Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'intern/cycles/kernel')
-rw-r--r--intern/cycles/kernel/CMakeLists.txt251
-rw-r--r--intern/cycles/kernel/bvh/bvh.h127
-rw-r--r--intern/cycles/kernel/bvh/bvh_nodes.h202
-rw-r--r--intern/cycles/kernel/bvh/bvh_shadow_all.h81
-rw-r--r--intern/cycles/kernel/bvh/bvh_subsurface.h27
-rw-r--r--intern/cycles/kernel/bvh/bvh_traversal.h88
-rw-r--r--intern/cycles/kernel/bvh/bvh_types.h14
-rw-r--r--intern/cycles/kernel/bvh/bvh_volume.h21
-rw-r--r--intern/cycles/kernel/bvh/bvh_volume_all.h21
-rw-r--r--intern/cycles/kernel/bvh/qbvh_nodes.h8
-rw-r--r--intern/cycles/kernel/bvh/qbvh_shadow_all.h84
-rw-r--r--intern/cycles/kernel/bvh/qbvh_subsurface.h25
-rw-r--r--intern/cycles/kernel/bvh/qbvh_traversal.h86
-rw-r--r--intern/cycles/kernel/bvh/qbvh_volume.h19
-rw-r--r--intern/cycles/kernel/bvh/qbvh_volume_all.h19
-rw-r--r--intern/cycles/kernel/closure/alloc.h22
-rw-r--r--intern/cycles/kernel/closure/bsdf.h241
-rw-r--r--intern/cycles/kernel/closure/bsdf_ashikhmin_shirley.h4
-rw-r--r--intern/cycles/kernel/closure/bsdf_ashikhmin_velvet.h1
-rw-r--r--intern/cycles/kernel/closure/bsdf_diffuse.h1
-rw-r--r--intern/cycles/kernel/closure/bsdf_diffuse_ramp.h1
-rw-r--r--intern/cycles/kernel/closure/bsdf_hair.h5
-rw-r--r--intern/cycles/kernel/closure/bsdf_microfacet.h183
-rw-r--r--intern/cycles/kernel/closure/bsdf_microfacet_multi.h221
-rw-r--r--intern/cycles/kernel/closure/bsdf_microfacet_multi_impl.h164
-rw-r--r--intern/cycles/kernel/closure/bsdf_oren_nayar.h1
-rw-r--r--intern/cycles/kernel/closure/bsdf_phong_ramp.h1
-rw-r--r--intern/cycles/kernel/closure/bsdf_principled_diffuse.h127
-rw-r--r--intern/cycles/kernel/closure/bsdf_principled_sheen.h113
-rw-r--r--intern/cycles/kernel/closure/bsdf_toon.h1
-rw-r--r--intern/cycles/kernel/closure/bsdf_util.h20
-rw-r--r--intern/cycles/kernel/closure/bssrdf.h45
-rw-r--r--intern/cycles/kernel/filter/filter.h52
-rw-r--r--intern/cycles/kernel/filter/filter_defines.h38
-rw-r--r--intern/cycles/kernel/filter/filter_features.h124
-rw-r--r--intern/cycles/kernel/filter/filter_features_sse.h93
-rw-r--r--intern/cycles/kernel/filter/filter_kernel.h50
-rw-r--r--intern/cycles/kernel/filter/filter_nlm_cpu.h180
-rw-r--r--intern/cycles/kernel/filter/filter_nlm_gpu.h144
-rw-r--r--intern/cycles/kernel/filter/filter_prefilter.h215
-rw-r--r--intern/cycles/kernel/filter/filter_reconstruction.h117
-rw-r--r--intern/cycles/kernel/filter/filter_transform.h108
-rw-r--r--intern/cycles/kernel/filter/filter_transform_gpu.h119
-rw-r--r--intern/cycles/kernel/filter/filter_transform_sse.h105
-rw-r--r--intern/cycles/kernel/geom/geom.h25
-rw-r--r--intern/cycles/kernel/geom/geom_attribute.h8
-rw-r--r--intern/cycles/kernel/geom/geom_curve.h866
-rw-r--r--intern/cycles/kernel/geom/geom_curve_intersect.h934
-rw-r--r--intern/cycles/kernel/geom/geom_motion_curve.h74
-rw-r--r--intern/cycles/kernel/geom/geom_motion_triangle.h310
-rw-r--r--intern/cycles/kernel/geom/geom_motion_triangle_intersect.h289
-rw-r--r--intern/cycles/kernel/geom/geom_motion_triangle_shader.h123
-rw-r--r--intern/cycles/kernel/geom/geom_object.h106
-rw-r--r--intern/cycles/kernel/geom/geom_patch.h6
-rw-r--r--intern/cycles/kernel/geom/geom_primitive.h37
-rw-r--r--intern/cycles/kernel/geom/geom_subd_triangle.h48
-rw-r--r--intern/cycles/kernel/geom/geom_triangle.h60
-rw-r--r--intern/cycles/kernel/geom/geom_triangle_intersect.h406
-rw-r--r--intern/cycles/kernel/geom/geom_volume.h87
-rw-r--r--intern/cycles/kernel/kernel.h46
-rw-r--r--intern/cycles/kernel/kernel_accumulate.h431
-rw-r--r--intern/cycles/kernel/kernel_bake.h171
-rw-r--r--intern/cycles/kernel/kernel_camera.h4
-rw-r--r--intern/cycles/kernel/kernel_compat_cpu.h446
-rw-r--r--intern/cycles/kernel/kernel_compat_cuda.h112
-rw-r--r--intern/cycles/kernel/kernel_compat_opencl.h22
-rw-r--r--intern/cycles/kernel/kernel_debug.h50
-rw-r--r--intern/cycles/kernel/kernel_emission.h37
-rw-r--r--intern/cycles/kernel/kernel_globals.h110
-rw-r--r--intern/cycles/kernel/kernel_image_opencl.h231
-rw-r--r--intern/cycles/kernel/kernel_jitter.h30
-rw-r--r--intern/cycles/kernel/kernel_light.h304
-rw-r--r--intern/cycles/kernel/kernel_math.h12
-rw-r--r--intern/cycles/kernel/kernel_montecarlo.h9
-rw-r--r--intern/cycles/kernel/kernel_passes.h277
-rw-r--r--intern/cycles/kernel/kernel_path.h1157
-rw-r--r--intern/cycles/kernel/kernel_path_branched.h575
-rw-r--r--intern/cycles/kernel/kernel_path_common.h15
-rw-r--r--intern/cycles/kernel/kernel_path_state.h90
-rw-r--r--intern/cycles/kernel/kernel_path_subsurface.h156
-rw-r--r--intern/cycles/kernel/kernel_path_surface.h151
-rw-r--r--intern/cycles/kernel/kernel_path_volume.h116
-rw-r--r--intern/cycles/kernel/kernel_projection.h3
-rw-r--r--intern/cycles/kernel/kernel_queues.h51
-rw-r--r--intern/cycles/kernel/kernel_random.h354
-rw-r--r--intern/cycles/kernel/kernel_shader.h583
-rw-r--r--intern/cycles/kernel/kernel_shadow.h710
-rw-r--r--intern/cycles/kernel/kernel_subsurface.h212
-rw-r--r--intern/cycles/kernel/kernel_textures.h260
-rw-r--r--intern/cycles/kernel/kernel_types.h677
-rw-r--r--intern/cycles/kernel/kernel_volume.h163
-rw-r--r--intern/cycles/kernel/kernel_work_stealing.h195
-rw-r--r--intern/cycles/kernel/kernels/cpu/filter.cpp61
-rw-r--r--intern/cycles/kernel/kernels/cpu/filter_avx.cpp39
-rw-r--r--intern/cycles/kernel/kernels/cpu/filter_avx2.cpp40
-rw-r--r--intern/cycles/kernel/kernels/cpu/filter_cpu.h136
-rw-r--r--intern/cycles/kernel/kernels/cpu/filter_cpu_impl.h268
-rw-r--r--intern/cycles/kernel/kernels/cpu/filter_sse2.cpp34
-rw-r--r--intern/cycles/kernel/kernels/cpu/filter_sse3.cpp36
-rw-r--r--intern/cycles/kernel/kernels/cpu/filter_sse41.cpp38
-rw-r--r--intern/cycles/kernel/kernels/cpu/kernel.cpp110
-rw-r--r--intern/cycles/kernel/kernels/cpu/kernel_avx.cpp32
-rw-r--r--intern/cycles/kernel/kernels/cpu/kernel_avx2.cpp34
-rw-r--r--intern/cycles/kernel/kernels/cpu/kernel_cpu.h42
-rw-r--r--intern/cycles/kernel/kernels/cpu/kernel_cpu_image.h508
-rw-r--r--intern/cycles/kernel/kernels/cpu/kernel_cpu_impl.h153
-rw-r--r--intern/cycles/kernel/kernels/cpu/kernel_split.cpp63
-rw-r--r--intern/cycles/kernel/kernels/cpu/kernel_split_avx.cpp41
-rw-r--r--intern/cycles/kernel/kernels/cpu/kernel_split_avx2.cpp42
-rw-r--r--intern/cycles/kernel/kernels/cpu/kernel_split_sse2.cpp36
-rw-r--r--intern/cycles/kernel/kernels/cpu/kernel_split_sse3.cpp38
-rw-r--r--intern/cycles/kernel/kernels/cpu/kernel_split_sse41.cpp39
-rw-r--r--intern/cycles/kernel/kernels/cpu/kernel_sse2.cpp22
-rw-r--r--intern/cycles/kernel/kernels/cpu/kernel_sse3.cpp26
-rw-r--r--intern/cycles/kernel/kernels/cpu/kernel_sse41.cpp28
-rw-r--r--intern/cycles/kernel/kernels/cuda/filter.cu251
-rw-r--r--intern/cycles/kernel/kernels/cuda/kernel.cu195
-rw-r--r--intern/cycles/kernel/kernels/cuda/kernel_config.h115
-rw-r--r--intern/cycles/kernel/kernels/cuda/kernel_cuda_image.h310
-rw-r--r--intern/cycles/kernel/kernels/cuda/kernel_split.cu148
-rw-r--r--intern/cycles/kernel/kernels/opencl/filter.cl276
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel.cl151
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_background_buffer_update.cl125
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_buffer_update.cl26
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_data_init.cl77
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_direct_lighting.cl77
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_do_volume.cl24
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_enqueue_inactive.cl26
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_holdout_emission_blurring_pathtermination_ao.cl113
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_indirect_background.cl24
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_indirect_subsurface.cl24
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_lamp_emission.cl68
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_next_iteration_setup.cl104
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_opencl_image.h341
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_path_init.cl24
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_queue_enqueue.cl96
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_scene_intersect.cl68
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_shader_eval.cl56
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_shader_setup.cl26
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_shader_sort.cl27
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_shadow_blocked.cl65
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_shadow_blocked_ao.cl24
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_shadow_blocked_dl.cl24
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_split.cl41
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_split_function.h65
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_state_buffer_size.cl29
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_subsurface_scatter.cl24
-rw-r--r--intern/cycles/kernel/kernels/opencl/kernel_sum_all_radiance.cl38
-rw-r--r--intern/cycles/kernel/openvdb/vdb_intern.h2
-rw-r--r--intern/cycles/kernel/osl/CMakeLists.txt8
-rw-r--r--intern/cycles/kernel/osl/background.cpp6
-rw-r--r--intern/cycles/kernel/osl/bsdf_diffuse_ramp.cpp12
-rw-r--r--intern/cycles/kernel/osl/bsdf_phong_ramp.cpp10
-rw-r--r--intern/cycles/kernel/osl/emissive.cpp10
-rw-r--r--intern/cycles/kernel/osl/osl_bssrdf.cpp51
-rw-r--r--intern/cycles/kernel/osl/osl_closures.cpp323
-rw-r--r--intern/cycles/kernel/osl/osl_closures.h18
-rw-r--r--intern/cycles/kernel/osl/osl_globals.h10
-rw-r--r--intern/cycles/kernel/osl/osl_services.cpp85
-rw-r--r--intern/cycles/kernel/osl/osl_services.h2
-rw-r--r--intern/cycles/kernel/osl/osl_shader.cpp51
-rw-r--r--intern/cycles/kernel/osl/osl_shader.h10
-rw-r--r--intern/cycles/kernel/shaders/CMakeLists.txt4
-rw-r--r--intern/cycles/kernel/shaders/node_light_path.osl10
-rw-r--r--intern/cycles/kernel/shaders/node_principled_bsdf.osl120
-rw-r--r--intern/cycles/kernel/shaders/stdosl.h9
-rw-r--r--intern/cycles/kernel/split/kernel_background_buffer_update.h248
-rw-r--r--intern/cycles/kernel/split/kernel_branched.h219
-rw-r--r--intern/cycles/kernel/split/kernel_buffer_update.h154
-rw-r--r--intern/cycles/kernel/split/kernel_data_init.h261
-rw-r--r--intern/cycles/kernel/split/kernel_direct_lighting.h157
-rw-r--r--intern/cycles/kernel/split/kernel_do_volume.h220
-rw-r--r--intern/cycles/kernel/split/kernel_enqueue_inactive.h46
-rw-r--r--intern/cycles/kernel/split/kernel_holdout_emission_blurring_pathtermination_ao.h318
-rw-r--r--intern/cycles/kernel/split/kernel_indirect_background.h65
-rw-r--r--intern/cycles/kernel/split/kernel_indirect_subsurface.h79
-rw-r--r--intern/cycles/kernel/split/kernel_lamp_emission.h99
-rw-r--r--intern/cycles/kernel/split/kernel_next_iteration_setup.h314
-rw-r--r--intern/cycles/kernel/split/kernel_path_init.h81
-rw-r--r--intern/cycles/kernel/split/kernel_queue_enqueue.h91
-rw-r--r--intern/cycles/kernel/split/kernel_scene_intersect.h135
-rw-r--r--intern/cycles/kernel/split/kernel_shader_eval.h92
-rw-r--r--intern/cycles/kernel/split/kernel_shader_setup.h70
-rw-r--r--intern/cycles/kernel/split/kernel_shader_sort.h97
-rw-r--r--intern/cycles/kernel/split/kernel_shadow_blocked.h85
-rw-r--r--intern/cycles/kernel/split/kernel_shadow_blocked_ao.h55
-rw-r--r--intern/cycles/kernel/split/kernel_shadow_blocked_dl.h107
-rw-r--r--intern/cycles/kernel/split/kernel_split_common.h102
-rw-r--r--intern/cycles/kernel/split/kernel_split_data.h57
-rw-r--r--intern/cycles/kernel/split/kernel_split_data_types.h175
-rw-r--r--intern/cycles/kernel/split/kernel_subsurface_scatter.h313
-rw-r--r--intern/cycles/kernel/split/kernel_sum_all_radiance.h59
-rw-r--r--intern/cycles/kernel/svm/svm.h86
-rw-r--r--intern/cycles/kernel/svm/svm_attribute.h2
-rw-r--r--intern/cycles/kernel/svm/svm_blackbody.h3
-rw-r--r--intern/cycles/kernel/svm/svm_bump.h18
-rw-r--r--intern/cycles/kernel/svm/svm_camera.h2
-rw-r--r--intern/cycles/kernel/svm/svm_closure.h485
-rw-r--r--intern/cycles/kernel/svm/svm_displace.h19
-rw-r--r--intern/cycles/kernel/svm/svm_fresnel.h14
-rw-r--r--intern/cycles/kernel/svm/svm_geometry.h43
-rw-r--r--intern/cycles/kernel/svm/svm_image.h208
-rw-r--r--intern/cycles/kernel/svm/svm_light_path.h12
-rw-r--r--intern/cycles/kernel/svm/svm_math_util.h114
-rw-r--r--intern/cycles/kernel/svm/svm_noisetex.h46
-rw-r--r--intern/cycles/kernel/svm/svm_tex_coord.h112
-rw-r--r--intern/cycles/kernel/svm/svm_types.h32
-rw-r--r--intern/cycles/kernel/svm/svm_vector_transform.h2
-rw-r--r--intern/cycles/kernel/svm/svm_voxel.h20
-rw-r--r--intern/cycles/kernel/svm/svm_wavelength.h77
-rw-r--r--intern/cycles/kernel/svm/svm_wireframe.h28
211 files changed, 16247 insertions, 9172 deletions
diff --git a/intern/cycles/kernel/CMakeLists.txt b/intern/cycles/kernel/CMakeLists.txt
index 5322f6abee1..7aab5f4a94a 100644
--- a/intern/cycles/kernel/CMakeLists.txt
+++ b/intern/cycles/kernel/CMakeLists.txt
@@ -1,31 +1,64 @@
remove_extra_strict_flags()
set(INC
- .
