
#ifndef VOLUMETRICS
                       vec3 viewPosition,
                       vec3 viewNormal,
#endif
                       vec4 l_vector)
{
	float vis = 1.0;

	if (ld.l_type == SPOT) {
		float z = dot(ld.l_forward, l_vector.xyz);
		vec3 lL = l_vector.xyz / z;
		float x = dot(ld.l_right, lL) / ld.l_sizex;
		float y = dot(ld.l_up, lL) / ld.l_sizey;

		float ellipse = inversesqrt(1.0 + x * x + y * y);

		float spotmask = smoothstep(0.0, 1.0, (ellipse - ld.l_spot_size) / ld.l_spot_blend);

		vis *= spotmask;
		vis *= step(0.0, -dot(l_vector.xyz, ld.l_forward));
	}
	else if (ld.l_type == AREA_RECT || ld.l_type == AREA_ELLIPSE) {
		vis *= step(0.0, -dot(l_vector.xyz, ld.l_forward));
	}

#if !defined(VOLUMETRICS) || defined(VOLUME_SHADOW)
	/* shadowing */
	if (ld.l_shadowid >= 0.0) {
		ShadowData data = shadows_data[int(ld.l_shadowid)];

		if (ld.l_type == SUN) {
			/* TODO : MSM */
			// for (int i = 0; i < MAX_MULTI_SHADOW; ++i) {
				vis *= shadow_cascade(
					data, shadows_cascade_data[int(data.sh_data_start)],
					data.sh_tex_start, W);
			// }
		}
		else {
			/* TODO : MSM */
			// for (int i = 0; i < MAX_MULTI_SHADOW; ++i) {
				vis *= shadow_cubemap(
					data, shadows_cube_data[int(data.sh_data_start)],
					data.sh_tex_start, W);
			// }
		}

#ifndef VOLUMETRICS
		/* Only compute if not already in shadow. */
		if ((vis > 0.001) && (data.sh_contact_dist > 0.0)) {
			vec4 L = (ld.l_type != SUN) ? l_vector : vec4(-ld.l_forward, 1.0);
			float trace_distance = (ld.l_type != SUN) ? min(data.sh_contact_dist, l_vector.w) : data.sh_contact_dist;

			vec3 T, B;
			make_orthonormal_basis(L.xyz / L.w, T, B);

			vec4 rand = texelfetch_noise_tex(gl_FragCoord.xy);
			rand.zw *= fast_sqrt(rand.y) * data.sh_contact_spread;

			/* We use the full l_vector.xyz so that the spread is minimize
			 * if the shading point is further away from the light source */
			vec3 ray_dir = L.xyz + T * rand.z + B * rand.w;
			ray_dir = transform_direction(ViewMatrix, ray_dir);
			ray_dir = normalize(ray_dir);

			vec3 ray_ori = viewPosition;

			float bias = 0.5; /* Constant Bias */
			bias += 1.0 - abs(dot(viewNormal, ray_dir)); /* Angle dependant bias */
			bias *= gl_FrontFacing ? data.sh_contact_offset : -data.sh_contact_offset;

			vec3 nor_bias = viewNormal * bias;
			ray_ori += nor_bias;

			ray_dir *= trace_distance;
			ray_dir -= nor_bias;

			vec3 hit_pos = raycast(-1, ray_ori, ray_dir, data.sh_contact_thickness, rand.x,
			                       0.1, 0.001, false);

			if (hit_pos.z > 0.0) {
				hit_pos = get_view_space_from_depth(hit_pos.xy, hit_pos.z);
				float hit_dist = distance(viewPosition, hit_pos);
				float dist_ratio = hit_dist / trace_distance;
				return vis * saturate(dist_ratio * dist_ratio * dist_ratio);
			}
		}
#endif
	}
#endif

	return vis;
}

#ifdef USE_LTC
float light_diffuse(LightData ld, vec3 N, vec3 V, vec4 l_vector)
{
	if (ld.l_type == AREA_RECT) {
		vec3 corners[4];
		corners[0] = normalize((l_vector.xyz + ld.l_right * -ld.l_sizex) + ld.l_up *  ld.l_sizey);
		corners[1] = normalize((l_vector.xyz + ld.l_right * -ld.l_sizex) + ld.l_up * -ld.l_sizey);
		corners[2] = normalize((l_vector.xyz + ld.l_right *  ld.l_sizex) + ld.l_up * -ld.l_sizey);
		corners[3] = normalize((l_vector.xyz + ld.l_right *  ld.l_sizex) + ld.l_up *  ld.l_sizey);