- ../util
- osl
- svm
+ ..
)
set(INC_SYS
)
-set(SRC
+set(SRC_CPU_KERNELS
kernels/cpu/kernel.cpp
+ kernels/cpu/kernel_sse2.cpp
+ kernels/cpu/kernel_sse3.cpp
+ kernels/cpu/kernel_sse41.cpp
+ kernels/cpu/kernel_avx.cpp
+ kernels/cpu/kernel_avx2.cpp
+ kernels/cpu/kernel_split.cpp
+ kernels/cpu/kernel_split_sse2.cpp
+ kernels/cpu/kernel_split_sse3.cpp
+ kernels/cpu/kernel_split_sse41.cpp
+ kernels/cpu/kernel_split_avx.cpp
+ kernels/cpu/kernel_split_avx2.cpp
+ kernels/cpu/filter.cpp
+ kernels/cpu/filter_sse2.cpp
+ kernels/cpu/filter_sse3.cpp
+ kernels/cpu/filter_sse41.cpp
+ kernels/cpu/filter_avx.cpp
+ kernels/cpu/filter_avx2.cpp
+)
+
+set(SRC_CUDA_KERNELS
+ kernels/cuda/kernel.cu
+ kernels/cuda/kernel_split.cu
+ kernels/cuda/filter.cu
+)
+
+set(SRC_OPENCL_KERNELS
kernels/opencl/kernel.cl
+ kernels/opencl/kernel_state_buffer_size.cl
+ kernels/opencl/kernel_split.cl
kernels/opencl/kernel_data_init.cl
+ kernels/opencl/kernel_path_init.cl
kernels/opencl/kernel_queue_enqueue.cl
kernels/opencl/kernel_scene_intersect.cl
kernels/opencl/kernel_lamp_emission.cl
- kernels/opencl/kernel_background_buffer_update.cl
+ kernels/opencl/kernel_do_volume.cl
+ kernels/opencl/kernel_indirect_background.cl
+ kernels/opencl/kernel_shader_setup.cl
+ kernels/opencl/kernel_shader_sort.cl
kernels/opencl/kernel_shader_eval.cl
kernels/opencl/kernel_holdout_emission_blurring_pathtermination_ao.cl
+ kernels/opencl/kernel_subsurface_scatter.cl
kernels/opencl/kernel_direct_lighting.cl
- kernels/opencl/kernel_shadow_blocked.cl
+ kernels/opencl/kernel_shadow_blocked_ao.cl
+ kernels/opencl/kernel_shadow_blocked_dl.cl
+ kernels/opencl/kernel_enqueue_inactive.cl
kernels/opencl/kernel_next_iteration_setup.cl
- kernels/opencl/kernel_sum_all_radiance.cl
- kernels/cuda/kernel.cu
+ kernels/opencl/kernel_indirect_subsurface.cl
+ kernels/opencl/kernel_buffer_update.cl
+ kernels/opencl/filter.cl
)
set(SRC_BVH_HEADERS
@@ -52,12 +85,10 @@ set(SRC_HEADERS
kernel_compat_cpu.h
kernel_compat_cuda.h
kernel_compat_opencl.h
- kernel_debug.h
kernel_differential.h
kernel_emission.h
kernel_film.h
kernel_globals.h
- kernel_image_opencl.h
kernel_jitter.h
kernel_light.h
kernel_math.h
@@ -68,6 +99,7 @@ set(SRC_HEADERS
kernel_path_common.h
kernel_path_state.h
kernel_path_surface.h
+ kernel_path_subsurface.h
kernel_path_volume.h
kernel_projection.h
kernel_queues.h
@@ -86,6 +118,18 @@ set(SRC_KERNELS_CPU_HEADERS
kernels/cpu/kernel_cpu.h
kernels/cpu/kernel_cpu_impl.h
kernels/cpu/kernel_cpu_image.h
+ kernels/cpu/filter_cpu.h
+ kernels/cpu/filter_cpu_impl.h
+)
+
+set(SRC_KERNELS_CUDA_HEADERS
+ kernels/cuda/kernel_config.h
+ kernels/cuda/kernel_cuda_image.h
+)
+
+set(SRC_KERNELS_OPENCL_HEADERS
+ kernels/opencl/kernel_split_function.h
+ kernels/opencl/kernel_opencl_image.h
)
set(SRC_CLOSURE_HEADERS
@@ -109,6 +153,8 @@ set(SRC_CLOSURE_HEADERS
closure/bssrdf.h
closure/emissive.h
closure/volume.h
+ closure/bsdf_principled_diffuse.h
+ closure/bsdf_principled_sheen.h
)
set(SRC_SVM_HEADERS
@@ -162,8 +208,11 @@ set(SRC_GEOM_HEADERS
geom/geom.h
geom/geom_attribute.h
geom/geom_curve.h
+ geom/geom_curve_intersect.h
geom/geom_motion_curve.h
geom/geom_motion_triangle.h
+ geom/geom_motion_triangle_intersect.h
+ geom/geom_motion_triangle_shader.h
geom/geom_object.h
geom/geom_patch.h
geom/geom_primitive.h
@@ -173,31 +222,93 @@ set(SRC_GEOM_HEADERS
geom/geom_volume.h
)
+set(SRC_FILTER_HEADERS
+ filter/filter.h
+ filter/filter_defines.h
+ filter/filter_features.h
+ filter/filter_features_sse.h
+ filter/filter_kernel.h
+ filter/filter_nlm_cpu.h
+ filter/filter_nlm_gpu.h
+ filter/filter_prefilter.h
+ filter/filter_reconstruction.h
+ filter/filter_transform.h
+ filter/filter_transform_gpu.h
+ filter/filter_transform_sse.h
+)
+
set(SRC_UTIL_HEADERS
../util/util_atomic.h
../util/util_color.h
+ ../util/util_defines.h
../util/util_half.h
../util/util_hash.h
../util/util_math.h
../util/util_math_fast.h
+ ../util/util_math_intersect.h
+ ../util/util_math_float2.h
+ ../util/util_math_float3.h
+ ../util/util_math_float4.h
+ ../util/util_math_int2.h
+ ../util/util_math_int3.h
+ ../util/util_math_int4.h
+ ../util/util_math_matrix.h
../util/util_static_assert.h
../util/util_transform.h
../util/util_texture.h
../util/util_types.h
+ ../util/util_types_float2.h
+ ../util/util_types_float2_impl.h
+ ../util/util_types_float3.h
+ ../util/util_types_float3_impl.h
+ ../util/util_types_float4.h
+ ../util/util_types_float4_impl.h
+ ../util/util_types_int2.h
+ ../util/util_types_int2_impl.h
+ ../util/util_types_int3.h
+ ../util/util_types_int3_impl.h
+ ../util/util_types_int4.h
+ ../util/util_types_int4_impl.h
+ ../util/util_types_uchar2.h
+ ../util/util_types_uchar2_impl.h
+ ../util/util_types_uchar3.h
+ ../util/util_types_uchar3_impl.h
+ ../util/util_types_uchar4.h
+ ../util/util_types_uchar4_impl.h
+ ../util/util_types_uint2.h
+ ../util/util_types_uint2_impl.h
+ ../util/util_types_uint3.h
+ ../util/util_types_uint3_impl.h
+ ../util/util_types_uint4.h
+ ../util/util_types_uint4_impl.h
+ ../util/util_types_vector3.h
+ ../util/util_types_vector3_impl.h
)
set(SRC_SPLIT_HEADERS
- split/kernel_background_buffer_update.h
+ split/kernel_branched.h
+ split/kernel_buffer_update.h
split/kernel_data_init.h
split/kernel_direct_lighting.h
+ split/kernel_do_volume.h
+ split/kernel_enqueue_inactive.h
split/kernel_holdout_emission_blurring_pathtermination_ao.h
+ split/kernel_indirect_background.h
+ split/kernel_indirect_subsurface.h
split/kernel_lamp_emission.h
split/kernel_next_iteration_setup.h
+ split/kernel_path_init.h
+ split/kernel_queue_enqueue.h
split/kernel_scene_intersect.h
+ split/kernel_shader_setup.h
+ split/kernel_shader_sort.h
split/kernel_shader_eval.h
- split/kernel_shadow_blocked.h
+ split/kernel_shadow_blocked_ao.h
+ split/kernel_shadow_blocked_dl.h
split/kernel_split_common.h
- split/kernel_sum_all_radiance.h
+ split/kernel_split_data.h
+ split/kernel_split_data_types.h
+ split/kernel_subsurface_scatter.h
)
# CUDA module
@@ -217,7 +328,7 @@ if(WITH_CYCLES_CUDA_BINARIES)
set(CUDA_VERSION "${CUDA_VERSION_MAJOR}${CUDA_VERSION_MINOR}")
# warn for other versions
- if(CUDA_VERSION MATCHES "80")
+ if(CUDA_VERSION MATCHES "80" OR CUDA_VERSION MATCHES "90")
else()
message(WARNING
"CUDA version ${CUDA_VERSION_MAJOR}.${CUDA_VERSION_MINOR} detected, "
@@ -225,25 +336,31 @@ if(WITH_CYCLES_CUDA_BINARIES)
endif()
# build for each arch
- set(cuda_sources kernels/cuda/kernel.cu
+ set(cuda_sources kernels/cuda/kernel.cu kernels/cuda/kernel_split.cu
${SRC_HEADERS}
+ ${SRC_KERNELS_CUDA_HEADERS}
${SRC_BVH_HEADERS}
${SRC_SVM_HEADERS}
${SRC_GEOM_HEADERS}
${SRC_CLOSURE_HEADERS}
${SRC_UTIL_HEADERS}
)
+ set(cuda_filter_sources kernels/cuda/filter.cu
+ ${SRC_HEADERS}
+ ${SRC_KERNELS_CUDA_HEADERS}
+ ${SRC_FILTER_HEADERS}
+ ${SRC_UTIL_HEADERS}
+ )
set(cuda_cubins)
- macro(CYCLES_CUDA_KERNEL_ADD arch experimental)
+ macro(CYCLES_CUDA_KERNEL_ADD arch name flags sources experimental)
if(${experimental})
- set(cuda_extra_flags "-D__KERNEL_EXPERIMENTAL__")
- set(cuda_cubin kernel_experimental_${arch}.cubin)
- else()
- set(cuda_extra_flags "")
- set(cuda_cubin kernel_${arch}.cubin)
+ set(flags ${flags} -D__KERNEL_EXPERIMENTAL__)
+ set(name ${name}_experimental)
endif()
+ set(cuda_cubin ${name}_${arch}.cubin)
+
if(WITH_CYCLES_DEBUG)
set(cuda_debug_flags "-D__KERNEL_DEBUG__")
else()
@@ -256,26 +373,27 @@ if(WITH_CYCLES_CUDA_BINARIES)
set(cuda_version_flags "-D__KERNEL_CUDA_VERSION__=${cuda_nvcc_version}")
set(cuda_math_flags "--use_fast_math")
+ set(cuda_kernel_src "/kernels/cuda/${name}.cu")
+
add_custom_command(
OUTPUT ${cuda_cubin}
COMMAND ${cuda_nvcc_command}
-arch=${arch}
${CUDA_NVCC_FLAGS}
-m${CUDA_BITS}
- --cubin ${CMAKE_CURRENT_SOURCE_DIR}/kernels/cuda/kernel.cu
+ --cubin ${CMAKE_CURRENT_SOURCE_DIR}${cuda_kernel_src}
-o ${CMAKE_CURRENT_BINARY_DIR}/${cuda_cubin}
--ptxas-options="-v"
${cuda_arch_flags}
${cuda_version_flags}
${cuda_math_flags}
- ${cuda_extra_flags}
+ ${flags}
${cuda_debug_flags}
- -I${CMAKE_CURRENT_SOURCE_DIR}/../util
- -I${CMAKE_CURRENT_SOURCE_DIR}/svm
+ -I${CMAKE_CURRENT_SOURCE_DIR}/..
-DCCL_NAMESPACE_BEGIN=
-DCCL_NAMESPACE_END=
-DNVCC
- DEPENDS ${cuda_sources})
+ DEPENDS ${sources})
delayed_install("${CMAKE_CURRENT_BINARY_DIR}" "${cuda_cubin}" ${CYCLES_INSTALL_PATH}/lib)
list(APPEND cuda_cubins ${cuda_cubin})
@@ -288,8 +406,18 @@ if(WITH_CYCLES_CUDA_BINARIES)
endmacro()
foreach(arch ${CYCLES_CUDA_BINARIES_ARCH})
- # Compile regular kernel
- CYCLES_CUDA_KERNEL_ADD(${arch} FALSE)
+ if(CUDA_VERSION MATCHES "90" AND ${arch} MATCHES "sm_2.")
+ message(STATUS "CUDA binaries for ${arch} disabled, not supported by CUDA 9.")
+ else()
+ # Compile regular kernel
+ CYCLES_CUDA_KERNEL_ADD(${arch} kernel "" "${cuda_sources}" FALSE)
+ CYCLES_CUDA_KERNEL_ADD(${arch} filter "" "${cuda_filter_sources}" FALSE)
+
+ if(WITH_CYCLES_CUDA_SPLIT_KERNEL_BINARIES)
+ # Compile split kernel
+ CYCLES_CUDA_KERNEL_ADD(${arch} kernel_split "-D__SPLIT__" ${cuda_sources} FALSE)
+ endif()
+ endif()
endforeach()
add_custom_target(cycles_kernel_cuda ALL DEPENDS ${cuda_cubins})
@@ -319,38 +447,45 @@ list(APPEND SRC_HEADERS
include_directories(${INC})
include_directories(SYSTEM ${INC_SYS})
-if(CXX_HAS_SSE)
- list(APPEND SRC
- kernels/cpu/kernel_sse2.cpp
- kernels/cpu/kernel_sse3.cpp
- kernels/cpu/kernel_sse41.cpp
- )
+set_source_files_properties(kernels/cpu/kernel.cpp PROPERTIES COMPILE_FLAGS "${CYCLES_KERNEL_FLAGS}")
+set_source_files_properties(kernels/cpu/kernel_split.cpp PROPERTIES COMPILE_FLAGS "${CYCLES_KERNEL_FLAGS}")
+set_source_files_properties(kernels/cpu/filter.cpp PROPERTIES COMPILE_FLAGS "${CYCLES_KERNEL_FLAGS}")
+if(CXX_HAS_SSE)
set_source_files_properties(kernels/cpu/kernel_sse2.cpp PROPERTIES COMPILE_FLAGS "${CYCLES_SSE2_KERNEL_FLAGS}")
set_source_files_properties(kernels/cpu/kernel_sse3.cpp PROPERTIES COMPILE_FLAGS "${CYCLES_SSE3_KERNEL_FLAGS}")
set_source_files_properties(kernels/cpu/kernel_sse41.cpp PROPERTIES COMPILE_FLAGS "${CYCLES_SSE41_KERNEL_FLAGS}")
+ set_source_files_properties(kernels/cpu/kernel_split_sse2.cpp PROPERTIES COMPILE_FLAGS "${CYCLES_SSE2_KERNEL_FLAGS}")
+ set_source_files_properties(kernels/cpu/kernel_split_sse3.cpp PROPERTIES COMPILE_FLAGS "${CYCLES_SSE3_KERNEL_FLAGS}")
+ set_source_files_properties(kernels/cpu/kernel_split_sse41.cpp PROPERTIES COMPILE_FLAGS "${CYCLES_SSE41_KERNEL_FLAGS}")
+ set_source_files_properties(kernels/cpu/filter_sse2.cpp PROPERTIES COMPILE_FLAGS "${CYCLES_SSE2_KERNEL_FLAGS}")
+ set_source_files_properties(kernels/cpu/filter_sse3.cpp PROPERTIES COMPILE_FLAGS "${CYCLES_SSE3_KERNEL_FLAGS}")
+ set_source_files_properties(kernels/cpu/filter_sse41.cpp PROPERTIES COMPILE_FLAGS "${CYCLES_SSE41_KERNEL_FLAGS}")
endif()
if(CXX_HAS_AVX)
- list(APPEND SRC
- kernels/cpu/kernel_avx.cpp
- )
set_source_files_properties(kernels/cpu/kernel_avx.cpp PROPERTIES COMPILE_FLAGS "${CYCLES_AVX_KERNEL_FLAGS}")
+ set_source_files_properties(kernels/cpu/kernel_split_avx.cpp PROPERTIES COMPILE_FLAGS "${CYCLES_AVX_KERNEL_FLAGS}")
+ set_source_files_properties(kernels/cpu/filter_avx.cpp PROPERTIES COMPILE_FLAGS "${CYCLES_AVX_KERNEL_FLAGS}")
endif()
if(CXX_HAS_AVX2)
- list(APPEND SRC
- kernels/cpu/kernel_avx2.cpp
- )
set_source_files_properties(kernels/cpu/kernel_avx2.cpp PROPERTIES COMPILE_FLAGS "${CYCLES_AVX2_KERNEL_FLAGS}")
+ set_source_files_properties(kernels/cpu/kernel_split_avx2.cpp PROPERTIES COMPILE_FLAGS "${CYCLES_AVX2_KERNEL_FLAGS}")
+ set_source_files_properties(kernels/cpu/filter_avx2.cpp PROPERTIES COMPILE_FLAGS "${CYCLES_AVX2_KERNEL_FLAGS}")
endif()
add_library(cycles_kernel
- ${SRC}
+ ${SRC_CPU_KERNELS}
+ ${SRC_CUDA_KERNELS}
+ ${SRC_OPENCL_KERNELS}
${SRC_HEADERS}
${SRC_KERNELS_CPU_HEADERS}
+ ${SRC_KERNELS_CUDA_HEADERS}
+ ${SRC_KERNELS_OPENCL_HEADERS}
${SRC_BVH_HEADERS}
${SRC_CLOSURE_HEADERS}
+ ${SRC_FILTER_HEADERS}
${SRC_SVM_HEADERS}
${SRC_GEOM_HEADERS}
${SRC_SPLIT_HEADERS}
@@ -370,24 +505,16 @@ endif()
#add_custom_target(cycles_kernel_preprocess ALL DEPENDS ${KERNEL_PREPROCESSED})
#delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${KERNEL_PREPROCESSED}" ${CYCLES_INSTALL_PATH}/kernel)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "kernels/opencl/kernel.cl" ${CYCLES_INSTALL_PATH}/kernel/kernels/opencl)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "kernels/opencl/kernel_data_init.cl" ${CYCLES_INSTALL_PATH}/kernel/kernels/opencl)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "kernels/opencl/kernel_queue_enqueue.cl" ${CYCLES_INSTALL_PATH}/kernel/kernels/opencl)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "kernels/opencl/kernel_scene_intersect.cl" ${CYCLES_INSTALL_PATH}/kernel/kernels/opencl)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "kernels/opencl/kernel_lamp_emission.cl" ${CYCLES_INSTALL_PATH}/kernel/kernels/opencl)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "kernels/opencl/kernel_background_buffer_update.cl" ${CYCLES_INSTALL_PATH}/kernel/kernels/opencl)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "kernels/opencl/kernel_shader_eval.cl" ${CYCLES_INSTALL_PATH}/kernel/kernels/opencl)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "kernels/opencl/kernel_holdout_emission_blurring_pathtermination_ao.cl" ${CYCLES_INSTALL_PATH}/kernel/kernels/opencl)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "kernels/opencl/kernel_direct_lighting.cl" ${CYCLES_INSTALL_PATH}/kernel/kernels/opencl)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "kernels/opencl/kernel_shadow_blocked.cl" ${CYCLES_INSTALL_PATH}/kernel/kernels/opencl)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "kernels/opencl/kernel_next_iteration_setup.cl" ${CYCLES_INSTALL_PATH}/kernel/kernels/opencl)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "kernels/opencl/kernel_sum_all_radiance.cl" ${CYCLES_INSTALL_PATH}/kernel/kernels/opencl)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "kernels/cuda/kernel.cu" ${CYCLES_INSTALL_PATH}/kernel/kernels/cuda)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${SRC_HEADERS}" ${CYCLES_INSTALL_PATH}/kernel)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${SRC_BVH_HEADERS}" ${CYCLES_INSTALL_PATH}/kernel/bvh)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${SRC_CLOSURE_HEADERS}" ${CYCLES_INSTALL_PATH}/kernel/closure)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${SRC_SVM_HEADERS}" ${CYCLES_INSTALL_PATH}/kernel/svm)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${SRC_GEOM_HEADERS}" ${CYCLES_INSTALL_PATH}/kernel/geom)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${SRC_UTIL_HEADERS}" ${CYCLES_INSTALL_PATH}/kernel)
-delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${SRC_SPLIT_HEADERS}" ${CYCLES_INSTALL_PATH}/kernel/split)
+delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${SRC_OPENCL_KERNELS}" ${CYCLES_INSTALL_PATH}/source/kernel/kernels/opencl)
+delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${SRC_CUDA_KERNELS}" ${CYCLES_INSTALL_PATH}/source/kernel/kernels/cuda)
+delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${SRC_HEADERS}" ${CYCLES_INSTALL_PATH}/source/kernel)
+delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${SRC_KERNELS_OPENCL_HEADERS}" ${CYCLES_INSTALL_PATH}/source/kernel/kernels/opencl)
+delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${SRC_KERNELS_CUDA_HEADERS}" ${CYCLES_INSTALL_PATH}/source/kernel/kernels/cuda)
+delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${SRC_BVH_HEADERS}" ${CYCLES_INSTALL_PATH}/source/kernel/bvh)
+delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${SRC_CLOSURE_HEADERS}" ${CYCLES_INSTALL_PATH}/source/kernel/closure)
+delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${SRC_FILTER_HEADERS}" ${CYCLES_INSTALL_PATH}/source/kernel/filter)
+delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${SRC_SVM_HEADERS}" ${CYCLES_INSTALL_PATH}/source/kernel/svm)
+delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${SRC_GEOM_HEADERS}" ${CYCLES_INSTALL_PATH}/source/kernel/geom)
+delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${SRC_UTIL_HEADERS}" ${CYCLES_INSTALL_PATH}/source/util)
+delayed_install(${CMAKE_CURRENT_SOURCE_DIR} "${SRC_SPLIT_HEADERS}" ${CYCLES_INSTALL_PATH}/source/kernel/split)
diff --git a/intern/cycles/kernel/bvh/bvh.h b/intern/cycles/kernel/bvh/bvh.h
index 36798982653..cf0c8542d69 100644
--- a/intern/cycles/kernel/bvh/bvh.h
+++ b/intern/cycles/kernel/bvh/bvh.h
@@ -27,43 +27,43 @@
CCL_NAMESPACE_BEGIN
-#include "bvh_types.h"
+#include "kernel/bvh/bvh_types.h"
/* Common QBVH functions. */
#ifdef __QBVH__
-# include "qbvh_nodes.h"
+# include "kernel/bvh/qbvh_nodes.h"
#endif
/* Regular BVH traversal */
-#include "bvh_nodes.h"
+#include "kernel/bvh/bvh_nodes.h"
#define BVH_FUNCTION_NAME bvh_intersect
#define BVH_FUNCTION_FEATURES 0
-#include "bvh_traversal.h"
+#include "kernel/bvh/bvh_traversal.h"
#if defined(__INSTANCING__)
# define BVH_FUNCTION_NAME bvh_intersect_instancing
# define BVH_FUNCTION_FEATURES BVH_INSTANCING
-# include "bvh_traversal.h"
+# include "kernel/bvh/bvh_traversal.h"
#endif
#if defined(__HAIR__)
# define BVH_FUNCTION_NAME bvh_intersect_hair
# define BVH_FUNCTION_FEATURES BVH_INSTANCING|BVH_HAIR|BVH_HAIR_MINIMUM_WIDTH
-# include "bvh_traversal.h"
+# include "kernel/bvh/bvh_traversal.h"
#endif
#if defined(__OBJECT_MOTION__)
# define BVH_FUNCTION_NAME bvh_intersect_motion
# define BVH_FUNCTION_FEATURES BVH_INSTANCING|BVH_MOTION
-# include "bvh_traversal.h"
+# include "kernel/bvh/bvh_traversal.h"
#endif
#if defined(__HAIR__) && defined(__OBJECT_MOTION__)
# define BVH_FUNCTION_NAME bvh_intersect_hair_motion
# define BVH_FUNCTION_FEATURES BVH_INSTANCING|BVH_HAIR|BVH_HAIR_MINIMUM_WIDTH|BVH_MOTION
-# include "bvh_traversal.h"
+# include "kernel/bvh/bvh_traversal.h"
#endif
/* Subsurface scattering BVH traversal */
@@ -71,12 +71,12 @@ CCL_NAMESPACE_BEGIN
#if defined(__SUBSURFACE__)
# define BVH_FUNCTION_NAME bvh_intersect_subsurface
# define BVH_FUNCTION_FEATURES BVH_HAIR
-# include "bvh_subsurface.h"
+# include "kernel/bvh/bvh_subsurface.h"
# if defined(__OBJECT_MOTION__)
# define BVH_FUNCTION_NAME bvh_intersect_subsurface_motion
# define BVH_FUNCTION_FEATURES BVH_MOTION|BVH_HAIR
-# include "bvh_subsurface.h"
+# include "kernel/bvh/bvh_subsurface.h"
# endif
#endif /* __SUBSURFACE__ */
@@ -85,18 +85,18 @@ CCL_NAMESPACE_BEGIN
#if defined(__VOLUME__)
# define BVH_FUNCTION_NAME bvh_intersect_volume
# define BVH_FUNCTION_FEATURES BVH_HAIR
-# include "bvh_volume.h"
+# include "kernel/bvh/bvh_volume.h"
# if defined(__INSTANCING__)
# define BVH_FUNCTION_NAME bvh_intersect_volume_instancing
# define BVH_FUNCTION_FEATURES BVH_INSTANCING|BVH_HAIR
-# include "bvh_volume.h"
+# include "kernel/bvh/bvh_volume.h"
# endif
# if defined(__OBJECT_MOTION__)
# define BVH_FUNCTION_NAME bvh_intersect_volume_motion
# define BVH_FUNCTION_FEATURES BVH_INSTANCING|BVH_MOTION|BVH_HAIR
-# include "bvh_volume.h"
+# include "kernel/bvh/bvh_volume.h"
# endif
#endif /* __VOLUME__ */
@@ -105,30 +105,30 @@ CCL_NAMESPACE_BEGIN
#if defined(__SHADOW_RECORD_ALL__)
# define BVH_FUNCTION_NAME bvh_intersect_shadow_all
# define BVH_FUNCTION_FEATURES 0
-# include "bvh_shadow_all.h"
+# include "kernel/bvh/bvh_shadow_all.h"
# if defined(__INSTANCING__)
# define BVH_FUNCTION_NAME bvh_intersect_shadow_all_instancing
# define BVH_FUNCTION_FEATURES BVH_INSTANCING
-# include "bvh_shadow_all.h"
+# include "kernel/bvh/bvh_shadow_all.h"
# endif
# if defined(__HAIR__)
# define BVH_FUNCTION_NAME bvh_intersect_shadow_all_hair
# define BVH_FUNCTION_FEATURES BVH_INSTANCING|BVH_HAIR
-# include "bvh_shadow_all.h"