		return ltc_evaluate_quad(corners, N);
	}
	else if (ld.l_type == AREA_ELLIPSE) {
		vec3 points[3];
		points[0] = (l_vector.xyz + ld.l_right * -ld.l_sizex) + ld.l_up * -ld.l_sizey;
		points[1] = (l_vector.xyz + ld.l_right *  ld.l_sizex) + ld.l_up * -ld.l_sizey;
		points[2] = (l_vector.xyz + ld.l_right *  ld.l_sizex) + ld.l_up *  ld.l_sizey;

		return ltc_evaluate_disk(N, V, mat3(1.0), points);
	}
	else {
		float radius = ld.l_radius;
		radius /= (ld.l_type == SUN) ? 1.0 : l_vector.w;
		vec3 L = (ld.l_type == SUN) ? -ld.l_forward : (l_vector.xyz / l_vector.w);

		return ltc_evaluate_disk_simple(radius, dot(N, L));
	}
}

float light_specular(LightData ld, vec4 ltc_mat, vec3 N, vec3 V, vec4 l_vector)
{
	if (ld.l_type == AREA_RECT) {
		vec3 corners[4];
		corners[0] = (l_vector.xyz + ld.l_right * -ld.l_sizex) + ld.l_up *  ld.l_sizey;
		corners[1] = (l_vector.xyz + ld.l_right * -ld.l_sizex) + ld.l_up * -ld.l_sizey;
		corners[2] = (l_vector.xyz + ld.l_right *  ld.l_sizex) + ld.l_up * -ld.l_sizey;
		corners[3] = (l_vector.xyz + ld.l_right *  ld.l_sizex) + ld.l_up *  ld.l_sizey;

		ltc_transform_quad(N, V, ltc_matrix(ltc_mat), corners);

		return ltc_evaluate_quad(corners, vec3(0.0, 0.0, 1.0));
	}
	else {
		bool is_ellipse = (ld.l_type == AREA_ELLIPSE);
		float radius_x = is_ellipse ? ld.l_sizex : ld.l_radius;
		float radius_y = is_ellipse ? ld.l_sizey : ld.l_radius;

		vec3 L = (ld.l_type == SUN) ? -ld.l_forward : l_vector.xyz;
		vec3 Px = ld.l_right;
		vec3 Py = ld.l_up;

		if (ld.l_type == SPOT || ld.l_type == POINT) {
			make_orthonormal_basis(l_vector.xyz / l_vector.w, Px, Py);
		}

		vec3 points[3];
		points[0] = (L + Px * -radius_x) + Py * -radius_y;
		points[1] = (L + Px *  radius_x) + Py * -radius_y;
		points[2] = (L + Px *  radius_x) + Py *  radius_y;

		return ltc_evaluate_disk(N, V, ltc_matrix(ltc_mat), points);
	}
}
#endif

#define MAX_SSS_SAMPLES 65
#define SSS_LUT_SIZE 64.0
#define SSS_LUT_SCALE ((SSS_LUT_SIZE - 1.0) / float(SSS_LUT_SIZE))
#define SSS_LUT_BIAS (0.5 / float(SSS_LUT_SIZE))

#ifdef USE_TRANSLUCENCY
layout(std140) uniform sssProfile {
	vec4 kernel[MAX_SSS_SAMPLES];
	vec4 radii_max_radius;
	int sss_samples;
};

uniform sampler1D sssTexProfile;

vec3 sss_profile(float s) {
	s /= radii_max_radius.w;
	return texture(sssTexProfile, saturate(s) * SSS_LUT_SCALE + SSS_LUT_BIAS).rgb;
}
#endif

vec3 light_translucent(LightData ld, vec3 W, vec3 N, vec4 l_vector, float scale)
{
#if !defined(USE_TRANSLUCENCY) || defined(VOLUMETRICS)
	return vec3(0.0);
#else
	vec3 vis = vec3(1.0);