+# include "kernel/bvh/bvh_shadow_all.h"
# endif
# if defined(__OBJECT_MOTION__)
# define BVH_FUNCTION_NAME bvh_intersect_shadow_all_motion
# define BVH_FUNCTION_FEATURES BVH_INSTANCING|BVH_MOTION
-# include "bvh_shadow_all.h"
+# include "kernel/bvh/bvh_shadow_all.h"
# endif
# if defined(__HAIR__) && defined(__OBJECT_MOTION__)
# define BVH_FUNCTION_NAME bvh_intersect_shadow_all_hair_motion
# define BVH_FUNCTION_FEATURES BVH_INSTANCING|BVH_HAIR|BVH_MOTION
-# include "bvh_shadow_all.h"
+# include "kernel/bvh/bvh_shadow_all.h"
# endif
#endif /* __SHADOW_RECORD_ALL__ */
@@ -137,18 +137,18 @@ CCL_NAMESPACE_BEGIN
#if defined(__VOLUME_RECORD_ALL__)
# define BVH_FUNCTION_NAME bvh_intersect_volume_all
# define BVH_FUNCTION_FEATURES BVH_HAIR
-# include "bvh_volume_all.h"
+# include "kernel/bvh/bvh_volume_all.h"
# if defined(__INSTANCING__)
# define BVH_FUNCTION_NAME bvh_intersect_volume_all_instancing
# define BVH_FUNCTION_FEATURES BVH_INSTANCING|BVH_HAIR
-# include "bvh_volume_all.h"
+# include "kernel/bvh/bvh_volume_all.h"
# endif
# if defined(__OBJECT_MOTION__)
# define BVH_FUNCTION_NAME bvh_intersect_volume_all_motion
# define BVH_FUNCTION_FEATURES BVH_INSTANCING|BVH_MOTION|BVH_HAIR
-# include "bvh_volume_all.h"
+# include "kernel/bvh/bvh_volume_all.h"
# endif
#endif /* __VOLUME_RECORD_ALL__ */
@@ -202,8 +202,9 @@ ccl_device_intersect bool scene_intersect(KernelGlobals *kg,
}
#ifdef __SUBSURFACE__
+/* Note: ray is passed by value to work around a possible CUDA compiler bug. */
ccl_device_intersect void scene_intersect_subsurface(KernelGlobals *kg,
- const Ray *ray,
+ const Ray ray,
SubsurfaceIntersection *ss_isect,
int subsurface_object,
uint *lcg_state,
@@ -212,7 +213,7 @@ ccl_device_intersect void scene_intersect_subsurface(KernelGlobals *kg,
#ifdef __OBJECT_MOTION__
if(kernel_data.bvh.have_motion) {
return bvh_intersect_subsurface_motion(kg,
- ray,
+ &ray,
ss_isect,
subsurface_object,
lcg_state,
@@ -220,7 +221,7 @@ ccl_device_intersect void scene_intersect_subsurface(KernelGlobals *kg,
}
#endif /* __OBJECT_MOTION__ */
return bvh_intersect_subsurface(kg,
- ray,
+ &ray,
ss_isect,
subsurface_object,
lcg_state,
@@ -229,30 +230,63 @@ ccl_device_intersect void scene_intersect_subsurface(KernelGlobals *kg,
#endif
#ifdef __SHADOW_RECORD_ALL__
-ccl_device_intersect bool scene_intersect_shadow_all(KernelGlobals *kg, const Ray *ray, Intersection *isect, uint max_hits, uint *num_hits)
+ccl_device_intersect bool scene_intersect_shadow_all(KernelGlobals *kg,
+ const Ray *ray,
+ Intersection *isect,
+ uint visibility,
+ uint max_hits,
+ uint *num_hits)
{
# ifdef __OBJECT_MOTION__
if(kernel_data.bvh.have_motion) {
# ifdef __HAIR__
- if(kernel_data.bvh.have_curves)
- return bvh_intersect_shadow_all_hair_motion(kg, ray, isect, max_hits, num_hits);
+ if(kernel_data.bvh.have_curves) {
+ return bvh_intersect_shadow_all_hair_motion(kg,
+ ray,
+ isect,
+ visibility,
+ max_hits,
+ num_hits);
+ }
# endif /* __HAIR__ */
- return bvh_intersect_shadow_all_motion(kg, ray, isect, max_hits, num_hits);
+ return bvh_intersect_shadow_all_motion(kg,
+ ray,
+ isect,
+ visibility,
+ max_hits,
+ num_hits);
}
# endif /* __OBJECT_MOTION__ */
# ifdef __HAIR__
- if(kernel_data.bvh.have_curves)
- return bvh_intersect_shadow_all_hair(kg, ray, isect, max_hits, num_hits);
+ if(kernel_data.bvh.have_curves) {
+ return bvh_intersect_shadow_all_hair(kg,
+ ray,
+ isect,
+ visibility,
+ max_hits,
+ num_hits);
+ }
# endif /* __HAIR__ */
# ifdef __INSTANCING__
- if(kernel_data.bvh.have_instancing)
- return bvh_intersect_shadow_all_instancing(kg, ray, isect, max_hits, num_hits);
+ if(kernel_data.bvh.have_instancing) {
+ return bvh_intersect_shadow_all_instancing(kg,
+ ray,
+ isect,
+ visibility,
+ max_hits,
+ num_hits);
+ }
# endif /* __INSTANCING__ */
- return bvh_intersect_shadow_all(kg, ray, isect, max_hits, num_hits);
+ return bvh_intersect_shadow_all(kg,
+ ray,
+ isect,
+ visibility,
+ max_hits,
+ num_hits);
}
#endif /* __SHADOW_RECORD_ALL__ */
@@ -357,7 +391,7 @@ ccl_device_inline float3 ray_offset(float3 P, float3 Ng)
#endif
}
-#if defined(__SHADOW_RECORD_ALL__) || defined (__VOLUME_RECORD_ALL__)
+#if defined(__VOLUME_RECORD_ALL__) || (defined(__SHADOW_RECORD_ALL__) && defined(__KERNEL_CPU__))
/* ToDo: Move to another file? */
ccl_device int intersections_compare(const void *a, const void *b)
{
@@ -373,5 +407,28 @@ ccl_device int intersections_compare(const void *a, const void *b)
}
#endif
-CCL_NAMESPACE_END
+#if defined(__SHADOW_RECORD_ALL__)
+ccl_device_inline void sort_intersections(Intersection *hits, uint num_hits)
+{
+#ifdef __KERNEL_GPU__
+ /* Use bubble sort which has more friendly memory pattern on GPU. */
+ bool swapped;
+ do {
+ swapped = false;
+ for(int j = 0; j < num_hits - 1; ++j) {
+ if(hits[j].t > hits[j + 1].t) {
+ struct Intersection tmp = hits[j];
+ hits[j] = hits[j + 1];
+ hits[j + 1] = tmp;
+ swapped = true;
+ }
+ }
+ --num_hits;
+ } while(swapped);
+#else
+ qsort(hits, num_hits, sizeof(Intersection), intersections_compare);
+#endif
+}
+#endif /* __SHADOW_RECORD_ALL__ | __VOLUME_RECORD_ALL__ */
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/bvh/bvh_nodes.h b/intern/cycles/kernel/bvh/bvh_nodes.h
index 726bef1794c..6c33dad5426 100644
--- a/intern/cycles/kernel/bvh/bvh_nodes.h
+++ b/intern/cycles/kernel/bvh/bvh_nodes.h
@@ -17,8 +17,8 @@
// TODO(sergey): Look into avoid use of full Transform and use 3x3 matrix and
// 3-vector which might be faster.
ccl_device_forceinline Transform bvh_unaligned_node_fetch_space(KernelGlobals *kg,
- int node_addr,
- int child)
+ int node_addr,
+ int child)
{
Transform space;
const int child_addr = node_addr + child * 3;
@@ -31,12 +31,12 @@ ccl_device_forceinline Transform bvh_unaligned_node_fetch_space(KernelGlobals *k
#if !defined(__KERNEL_SSE2__)
ccl_device_forceinline int bvh_aligned_node_intersect(KernelGlobals *kg,
- const float3 P,
- const float3 idir,
- const float t,
- const int node_addr,
- const uint visibility,
- float dist[2])
+ const float3 P,
+ const float3 idir,
+ const float t,
+ const int node_addr,
+ const uint visibility,
+ float dist[2])
{
/* fetch node data */
@@ -52,8 +52,8 @@ ccl_device_forceinline int bvh_aligned_node_intersect(KernelGlobals *kg,
float c0hiy = (node1.z - P.y) * idir.y;
float c0loz = (node2.x - P.z) * idir.z;
float c0hiz = (node2.z - P.z) * idir.z;
- float c0min = max4(min(c0lox, c0hix), min(c0loy, c0hiy), min(c0loz, c0hiz), 0.0f);
- float c0max = min4(max(c0lox, c0hix), max(c0loy, c0hiy), max(c0loz, c0hiz), t);
+ float c0min = max4(0.0f, min(c0lox, c0hix), min(c0loy, c0hiy), min(c0loz, c0hiz));
+ float c0max = min4(t, max(c0lox, c0hix), max(c0loy, c0hiy), max(c0loz, c0hiz));
float c1lox = (node0.y - P.x) * idir.x;
float c1hix = (node0.w - P.x) * idir.x;
@@ -61,8 +61,8 @@ ccl_device_forceinline int bvh_aligned_node_intersect(KernelGlobals *kg,
float c1hiy = (node1.w - P.y) * idir.y;
float c1loz = (node2.y - P.z) * idir.z;
float c1hiz = (node2.w - P.z) * idir.z;
- float c1min = max4(min(c1lox, c1hix), min(c1loy, c1hiy), min(c1loz, c1hiz), 0.0f);
- float c1max = min4(max(c1lox, c1hix), max(c1loy, c1hiy), max(c1loz, c1hiz), t);
+ float c1min = max4(0.0f, min(c1lox, c1hix), min(c1loy, c1hiy), min(c1loz, c1hiz));
+ float c1max = min4(t, max(c1lox, c1hix), max(c1loy, c1hiy), max(c1loz, c1hiz));
dist[0] = c0min;
dist[1] = c1min;
@@ -78,14 +78,14 @@ ccl_device_forceinline int bvh_aligned_node_intersect(KernelGlobals *kg,
}
ccl_device_forceinline int bvh_aligned_node_intersect_robust(KernelGlobals *kg,
- const float3 P,
- const float3 idir,
- const float t,
- const float difl,
- const float extmax,
- const int node_addr,
- const uint visibility,
- float dist[2])
+ const float3 P,
+ const float3 idir,
+ const float t,
+ const float difl,
+ const float extmax,
+ const int node_addr,
+ const uint visibility,
+ float dist[2])
{
/* fetch node data */
@@ -101,8 +101,8 @@ ccl_device_forceinline int bvh_aligned_node_intersect_robust(KernelGlobals *kg,
float c0hiy = (node1.z - P.y) * idir.y;
float c0loz = (node2.x - P.z) * idir.z;
float c0hiz = (node2.z - P.z) * idir.z;
- float c0min = max4(min(c0lox, c0hix), min(c0loy, c0hiy), min(c0loz, c0hiz), 0.0f);
- float c0max = min4(max(c0lox, c0hix), max(c0loy, c0hiy), max(c0loz, c0hiz), t);
+ float c0min = max4(0.0f, min(c0lox, c0hix), min(c0loy, c0hiy), min(c0loz, c0hiz));
+ float c0max = min4(t, max(c0lox, c0hix), max(c0loy, c0hiy), max(c0loz, c0hiz));
float c1lox = (node0.y - P.x) * idir.x;
float c1hix = (node0.w - P.x) * idir.x;
@@ -110,8 +110,8 @@ ccl_device_forceinline int bvh_aligned_node_intersect_robust(KernelGlobals *kg,
float c1hiy = (node1.w - P.y) * idir.y;
float c1loz = (node2.y - P.z) * idir.z;
float c1hiz = (node2.w - P.z) * idir.z;
- float c1min = max4(min(c1lox, c1hix), min(c1loy, c1hiy), min(c1loz, c1hiz), 0.0f);
- float c1max = min4(max(c1lox, c1hix), max(c1loy, c1hiy), max(c1loz, c1hiz), t);
+ float c1min = max4(0.0f, min(c1lox, c1hix), min(c1loy, c1hiy), min(c1loz, c1hiz));
+ float c1max = min4(t, max(c1lox, c1hix), max(c1loy, c1hiy), max(c1loz, c1hiz));
if(difl != 0.0f) {
float hdiff = 1.0f + difl;
@@ -203,13 +203,13 @@ ccl_device_forceinline bool bvh_unaligned_node_intersect_child_robust(
}
ccl_device_forceinline int bvh_unaligned_node_intersect(KernelGlobals *kg,
- const float3 P,
- const float3 dir,
- const float3 idir,
- const float t,
- const int node_addr,
- const uint visibility,
- float dist[2])
+ const float3 P,
+ const float3 dir,
+ const float3 idir,
+ const float t,
+ const int node_addr,
+ const uint visibility,
+ float dist[2])
{
int mask = 0;
float4 cnodes = kernel_tex_fetch(__bvh_nodes, node_addr+0);
@@ -233,15 +233,15 @@ ccl_device_forceinline int bvh_unaligned_node_intersect(KernelGlobals *kg,
}
ccl_device_forceinline int bvh_unaligned_node_intersect_robust(KernelGlobals *kg,
- const float3 P,
- const float3 dir,
- const float3 idir,
- const float t,
- const float difl,
- const float extmax,
- const int node_addr,
- const uint visibility,
- float dist[2])
+ const float3 P,
+ const float3 dir,
+ const float3 idir,
+ const float t,
+ const float difl,
+ const float extmax,
+ const int node_addr,
+ const uint visibility,
+ float dist[2])
{
int mask = 0;
float4 cnodes = kernel_tex_fetch(__bvh_nodes, node_addr+0);
@@ -265,13 +265,13 @@ ccl_device_forceinline int bvh_unaligned_node_intersect_robust(KernelGlobals *kg
}
ccl_device_forceinline int bvh_node_intersect(KernelGlobals *kg,
- const float3 P,
- const float3 dir,
- const float3 idir,
- const float t,
- const int node_addr,
- const uint visibility,
- float dist[2])
+ const float3 P,
+ const float3 dir,
+ const float3 idir,
+ const float t,
+ const int node_addr,
+ const uint visibility,
+ float dist[2])
{
float4 node = kernel_tex_fetch(__bvh_nodes, node_addr);
if(__float_as_uint(node.x) & PATH_RAY_NODE_UNALIGNED) {
@@ -296,15 +296,15 @@ ccl_device_forceinline int bvh_node_intersect(KernelGlobals *kg,
}
ccl_device_forceinline int bvh_node_intersect_robust(KernelGlobals *kg,
- const float3 P,
- const float3 dir,
- const float3 idir,
- const float t,
- const float difl,
- const float extmax,
- const int node_addr,
- const uint visibility,
- float dist[2])
+ const float3 P,
+ const float3 dir,
+ const float3 idir,
+ const float t,
+ const float difl,
+ const float extmax,
+ const int node_addr,
+ const uint visibility,
+ float dist[2])
{
float4 node = kernel_tex_fetch(__bvh_nodes, node_addr);
if(__float_as_uint(node.x) & PATH_RAY_NODE_UNALIGNED) {
@@ -442,19 +442,19 @@ ccl_device_forceinline int bvh_aligned_node_intersect_robust(
}
ccl_device_forceinline int bvh_unaligned_node_intersect(KernelGlobals *kg,
- const float3 P,
- const float3 dir,
- const ssef& isect_near,
- const ssef& isect_far,
- const int node_addr,
- const uint visibility,
- float dist[2])
+ const float3 P,
+ const float3 dir,
+ const ssef& isect_near,
+ const ssef& isect_far,
+ const int node_addr,
+ const uint visibility,
+ float dist[2])
{
Transform space0 = bvh_unaligned_node_fetch_space(kg, node_addr, 0);
Transform space1 = bvh_unaligned_node_fetch_space(kg, node_addr, 1);
float3 aligned_dir0 = transform_direction(&space0, dir),
- aligned_dir1 = transform_direction(&space1, dir);;
+ aligned_dir1 = transform_direction(&space1, dir);
float3 aligned_P0 = transform_point(&space0, P),
aligned_P1 = transform_point(&space1, P);
float3 nrdir0 = -bvh_inverse_direction(aligned_dir0),
@@ -483,8 +483,8 @@ ccl_device_forceinline int bvh_unaligned_node_intersect(KernelGlobals *kg,
ssef tfar_y = max(lower_y, upper_y);
ssef tfar_z = max(lower_z, upper_z);
- const ssef tnear = max4(tnear_x, tnear_y, tnear_z, isect_near);
- const ssef tfar = min4(tfar_x, tfar_y, tfar_z, isect_far);
+ const ssef tnear = max4(isect_near, tnear_x, tnear_y, tnear_z);
+ const ssef tfar = min4(isect_far, tfar_x, tfar_y, tfar_z);
sseb vmask = tnear <= tfar;
dist[0] = tnear.f[0];
dist[1] = tnear.f[1];
@@ -503,20 +503,20 @@ ccl_device_forceinline int bvh_unaligned_node_intersect(KernelGlobals *kg,
}
ccl_device_forceinline int bvh_unaligned_node_intersect_robust(KernelGlobals *kg,
- const float3 P,
- const float3 dir,
- const ssef& isect_near,
- const ssef& isect_far,
- const float difl,
- const int node_addr,
- const uint visibility,
- float dist[2])
+ const float3 P,
+ const float3 dir,
+ const ssef& isect_near,
+ const ssef& isect_far,
+ const float difl,
+ const int node_addr,
+ const uint visibility,
+ float dist[2])
{
Transform space0 = bvh_unaligned_node_fetch_space(kg, node_addr, 0);
Transform space1 = bvh_unaligned_node_fetch_space(kg, node_addr, 1);
float3 aligned_dir0 = transform_direction(&space0, dir),
- aligned_dir1 = transform_direction(&space1, dir);;
+ aligned_dir1 = transform_direction(&space1, dir);
float3 aligned_P0 = transform_point(&space0, P),
aligned_P1 = transform_point(&space1, P);
float3 nrdir0 = -bvh_inverse_direction(aligned_dir0),
@@ -545,8 +545,8 @@ ccl_device_forceinline int bvh_unaligned_node_intersect_robust(KernelGlobals *kg
ssef tfar_y = max(lower_y, upper_y);
ssef tfar_z = max(lower_z, upper_z);
- const ssef tnear = max4(tnear_x, tnear_y, tnear_z, isect_near);
- const ssef tfar = min4(tfar_x, tfar_y, tfar_z, isect_far);
+ const ssef tnear = max4(isect_near, tnear_x, tnear_y, tnear_z);
+ const ssef tfar = min4(isect_far, tfar_x, tfar_y, tfar_z);
sseb vmask;
if(difl != 0.0f) {
const float round_down = 1.0f - difl;
@@ -574,17 +574,17 @@ ccl_device_forceinline int bvh_unaligned_node_intersect_robust(KernelGlobals *kg
}
ccl_device_forceinline int bvh_node_intersect(KernelGlobals *kg,
- const float3& P,
- const float3& dir,
- const ssef& isect_near,
- const ssef& isect_far,
- const ssef& tsplat,
- const ssef Psplat[3],
- const ssef idirsplat[3],
- const shuffle_swap_t shufflexyz[3],
- const int node_addr,
- const uint visibility,
- float dist[2])
+ const float3& P,
+ const float3& dir,
+ const ssef& isect_near,
+ const ssef& isect_far,
+ const ssef& tsplat,
+ const ssef Psplat[3],
+ const ssef idirsplat[3],
+ const shuffle_swap_t shufflexyz[3],
+ const int node_addr,
+ const uint visibility,
+ float dist[2])
{
float4 node = kernel_tex_fetch(__bvh_nodes, node_addr);
if(__float_as_uint(node.x) & PATH_RAY_NODE_UNALIGNED) {
@@ -612,19 +612,19 @@ ccl_device_forceinline int bvh_node_intersect(KernelGlobals *kg,
}
ccl_device_forceinline int bvh_node_intersect_robust(KernelGlobals *kg,
- const float3& P,
- const float3& dir,
- const ssef& isect_near,
- const ssef& isect_far,
- const ssef& tsplat,
- const ssef Psplat[3],
- const ssef idirsplat[3],
- const shuffle_swap_t shufflexyz[3],
- const float difl,
- const float extmax,
- const int node_addr,
- const uint visibility,
- float dist[2])
+ const float3& P,
+ const float3& dir,
+ const ssef& isect_near,
+ const ssef& isect_far,
+ const ssef& tsplat,
+ const ssef Psplat[3],
+ const ssef idirsplat[3],
+ const shuffle_swap_t shufflexyz[3],
+ const float difl,
+ const float extmax,
+ const int node_addr,
+ const uint visibility,
+ float dist[2])
{
float4 node = kernel_tex_fetch(__bvh_nodes, node_addr);
if(__float_as_uint(node.x) & PATH_RAY_NODE_UNALIGNED) {
diff --git a/intern/cycles/kernel/bvh/bvh_shadow_all.h b/intern/cycles/kernel/bvh/bvh_shadow_all.h
index 294362ea995..a6a4353562c 100644
--- a/intern/cycles/kernel/bvh/bvh_shadow_all.h
+++ b/intern/cycles/kernel/bvh/bvh_shadow_all.h
@@ -18,7 +18,7 @@
*/
#ifdef __QBVH__
-# include "qbvh_shadow_all.h"
+# include "kernel/bvh/qbvh_shadow_all.h"
#endif
#if BVH_FEATURE(BVH_HAIR)
@@ -45,6 +45,7 @@ ccl_device_inline
bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
const Ray *ray,
Intersection *isect_array,
+ const uint visibility,
const uint max_hits,
uint *num_hits)
{
@@ -100,9 +101,6 @@ bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz);
#endif /* __KERNEL_SSE2__ */
- IsectPrecalc isect_precalc;
- triangle_intersect_precalc(dir, &isect_precalc);
-
/* traversal loop */
do {
do {
@@ -121,7 +119,7 @@ bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
idir,
isect_t,
node_addr,
- PATH_RAY_SHADOW,
+ visibility,
dist);
#else // __KERNEL_SSE2__
traverse_mask = NODE_INTERSECT(kg,
@@ -136,7 +134,7 @@ bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
idirsplat,
shufflexyz,
node_addr,
- PATH_RAY_SHADOW,
+ visibility,
dist);
#endif // __KERNEL_SSE2__
@@ -187,8 +185,7 @@ bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
/* primitive intersection */
while(prim_addr < prim_addr2) {
- kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
-
+ kernel_assert((kernel_tex_fetch(__prim_type, prim_addr) & PRIMITIVE_ALL) == p_type);
bool hit;
/* todo: specialized intersect functions which don't fill in
@@ -198,10 +195,10 @@ bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
switch(p_type) {
case PRIMITIVE_TRIANGLE: {
hit = triangle_intersect(kg,
- &isect_precalc,
isect_array,
P,
- PATH_RAY_SHADOW,
+ dir,
+ visibility,
object,
prim_addr);
break;
@@ -213,7 +210,7 @@ bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
P,
dir,
ray->time,
- PATH_RAY_SHADOW,
+ visibility,
object,
prim_addr);
break;
@@ -222,31 +219,32 @@ bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
#if BVH_FEATURE(BVH_HAIR)
case PRIMITIVE_CURVE:
case PRIMITIVE_MOTION_CURVE: {
+ const uint curve_type = kernel_tex_fetch(__prim_type, prim_addr);
if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) {
- hit = bvh_cardinal_curve_intersect(kg,
- isect_array,
- P,
- dir,
- PATH_RAY_SHADOW,
- object,
- prim_addr,
- ray->time,
- type,
- NULL,
- 0, 0);
+ hit = cardinal_curve_intersect(kg,
+ isect_array,
+ P,
+ dir,
+ visibility,
+ object,
+ prim_addr,
+ ray->time,
+ curve_type,
+ NULL,
+ 0, 0);
}
else {
- hit = bvh_curve_intersect(kg,
- isect_array,
- P,
- dir,
- PATH_RAY_SHADOW,
- object,
- prim_addr,
- ray->time,
- type,
- NULL,
- 0, 0);
+ hit = curve_intersect(kg,
+ isect_array,
+ P,
+ dir,
+ visibility,
+ object,
+ prim_addr,
+ ray->time,
+ curve_type,
+ NULL,
+ 0, 0);
}
break;
}
@@ -308,12 +306,11 @@ bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
object = kernel_tex_fetch(__prim_object, -prim_addr-1);
# if BVH_FEATURE(BVH_MOTION)
- bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect_t, &ob_itfm);
+ isect_t = bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, isect_t, &ob_itfm);
# else
- bvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect_t);
+ isect_t = bvh_instance_push(kg, object, ray, &P, &dir, &idir, isect_t);
# endif
- triangle_intersect_precalc(dir, &isect_precalc);
num_hits_in_instance = 0;
isect_array->t = isect_t;
@@ -353,22 +350,17 @@ bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
bvh_instance_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac);
# endif
- triangle_intersect_precalc(dir, &isect_precalc);
-
/* scale isect->t to adjust for instancing */
for(int i = 0; i < num_hits_in_instance; i++) {
(isect_array-i-1)->t *= t_fac;
}
}
else {
- float ignore_t = FLT_MAX;
-
# if BVH_FEATURE(BVH_MOTION)
- bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &ignore_t, &ob_itfm);
+ bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX, &ob_itfm);
# else
- bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &ignore_t);
+ bvh_instance_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX);
# endif
- triangle_intersect_precalc(dir, &isect_precalc);
}
isect_t = tmax;
@@ -399,6 +391,7 @@ bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
ccl_device_inline bool BVH_FUNCTION_NAME(KernelGlobals *kg,
const Ray *ray,
Intersection *isect_array,
+ const uint visibility,
const uint max_hits,
uint *num_hits)
{
@@ -407,6 +400,7 @@ ccl_device_inline bool BVH_FUNCTION_NAME(KernelGlobals *kg,
return BVH_FUNCTION_FULL_NAME(QBVH)(kg,
ray,
isect_array,
+ visibility,
max_hits,
num_hits);
}
@@ -417,6 +411,7 @@ ccl_device_inline bool BVH_FUNCTION_NAME(KernelGlobals *kg,
return BVH_FUNCTION_FULL_NAME(BVH)(kg,
ray,
isect_array,
+ visibility,
max_hits,
num_hits);
}
diff --git a/intern/cycles/kernel/bvh/bvh_subsurface.h b/intern/cycles/kernel/bvh/bvh_subsurface.h
index d9623c94b2e..bda7e34907a 100644
--- a/intern/cycles/kernel/bvh/bvh_subsurface.h
+++ b/intern/cycles/kernel/bvh/bvh_subsurface.h
@@ -18,7 +18,7 @@
*/
#ifdef __QBVH__
-# include "qbvh_subsurface.h"
+# include "kernel/bvh/qbvh_subsurface.h"
#endif
#if BVH_FEATURE(BVH_HAIR)
@@ -72,19 +72,19 @@ void BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
ss_isect->num_hits = 0;
const int object_flag = kernel_tex_fetch(__object_flag, subsurface_object);
- if(!(object_flag & SD_TRANSFORM_APPLIED)) {
+ if(!(object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
#if BVH_FEATURE(BVH_MOTION)
Transform ob_itfm;
- bvh_instance_motion_push(kg,
- subsurface_object,
- ray,
- &P,
- &dir,
- &idir,
- &isect_t,
- &ob_itfm);
+ isect_t = bvh_instance_motion_push(kg,
+ subsurface_object,
+ ray,
+ &P,
+ &dir,
+ &idir,
+ isect_t,
+ &ob_itfm);
#else
- bvh_instance_push(kg, subsurface_object, ray, &P, &dir, &idir, &isect_t);
+ isect_t = bvh_instance_push(kg, subsurface_object, ray, &P, &dir, &idir, isect_t);
#endif
object = subsurface_object;
}
@@ -109,9 +109,6 @@ void BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz);
#endif
- IsectPrecalc isect_precalc;
- triangle_intersect_precalc(dir, &isect_precalc);
-
/* traversal loop */
do {
do {
@@ -197,9 +194,9 @@ void BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
for(; prim_addr < prim_addr2; prim_addr++) {
kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
triangle_intersect_subsurface(kg,
- &isect_precalc,
ss_isect,
P,
+ dir,
object,
prim_addr,
isect_t,
diff --git a/intern/cycles/kernel/bvh/bvh_traversal.h b/intern/cycles/kernel/bvh/bvh_traversal.h
index a0e478e972b..ae8f54821f2 100644
--- a/intern/cycles/kernel/bvh/bvh_traversal.h
+++ b/intern/cycles/kernel/bvh/bvh_traversal.h
@@ -18,7 +18,7 @@
*/
#ifdef __QBVH__
-# include "qbvh_traversal.h"
+# include "kernel/bvh/qbvh_traversal.h"
#endif