	/* Only shadowed light can produce translucency */
	if (ld.l_shadowid >= 0.0) {
		ShadowData data = shadows_data[int(ld.l_shadowid)];
		float delta;

		vec4 L = (ld.l_type != SUN) ? l_vector : vec4(-ld.l_forward, 1.0);

		vec3 T, B;
		make_orthonormal_basis(L.xyz / L.w, T, B);

		vec4 rand = texelfetch_noise_tex(gl_FragCoord.xy);
		rand.zw *= fast_sqrt(rand.y) * data.sh_blur;

		/* We use the full l_vector.xyz so that the spread is minimize
		 * if the shading point is further away from the light source */
		W = W + T * rand.z + B * rand.w;

		if (ld.l_type == SUN) {
			ShadowCascadeData scd = shadows_cascade_data[int(data.sh_data_start)];
			vec4 view_z = vec4(dot(W - cameraPos, cameraForward));

			vec4 weights = step(scd.split_end_distances, view_z);
			float id = abs(4.0 - dot(weights, weights));

			if (id > 3.0) {
				return vec3(0.0);
			}

			float range = abs(data.sh_far - data.sh_near); /* Same factor as in get_cascade_world_distance(). */

			vec4 shpos = scd.shadowmat[int(id)] * vec4(W, 1.0);
			float dist = shpos.z * range;

			if (shpos.z > 1.0 || shpos.z < 0.0) {
				return vec3(0.0);
			}

			ShadowSample s = sample_cascade(shpos.xy, data.sh_tex_start + id);
			delta = get_depth_delta(s);
		}
		else {
			vec3 cubevec = W - shadows_cube_data[int(data.sh_data_start)].position.xyz;
			float dist = length(cubevec);

			/* If fragment is out of shadowmap range, do not occlude */
			/* XXX : we check radial distance against a cubeface distance.
			 * We loose quite a bit of valid area. */
			if (dist < data.sh_far) {
				cubevec /= dist;

				ShadowSample s = sample_cube(cubevec, data.sh_tex_start);
				delta = get_depth_delta(s);
			}
		}

		/* XXX : Removing Area Power. */
		/* TODO : put this out of the shader. */
		float falloff;
		if (ld.l_type == AREA_RECT || ld.l_type == AREA_ELLIPSE) {
			vis *= (ld.l_sizex * ld.l_sizey * 4.0 * M_PI) * (1.0 / 80.0);
			if (ld.l_type == AREA_ELLIPSE) {
				vis *= M_PI * 0.25;
			}
			vis *= 0.3 * 20.0 * max(0.0, dot(-ld.l_forward, l_vector.xyz / l_vector.w)); /* XXX ad hoc, empirical */
			vis /= (l_vector.w * l_vector.w);
			falloff = dot(N, l_vector.xyz / l_vector.w);
		}
		else if (ld.l_type == SUN) {
			vis *= (4.0f * ld.l_radius * ld.l_radius * M_2PI) * (1.0 / 12.5); /* Removing area light power*/
			vis *= M_2PI * 0.78; /* Matching cycles with point light. */
			vis *= 0.082; /* XXX ad hoc, empirical */
			falloff = dot(N, -ld.l_forward);
		}
		else {
			vis *= (4.0 * ld.l_radius * ld.l_radius) * (1.0 /10.0);
			vis *= 1.5; /* XXX ad hoc, empirical */
			vis /= (l_vector.w * l_vector.w);
			falloff = dot(N, l_vector.xyz / l_vector.w);
		}
		// vis *= M_1_PI; /* Normalize */

		/* Applying profile */
		vis *= sss_profile(abs(delta) / scale);

		/* No transmittance at grazing angle (hide artifacts) */
		vis *= saturate(falloff * 2.0);

		if (ld.l_type == SPOT) {
			float z = dot(ld.l_forward, l_vector.xyz);
			vec3 lL = l_vector.xyz / z;
			float x = dot(ld.l_right, lL) / ld.l_sizex;
			float y = dot(ld.l_up, lL) / ld.l_sizey;

			float ellipse = inversesqrt(1.0 + x * x + y * y);

			float spotmask = smoothstep(0.0, 1.0, (ellipse - ld.l_spot_size) / ld.l_spot_blend);

			vis *= spotmask;
			vis *= step(0.0, -dot(l_vector.xyz, ld.l_forward));
		}
		else if (ld.l_type == AREA_RECT || ld.l_type == AREA_ELLIPSE) {
			vis *= step(0.0, -dot(l_vector.xyz, ld.l_forward));
		}
	}
	else {
		vis = vec3(0.0);
	}

	return vis;
#endif
}