#if BVH_FEATURE(BVH_HAIR)
@@ -104,9 +104,6 @@ ccl_device_noinline bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz);
#endif
- IsectPrecalc isect_precalc;
- triangle_intersect_precalc(dir, &isect_precalc);
-
/* traversal loop */
do {
do {
@@ -213,7 +210,7 @@ ccl_device_noinline bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
--stack_ptr;
}
}
- BVH_DEBUG_NEXT_STEP();
+ BVH_DEBUG_NEXT_NODE();
}
/* if node is leaf, fetch triangle list */
@@ -235,26 +232,26 @@ ccl_device_noinline bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
switch(type & PRIMITIVE_ALL) {
case PRIMITIVE_TRIANGLE: {
for(; prim_addr < prim_addr2; prim_addr++) {
- BVH_DEBUG_NEXT_STEP();
+ BVH_DEBUG_NEXT_INTERSECTION();
kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
if(triangle_intersect(kg,
- &isect_precalc,
isect,
P,
+ dir,
visibility,
object,
prim_addr))
{
/* shadow ray early termination */
#if defined(__KERNEL_SSE2__)
- if(visibility == PATH_RAY_SHADOW_OPAQUE)
+ if(visibility & PATH_RAY_SHADOW_OPAQUE)
return true;
tsplat = ssef(0.0f, 0.0f, -isect->t, -isect->t);
# if BVH_FEATURE(BVH_HAIR)
tfar = ssef(isect->t);
# endif
#else
- if(visibility == PATH_RAY_SHADOW_OPAQUE)
+ if(visibility & PATH_RAY_SHADOW_OPAQUE)
return true;
#endif
}
@@ -264,7 +261,7 @@ ccl_device_noinline bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
#if BVH_FEATURE(BVH_MOTION)
case PRIMITIVE_MOTION_TRIANGLE: {
for(; prim_addr < prim_addr2; prim_addr++) {
- BVH_DEBUG_NEXT_STEP();
+ BVH_DEBUG_NEXT_INTERSECTION();
kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
if(motion_triangle_intersect(kg,
isect,
@@ -277,14 +274,14 @@ ccl_device_noinline bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
{
/* shadow ray early termination */
# if defined(__KERNEL_SSE2__)
- if(visibility == PATH_RAY_SHADOW_OPAQUE)
+ if(visibility & PATH_RAY_SHADOW_OPAQUE)
return true;
tsplat = ssef(0.0f, 0.0f, -isect->t, -isect->t);
# if BVH_FEATURE(BVH_HAIR)
tfar = ssef(isect->t);
# endif
# else
- if(visibility == PATH_RAY_SHADOW_OPAQUE)
+ if(visibility & PATH_RAY_SHADOW_OPAQUE)
return true;
# endif
}
@@ -296,48 +293,49 @@ ccl_device_noinline bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
case PRIMITIVE_CURVE:
case PRIMITIVE_MOTION_CURVE: {
for(; prim_addr < prim_addr2; prim_addr++) {
- BVH_DEBUG_NEXT_STEP();
- kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
+ BVH_DEBUG_NEXT_INTERSECTION();
+ const uint curve_type = kernel_tex_fetch(__prim_type, prim_addr);
+ kernel_assert((curve_type & PRIMITIVE_ALL) == (type & PRIMITIVE_ALL));
bool hit;
if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) {
- hit = bvh_cardinal_curve_intersect(kg,
- isect,
- P,
- dir,
- visibility,
- object,
- prim_addr,
- ray->time,
- type,
- lcg_state,
- difl,
- extmax);
+ hit = cardinal_curve_intersect(kg,
+ isect,
+ P,
+ dir,
+ visibility,
+ object,
+ prim_addr,
+ ray->time,
+ curve_type,
+ lcg_state,
+ difl,
+ extmax);
}
else {
- hit = bvh_curve_intersect(kg,
- isect,
- P,
- dir,
- visibility,
- object,
- prim_addr,
- ray->time,
- type,
- lcg_state,
- difl,
- extmax);
+ hit = curve_intersect(kg,
+ isect,
+ P,
+ dir,
+ visibility,
+ object,
+ prim_addr,
+ ray->time,
+ curve_type,
+ lcg_state,
+ difl,
+ extmax);
}
if(hit) {
/* shadow ray early termination */
# if defined(__KERNEL_SSE2__)
- if(visibility == PATH_RAY_SHADOW_OPAQUE)
+ if(visibility & PATH_RAY_SHADOW_OPAQUE)
return true;
tsplat = ssef(0.0f, 0.0f, -isect->t, -isect->t);
# if BVH_FEATURE(BVH_HAIR)
tfar = ssef(isect->t);
# endif
# else
- if(visibility == PATH_RAY_SHADOW_OPAQUE)
+ if(visibility & PATH_RAY_SHADOW_OPAQUE)
return true;
# endif
}
@@ -353,11 +351,10 @@ ccl_device_noinline bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
object = kernel_tex_fetch(__prim_object, -prim_addr-1);
# if BVH_FEATURE(BVH_MOTION)
- bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect->t, &ob_itfm);
+ isect->t = bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, isect->t, &ob_itfm);
# else
- bvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect->t);
+ isect->t = bvh_instance_push(kg, object, ray, &P, &dir, &idir, isect->t);
# endif
- triangle_intersect_precalc(dir, &isect_precalc);
# if defined(__KERNEL_SSE2__)
Psplat[0] = ssef(P.x);
@@ -390,11 +387,10 @@ ccl_device_noinline bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
/* instance pop */
# if BVH_FEATURE(BVH_MOTION)
- bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &isect->t, &ob_itfm);
+ isect->t = bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, isect->t, &ob_itfm);
# else
- bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &isect->t);
+ isect->t = bvh_instance_pop(kg, object, ray, &P, &dir, &idir, isect->t);
# endif
- triangle_intersect_precalc(dir, &isect_precalc);
# if defined(__KERNEL_SSE2__)
Psplat[0] = ssef(P.x);
diff --git a/intern/cycles/kernel/bvh/bvh_types.h b/intern/cycles/kernel/bvh/bvh_types.h
index c3abe2e157d..ead424aaaaf 100644
--- a/intern/cycles/kernel/bvh/bvh_types.h
+++ b/intern/cycles/kernel/bvh/bvh_types.h
@@ -50,12 +50,17 @@ CCL_NAMESPACE_BEGIN
#ifdef __KERNEL_DEBUG__
# define BVH_DEBUG_INIT() \
do { \
- isect->num_traversal_steps = 0; \
+ isect->num_traversed_nodes = 0; \
isect->num_traversed_instances = 0; \
+ isect->num_intersections = 0; \
} while(0)
-# define BVH_DEBUG_NEXT_STEP() \
+# define BVH_DEBUG_NEXT_NODE() \
do { \
- ++isect->num_traversal_steps; \
+ ++isect->num_traversed_nodes; \
+ } while(0)
+# define BVH_DEBUG_NEXT_INTERSECTION() \
+ do { \
+ ++isect->num_intersections; \
} while(0)
# define BVH_DEBUG_NEXT_INSTANCE() \
do { \
@@ -63,7 +68,8 @@ CCL_NAMESPACE_BEGIN
} while(0)
#else /* __KERNEL_DEBUG__ */
# define BVH_DEBUG_INIT()
-# define BVH_DEBUG_NEXT_STEP()
+# define BVH_DEBUG_NEXT_NODE()
+# define BVH_DEBUG_NEXT_INTERSECTION()
# define BVH_DEBUG_NEXT_INSTANCE()
#endif /* __KERNEL_DEBUG__ */
diff --git a/intern/cycles/kernel/bvh/bvh_volume.h b/intern/cycles/kernel/bvh/bvh_volume.h
index f6db399080b..42e626c8e19 100644
--- a/intern/cycles/kernel/bvh/bvh_volume.h
+++ b/intern/cycles/kernel/bvh/bvh_volume.h
@@ -18,7 +18,7 @@
*/
#ifdef __QBVH__
-# include "qbvh_volume.h"
+# include "kernel/bvh/qbvh_volume.h"
#endif
#if BVH_FEATURE(BVH_HAIR)
@@ -97,9 +97,6 @@ bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
gen_idirsplat_swap(pn, shuf_identity, shuf_swap, idir, idirsplat, shufflexyz);
#endif
- IsectPrecalc isect_precalc;
- triangle_intersect_precalc(dir, &isect_precalc);
-
#if 1
/* try to intersect with VDB volumes */
int num_volumes = kernel_data.tables.num_volumes;
@@ -212,9 +209,9 @@ bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
continue;
}
triangle_intersect(kg,
- &isect_precalc,
isect,
P,
+ dir,
visibility,
object,
prim_addr);
@@ -254,17 +251,13 @@ bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
/* instance push */
object = kernel_tex_fetch(__prim_object, -prim_addr-1);
int object_flag = kernel_tex_fetch(__object_flag, object);
-
if(object_flag & SD_OBJECT_HAS_VOLUME) {
-
# if BVH_FEATURE(BVH_MOTION)
- bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect->t, &ob_itfm);
+ isect->t = bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, isect->t, &ob_itfm);
# else
- bvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect->t);
+ isect->t = bvh_instance_push(kg, object, ray, &P, &dir, &idir, isect->t);
# endif
- triangle_intersect_precalc(dir, &isect_precalc);
-
# if defined(__KERNEL_SSE2__)
Psplat[0] = ssef(P.x);
Psplat[1] = ssef(P.y);
@@ -301,13 +294,11 @@ bool BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
/* instance pop */
# if BVH_FEATURE(BVH_MOTION)
- bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &isect->t, &ob_itfm);
+ isect->t = bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, isect->t, &ob_itfm);
# else
- bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &isect->t);
+ isect->t = bvh_instance_pop(kg, object, ray, &P, &dir, &idir, isect->t);
# endif
- triangle_intersect_precalc(dir, &isect_precalc);
-
# if defined(__KERNEL_SSE2__)
Psplat[0] = ssef(P.x);
Psplat[1] = ssef(P.y);
diff --git a/intern/cycles/kernel/bvh/bvh_volume_all.h b/intern/cycles/kernel/bvh/bvh_volume_all.h
index 04fe6e02b15..8c94512a0b9 100644
--- a/intern/cycles/kernel/bvh/bvh_volume_all.h
+++ b/intern/cycles/kernel/bvh/bvh_volume_all.h
@@ -18,7 +18,7 @@
*/
#ifdef __QBVH__
-# include "qbvh_volume_all.h"
+# include "kernel/bvh/qbvh_volume_all.h"
#endif
#if BVH_FEATURE(BVH_HAIR)
@@ -128,9 +128,6 @@ uint BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
}
#endif
- IsectPrecalc isect_precalc;
- triangle_intersect_precalc(dir, &isect_precalc);
-
/* traversal loop */
do {
do {
@@ -226,9 +223,9 @@ uint BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
continue;
}
hit = triangle_intersect(kg,
- &isect_precalc,
isect_array,
P,
+ dir,
visibility,
object,
prim_addr);
@@ -314,16 +311,13 @@ uint BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
/* instance push */
object = kernel_tex_fetch(__prim_object, -prim_addr-1);
int object_flag = kernel_tex_fetch(__object_flag, object);
-
if(object_flag & SD_OBJECT_HAS_VOLUME) {
-
# if BVH_FEATURE(BVH_MOTION)
- bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect_t, &ob_itfm);
+ isect_t = bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, isect_t, &ob_itfm);
# else
- bvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect_t);
+ isect_t = bvh_instance_push(kg, object, ray, &P, &dir, &idir, isect_t);
# endif
- triangle_intersect_precalc(dir, &isect_precalc);
num_hits_in_instance = 0;
isect_array->t = isect_t;
@@ -369,20 +363,17 @@ uint BVH_FUNCTION_FULL_NAME(BVH)(KernelGlobals *kg,
# else
bvh_instance_pop_factor(kg, object, ray, &P, &dir, &idir, &t_fac);
# endif
- triangle_intersect_precalc(dir, &isect_precalc);
/* Scale isect->t to adjust for instancing. */
for(int i = 0; i < num_hits_in_instance; i++) {
(isect_array-i-1)->t *= t_fac;
}
}
else {
- float ignore_t = FLT_MAX;
# if BVH_FEATURE(BVH_MOTION)
- bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &ignore_t, &ob_itfm);
+ bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX, &ob_itfm);
# else
- bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &ignore_t);
+ bvh_instance_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX);
# endif
- triangle_intersect_precalc(dir, &isect_precalc);
}
isect_t = tmax;
diff --git a/intern/cycles/kernel/bvh/qbvh_nodes.h b/intern/cycles/kernel/bvh/qbvh_nodes.h
index 6d22f0b0d6a..3036efd4198 100644
--- a/intern/cycles/kernel/bvh/qbvh_nodes.h
+++ b/intern/cycles/kernel/bvh/qbvh_nodes.h
@@ -126,8 +126,8 @@ ccl_device_inline int qbvh_aligned_node_intersect(KernelGlobals *ccl_restrict kg
const sseb vmask = cast(tnear) > cast(tfar);
int mask = (int)movemask(vmask)^0xf;
#else
- const ssef tnear = max4(tnear_x, tnear_y, tnear_z, isect_near);
- const ssef tfar = min4(tfar_x, tfar_y, tfar_z, isect_far);
+ const ssef tnear = max4(isect_near, tnear_x, tnear_y, tnear_z);
+ const ssef tfar = min4(isect_far, tfar_x, tfar_y, tfar_z);
const sseb vmask = tnear <= tfar;
int mask = (int)movemask(vmask);
#endif
@@ -174,8 +174,8 @@ ccl_device_inline int qbvh_aligned_node_intersect_robust(
const float round_down = 1.0f - difl;
const float round_up = 1.0f + difl;
- const ssef tnear = max4(tnear_x, tnear_y, tnear_z, isect_near);
- const ssef tfar = min4(tfar_x, tfar_y, tfar_z, isect_far);
+ const ssef tnear = max4(isect_near, tnear_x, tnear_y, tnear_z);
+ const ssef tfar = min4(isect_far, tfar_x, tfar_y, tfar_z);
const sseb vmask = round_down*tnear <= round_up*tfar;
*dist = tnear;
return (int)movemask(vmask);
diff --git a/intern/cycles/kernel/bvh/qbvh_shadow_all.h b/intern/cycles/kernel/bvh/qbvh_shadow_all.h
index 5f4d06f12ea..522213f30ca 100644
--- a/intern/cycles/kernel/bvh/qbvh_shadow_all.h
+++ b/intern/cycles/kernel/bvh/qbvh_shadow_all.h
@@ -33,6 +33,7 @@
ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
const Ray *ray,
Intersection *isect_array,
+ const uint visibility,
const uint max_hits,
uint *num_hits)
{
@@ -96,24 +97,28 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
&near_x, &near_y, &near_z,
&far_x, &far_y, &far_z);
- IsectPrecalc isect_precalc;
- triangle_intersect_precalc(dir, &isect_precalc);
-
/* Traversal loop. */
do {
do {
/* Traverse internal nodes. */
while(node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) {
float4 inodes = kernel_tex_fetch(__bvh_nodes, node_addr+0);
+ (void)inodes;
+ if(false
#ifdef __VISIBILITY_FLAG__
- if((__float_as_uint(inodes.x) & PATH_RAY_SHADOW) == 0) {
+ || ((__float_as_uint(inodes.x) & visibility) == 0)
+#endif
+#if BVH_FEATURE(BVH_MOTION)
+ || UNLIKELY(ray->time < inodes.y)
+ || UNLIKELY(ray->time > inodes.z)
+#endif
+ ) {
/* Pop. */
node_addr = traversal_stack[stack_ptr].addr;
--stack_ptr;
continue;
}
-#endif
ssef dist;
int child_mask = NODE_INTERSECT(kg,
@@ -239,7 +244,7 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
if(node_addr < 0) {
float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-node_addr-1));
#ifdef __VISIBILITY_FLAG__
- if((__float_as_uint(leaf.z) & PATH_RAY_SHADOW) == 0) {
+ if((__float_as_uint(leaf.z) & visibility) == 0) {
/* Pop. */
node_addr = traversal_stack[stack_ptr].addr;
--stack_ptr;
@@ -262,8 +267,7 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
/* Primitive intersection. */
while(prim_addr < prim_addr2) {
- kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
-
+ kernel_assert((kernel_tex_fetch(__prim_type, prim_addr) & PRIMITIVE_ALL) == p_type);
bool hit;
/* todo: specialized intersect functions which don't fill in
@@ -273,10 +277,10 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
switch(p_type) {
case PRIMITIVE_TRIANGLE: {
hit = triangle_intersect(kg,
- &isect_precalc,
isect_array,
P,
- PATH_RAY_SHADOW,
+ dir,
+ visibility,
object,
prim_addr);
break;
@@ -288,7 +292,7 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
P,
dir,
ray->time,
- PATH_RAY_SHADOW,
+ visibility,
object,
prim_addr);
break;
@@ -297,31 +301,32 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
#if BVH_FEATURE(BVH_HAIR)
case PRIMITIVE_CURVE:
case PRIMITIVE_MOTION_CURVE: {
+ const uint curve_type = kernel_tex_fetch(__prim_type, prim_addr);
if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) {
- hit = bvh_cardinal_curve_intersect(kg,
- isect_array,
- P,
- dir,
- PATH_RAY_SHADOW,
- object,
- prim_addr,
- ray->time,
- type,
- NULL,
- 0, 0);
+ hit = cardinal_curve_intersect(kg,
+ isect_array,
+ P,
+ dir,
+ visibility,
+ object,
+ prim_addr,
+ ray->time,
+ curve_type,
+ NULL,
+ 0, 0);
}
else {
- hit = bvh_curve_intersect(kg,
- isect_array,
- P,
- dir,
- PATH_RAY_SHADOW,
- object,
- prim_addr,
- ray->time,
- type,
- NULL,
- 0, 0);
+ hit = curve_intersect(kg,
+ isect_array,
+ P,
+ dir,
+ visibility,
+ object,
+ prim_addr,
+ ray->time,
+ curve_type,
+ NULL,
+ 0, 0);
}
break;
}
@@ -383,9 +388,9 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
object = kernel_tex_fetch(__prim_object, -prim_addr-1);
# if BVH_FEATURE(BVH_MOTION)
- bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect_t, &ob_itfm);
+ isect_t = bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, isect_t, &ob_itfm);
# else
- bvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect_t);
+ isect_t = bvh_instance_push(kg, object, ray, &P, &dir, &idir, isect_t);
# endif
num_hits_in_instance = 0;
@@ -407,8 +412,6 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
# endif
- triangle_intersect_precalc(dir, &isect_precalc);
-
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = ENTRYPOINT_SENTINEL;
@@ -438,11 +441,10 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
}
}
else {
- float ignore_t = FLT_MAX;
# if BVH_FEATURE(BVH_MOTION)
- bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &ignore_t, &ob_itfm);
+ bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX, &ob_itfm);
# else
- bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &ignore_t);
+ bvh_instance_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX);
# endif
}
@@ -465,8 +467,6 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
# endif
- triangle_intersect_precalc(dir, &isect_precalc);
-
object = OBJECT_NONE;
node_addr = traversal_stack[stack_ptr].addr;
--stack_ptr;
diff --git a/intern/cycles/kernel/bvh/qbvh_subsurface.h b/intern/cycles/kernel/bvh/qbvh_subsurface.h
index ccd36df034a..be7658d11d7 100644
--- a/intern/cycles/kernel/bvh/qbvh_subsurface.h
+++ b/intern/cycles/kernel/bvh/qbvh_subsurface.h
@@ -61,19 +61,19 @@ ccl_device void BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
ss_isect->num_hits = 0;
const int object_flag = kernel_tex_fetch(__object_flag, subsurface_object);
- if(!(object_flag & SD_TRANSFORM_APPLIED)) {
+ if(!(object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
#if BVH_FEATURE(BVH_MOTION)
Transform ob_itfm;
- bvh_instance_motion_push(kg,
- subsurface_object,
- ray,
- &P,
- &dir,
- &idir,
- &isect_t,
- &ob_itfm);
+ isect_t = bvh_instance_motion_push(kg,
+ subsurface_object,
+ ray,
+ &P,
+ &dir,
+ &idir,
+ isect_t,
+ &ob_itfm);
#else
- bvh_instance_push(kg, subsurface_object, ray, &P, &dir, &idir, &isect_t);
+ isect_t = bvh_instance_push(kg, subsurface_object, ray, &P, &dir, &idir, isect_t);
#endif
object = subsurface_object;
}
@@ -105,9 +105,6 @@ ccl_device void BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
&near_x, &near_y, &near_z,
&far_x, &far_y, &far_z);
- IsectPrecalc isect_precalc;
- triangle_intersect_precalc(dir, &isect_precalc);
-
/* Traversal loop. */
do {
do {
@@ -253,9 +250,9 @@ ccl_device void BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
for(; prim_addr < prim_addr2; prim_addr++) {
kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
triangle_intersect_subsurface(kg,
- &isect_precalc,
ss_isect,
P,
+ dir,
object,
prim_addr,
isect_t,
diff --git a/intern/cycles/kernel/bvh/qbvh_traversal.h b/intern/cycles/kernel/bvh/qbvh_traversal.h
index f2d8e558dcc..335a4afd47a 100644
--- a/intern/cycles/kernel/bvh/qbvh_traversal.h
+++ b/intern/cycles/kernel/bvh/qbvh_traversal.h
@@ -106,20 +106,23 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
&near_x, &near_y, &near_z,
&far_x, &far_y, &far_z);
- IsectPrecalc isect_precalc;
- triangle_intersect_precalc(dir, &isect_precalc);
-
/* Traversal loop. */
do {
do {
/* Traverse internal nodes. */
while(node_addr >= 0 && node_addr != ENTRYPOINT_SENTINEL) {
float4 inodes = kernel_tex_fetch(__bvh_nodes, node_addr+0);
+ (void)inodes;
if(UNLIKELY(node_dist > isect->t)
+#if BVH_FEATURE(BVH_MOTION)
+ || UNLIKELY(ray->time < inodes.y)
+ || UNLIKELY(ray->time > inodes.z)
+#endif
#ifdef __VISIBILITY_FLAG__
- || (__float_as_uint(inodes.x) & visibility) == 0)
+ || (__float_as_uint(inodes.x) & visibility) == 0
#endif
+ )
{
/* Pop. */
node_addr = traversal_stack[stack_ptr].addr;
@@ -131,7 +134,7 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
int child_mask;
ssef dist;
- BVH_DEBUG_NEXT_STEP();
+ BVH_DEBUG_NEXT_NODE();
#if BVH_FEATURE(BVH_HAIR_MINIMUM_WIDTH)
if(difl != 0.0f) {
@@ -326,18 +329,18 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
switch(type & PRIMITIVE_ALL) {
case PRIMITIVE_TRIANGLE: {
for(; prim_addr < prim_addr2; prim_addr++) {
- BVH_DEBUG_NEXT_STEP();
+ BVH_DEBUG_NEXT_INTERSECTION();
kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
if(triangle_intersect(kg,
- &isect_precalc,
isect,
P,
+ dir,
visibility,
object,
prim_addr)) {
tfar = ssef(isect->t);
/* Shadow ray early termination. */
- if(visibility == PATH_RAY_SHADOW_OPAQUE) {
+ if(visibility & PATH_RAY_SHADOW_OPAQUE) {
return true;
}
}
@@ -347,7 +350,7 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
#if BVH_FEATURE(BVH_MOTION)
case PRIMITIVE_MOTION_TRIANGLE: {
for(; prim_addr < prim_addr2; prim_addr++) {
- BVH_DEBUG_NEXT_STEP();
+ BVH_DEBUG_NEXT_INTERSECTION();
kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
if(motion_triangle_intersect(kg,
isect,
@@ -359,7 +362,7 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
prim_addr)) {
tfar = ssef(isect->t);
/* Shadow ray early termination. */
- if(visibility == PATH_RAY_SHADOW_OPAQUE) {
+ if(visibility & PATH_RAY_SHADOW_OPAQUE) {
return true;
}
}
@@ -371,41 +374,42 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
case PRIMITIVE_CURVE:
case PRIMITIVE_MOTION_CURVE: {
for(; prim_addr < prim_addr2; prim_addr++) {
- BVH_DEBUG_NEXT_STEP();
- kernel_assert(kernel_tex_fetch(__prim_type, prim_addr) == type);
+ BVH_DEBUG_NEXT_INTERSECTION();
+ const uint curve_type = kernel_tex_fetch(__prim_type, prim_addr);
+ kernel_assert((curve_type & PRIMITIVE_ALL) == (type & PRIMITIVE_ALL));
bool hit;
if(kernel_data.curve.curveflags & CURVE_KN_INTERPOLATE) {
- hit = bvh_cardinal_curve_intersect(kg,
- isect,
- P,
- dir,
- visibility,
- object,
- prim_addr,
- ray->time,
- type,
- lcg_state,
- difl,
- extmax);
+ hit = cardinal_curve_intersect(kg,
+ isect,
+ P,
+ dir,
+ visibility,
+ object,
+ prim_addr,
+ ray->time,
+ curve_type,
+ lcg_state,
+ difl,
+ extmax);
}
else {
- hit = bvh_curve_intersect(kg,
- isect,
- P,
- dir,
- visibility,
- object,
- prim_addr,
- ray->time,
- type,
- lcg_state,
- difl,
- extmax);
+ hit = curve_intersect(kg,
+ isect,
+ P,
+ dir,
+ visibility,
+ object,
+ prim_addr,
+ ray->time,
+ curve_type,
+ lcg_state,
+ difl,
+ extmax);
}
if(hit) {
tfar = ssef(isect->t);
/* Shadow ray early termination. */
- if(visibility == PATH_RAY_SHADOW_OPAQUE) {
+ if(visibility & PATH_RAY_SHADOW_OPAQUE) {
return true;
}
}
@@ -442,8 +446,6 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
# endif
- triangle_intersect_precalc(dir, &isect_precalc);
-
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = ENTRYPOINT_SENTINEL;
@@ -463,9 +465,9 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
/* Instance pop. */
# if BVH_FEATURE(BVH_MOTION)
- bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &isect->t, &ob_itfm);
+ isect->t = bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, isect->t, &ob_itfm);
# else
- bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &isect->t);
+ isect->t = bvh_instance_pop(kg, object, ray, &P, &dir, &idir, isect->t);
# endif
qbvh_near_far_idx_calc(idir,
@@ -484,8 +486,6 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
# endif
- triangle_intersect_precalc(dir, &isect_precalc);
-
object = OBJECT_NONE;
node_addr = traversal_stack[stack_ptr].addr;
node_dist = traversal_stack[stack_ptr].dist;
diff --git a/intern/cycles/kernel/bvh/qbvh_volume.h b/intern/cycles/kernel/bvh/qbvh_volume.h
index 989873b549b..bcda7bbd251 100644
--- a/intern/cycles/kernel/bvh/qbvh_volume.h
+++ b/intern/cycles/kernel/bvh/qbvh_volume.h
@@ -91,9 +91,6 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
&near_x, &near_y, &near_z,
&far_x, &far_y, &far_z);
- IsectPrecalc isect_precalc;
- triangle_intersect_precalc(dir, &isect_precalc);
-
#if 1
/* try to intersect with VDB volumes */
int num_volumes = kernel_data.tables.num_volumes;
@@ -284,7 +281,7 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
continue;
}
/* Intersect ray against primitive. */
- triangle_intersect(kg, &isect_precalc, isect, P, visibility, object, prim_addr);
+ triangle_intersect(kg, isect, P, dir, visibility, object, prim_addr);
}
break;
}
@@ -311,13 +308,11 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
/* Instance push. */
object = kernel_tex_fetch(__prim_object, -prim_addr-1);
int object_flag = kernel_tex_fetch(__object_flag, object);
-
if(object_flag & SD_OBJECT_HAS_VOLUME) {
-
# if BVH_FEATURE(BVH_MOTION)
- bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect->t, &ob_itfm);
+ isect->t = bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, isect->t, &ob_itfm);
# else
- bvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect->t);
+ isect->t = bvh_instance_push(kg, object, ray, &P, &dir, &idir, isect->t);
# endif
qbvh_near_far_idx_calc(idir,
@@ -336,8 +331,6 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
# endif
- triangle_intersect_precalc(dir, &isect_precalc);
-
++stack_ptr;
kernel_assert(stack_ptr < BVH_QSTACK_SIZE);
traversal_stack[stack_ptr].addr = ENTRYPOINT_SENTINEL;
@@ -361,9 +354,9 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
/* Instance pop. */
# if BVH_FEATURE(BVH_MOTION)
- bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &isect->t, &ob_itfm);
+ isect->t = bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, isect->t, &ob_itfm);
# else
- bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &isect->t);
+ isect->t = bvh_instance_pop(kg, object, ray, &P, &dir, &idir, isect->t);
# endif
qbvh_near_far_idx_calc(idir,
@@ -382,8 +375,6 @@ ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
# endif
- triangle_intersect_precalc(dir, &isect_precalc);
-
object = OBJECT_NONE;
node_addr = traversal_stack[stack_ptr].addr;
--stack_ptr;
diff --git a/intern/cycles/kernel/bvh/qbvh_volume_all.h b/intern/cycles/kernel/bvh/qbvh_volume_all.h
index 87bbca5d85c..26f31c379c3 100644
--- a/intern/cycles/kernel/bvh/qbvh_volume_all.h
+++ b/intern/cycles/kernel/bvh/qbvh_volume_all.h
@@ -95,9 +95,6 @@ ccl_device uint BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
&near_x, &near_y, &near_z,
&far_x, &far_y, &far_z);
- IsectPrecalc isect_precalc;
- triangle_intersect_precalc(dir, &isect_precalc);
-
#if 1
/* try to intersect with VDB volumes */
int num_volumes = kernel_data.tables.num_volumes;
@@ -298,7 +295,7 @@ ccl_device uint BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
continue;
}
/* Intersect ray against primitive. */
- hit = triangle_intersect(kg, &isect_precalc, isect_array, P, visibility, object, prim_addr);
+ hit = triangle_intersect(kg, isect_array, P, dir, visibility, object, prim_addr);
if(hit) {
/* Move on to next entry in intersections array. */
isect_array++;
@@ -371,13 +368,11 @@ ccl_device uint BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
/* Instance push. */
object = kernel_tex_fetch(__prim_object, -prim_addr-1);
int object_flag = kernel_tex_fetch(__object_flag, object);
-
if(object_flag & SD_OBJECT_HAS_VOLUME) {
-
# if BVH_FEATURE(BVH_MOTION)
- bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect_t, &ob_itfm);
+ isect_t = bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, isect_t, &ob_itfm);
# else
- bvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect_t);
+ isect_t = bvh_instance_push(kg, object, ray, &P, &dir, &idir, isect_t);
# endif
qbvh_near_far_idx_calc(idir,
@@ -396,7 +391,6 @@ ccl_device uint BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
# endif
- triangle_intersect_precalc(dir, &isect_precalc);
num_hits_in_instance = 0;
isect_array->t = isect_t;
@@ -435,11 +429,10 @@ ccl_device uint BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
}
}
else {
- float ignore_t = FLT_MAX;
# if BVH_FEATURE(BVH_MOTION)
- bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &ignore_t, &ob_itfm);
+ bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX, &ob_itfm);
# else
- bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &ignore_t);
+ bvh_instance_pop(kg, object, ray, &P, &dir, &idir, FLT_MAX);
# endif
}
@@ -462,8 +455,6 @@ ccl_device uint BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg,
org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z));
# endif
- triangle_intersect_precalc(dir, &isect_precalc);
-
object = OBJECT_NONE;
node_addr = traversal_stack[stack_ptr].addr;
--stack_ptr;
diff --git a/intern/cycles/kernel/closure/alloc.h b/intern/cycles/kernel/closure/alloc.h
index b7abc1ec507..e799855a65e 100644
--- a/intern/cycles/kernel/closure/alloc.h
+++ b/intern/cycles/kernel/closure/alloc.h
@@ -20,17 +20,17 @@ ccl_device ShaderClosure *closure_alloc(ShaderData *sd, int size, ClosureType ty
{
kernel_assert(size <= sizeof(ShaderClosure));
- int num_closure = ccl_fetch(sd, num_closure);
- int num_closure_extra = ccl_fetch(sd, num_closure_extra);
+ int num_closure = sd->num_closure;
+ int num_closure_extra = sd->num_closure_extra;
if(num_closure + num_closure_extra >= MAX_CLOSURE)
return NULL;
- ShaderClosure *sc = &ccl_fetch(sd, closure)[num_closure];
+ ShaderClosure *sc = &sd->closure[num_closure];
sc->type = type;
sc->weight = weight;
- ccl_fetch(sd, num_closure)++;
+ sd->num_closure++;
return sc;
}
@@ -44,25 +44,25 @@ ccl_device ccl_addr_space void *closure_alloc_extra(ShaderData *sd, int size)
* This lets us keep the same fast array iteration over closures, as we
* found linked list iteration and iteration with skipping to be slower. */
int num_extra = ((size + sizeof(ShaderClosure) - 1) / sizeof(ShaderClosure));
- int num_closure = ccl_fetch(sd, num_closure);
- int num_closure_extra = ccl_fetch(sd, num_closure_extra) + num_extra;
+ int num_closure = sd->num_closure;
+ int num_closure_extra = sd->num_closure_extra + num_extra;
if(num_closure + num_closure_extra > MAX_CLOSURE) {
/* Remove previous closure. */
- ccl_fetch(sd, num_closure)--;
- ccl_fetch(sd, num_closure_extra)++;
+ sd->num_closure--;
+ sd->num_closure_extra++;
return NULL;
}
- ccl_fetch(sd, num_closure_extra) = num_closure_extra;
- return (ccl_addr_space void*)(ccl_fetch(sd, closure) + MAX_CLOSURE - num_closure_extra);
+ sd->num_closure_extra = num_closure_extra;
+ return (ccl_addr_space void*)(sd->closure + MAX_CLOSURE - num_closure_extra);
}
ccl_device_inline ShaderClosure *bsdf_alloc(ShaderData *sd, int size, float3 weight)
{
ShaderClosure *sc = closure_alloc(sd, size, CLOSURE_NONE_ID, weight);
- if(!sc)
+ if(sc == NULL)
return NULL;
float sample_weight = fabsf(average(weight));
diff --git a/intern/cycles/kernel/closure/bsdf.h b/intern/cycles/kernel/closure/bsdf.h
index 7e4d5fe2e37..86a00d2124d 100644
--- a/intern/cycles/kernel/closure/bsdf.h
+++ b/intern/cycles/kernel/closure/bsdf.h
@@ -14,126 +14,144 @@
* limitations under the License.
*/
-#include "../closure/bsdf_ashikhmin_velvet.h"
-#include "../closure/bsdf_diffuse.h"
-#include "../closure/bsdf_oren_nayar.h"
-#include "../closure/bsdf_phong_ramp.h"
-#include "../closure/bsdf_diffuse_ramp.h"
-#include "../closure/bsdf_microfacet.h"
-#include "../closure/bsdf_microfacet_multi.h"
-#include "../closure/bsdf_reflection.h"
-#include "../closure/bsdf_refraction.h"
-#include "../closure/bsdf_transparent.h"
-#include "../closure/bsdf_ashikhmin_shirley.h"
-#include "../closure/bsdf_toon.h"
-#include "../closure/bsdf_hair.h"
+#include "kernel/closure/bsdf_ashikhmin_velvet.h"
+#include "kernel/closure/bsdf_diffuse.h"
+#include "kernel/closure/bsdf_oren_nayar.h"
+#include "kernel/closure/bsdf_phong_ramp.h"
+#include "kernel/closure/bsdf_diffuse_ramp.h"
+#include "kernel/closure/bsdf_microfacet.h"
+#include "kernel/closure/bsdf_microfacet_multi.h"
+#include "kernel/closure/bsdf_reflection.h"
+#include "kernel/closure/bsdf_refraction.h"
+#include "kernel/closure/bsdf_transparent.h"
+#include "kernel/closure/bsdf_ashikhmin_shirley.h"
+#include "kernel/closure/bsdf_toon.h"
+#include "kernel/closure/bsdf_hair.h"
+#include "kernel/closure/bsdf_principled_diffuse.h"
+#include "kernel/closure/bsdf_principled_sheen.h"
#ifdef __SUBSURFACE__
-# include "../closure/bssrdf.h"
+# include "kernel/closure/bssrdf.h"
#endif
#ifdef __VOLUME__
-# include "../closure/volume.h"
+# include "kernel/closure/volume.h"
#endif
CCL_NAMESPACE_BEGIN
ccl_device_forceinline int bsdf_sample(KernelGlobals *kg,
- ShaderData *sd,
- const ShaderClosure *sc,
- float randu,
- float randv,
- float3 *eval,
- float3 *omega_in,
- differential3 *domega_in,
- float *pdf)
+ ShaderData *sd,
+ const ShaderClosure *sc,
+ float randu,
+ float randv,
+ float3 *eval,
+ float3 *omega_in,
+ differential3 *domega_in,
+ float *pdf)
{
int label;
switch(sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_ID:
- label = bsdf_diffuse_sample(sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
+ label = bsdf_diffuse_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
#ifdef __SVM__
case CLOSURE_BSDF_OREN_NAYAR_ID:
- label = bsdf_oren_nayar_sample(sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
+ label = bsdf_oren_nayar_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
#ifdef __OSL__
case CLOSURE_BSDF_PHONG_RAMP_ID:
- label = bsdf_phong_ramp_sample(sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
+ label = bsdf_phong_ramp_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_DIFFUSE_RAMP_ID:
- label = bsdf_diffuse_ramp_sample(sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
+ label = bsdf_diffuse_ramp_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
#endif
case CLOSURE_BSDF_TRANSLUCENT_ID:
- label = bsdf_translucent_sample(sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
+ label = bsdf_translucent_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_REFLECTION_ID:
- label = bsdf_reflection_sample(sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
+ label = bsdf_reflection_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_REFRACTION_ID:
- label = bsdf_refraction_sample(sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
+ label = bsdf_refraction_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_TRANSPARENT_ID:
- label = bsdf_transparent_sample(sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
+ label = bsdf_transparent_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
+ case CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID:
+ case CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID:
+ case CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
- label = bsdf_microfacet_ggx_sample(kg, sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
+ label = bsdf_microfacet_ggx_sample(kg, sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
- label = bsdf_microfacet_multi_ggx_sample(kg, sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
- eval, omega_in, &domega_in->dx, &domega_in->dy, pdf, &ccl_fetch(sd, lcg_state));
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID:
+ label = bsdf_microfacet_multi_ggx_sample(kg, sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
+ eval, omega_in, &domega_in->dx, &domega_in->dy, pdf, &sd->lcg_state);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
- label = bsdf_microfacet_multi_ggx_glass_sample(kg, sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
- eval, omega_in, &domega_in->dx, &domega_in->dy, pdf, &ccl_fetch(sd, lcg_state));
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID:
+ label = bsdf_microfacet_multi_ggx_glass_sample(kg, sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
+ eval, omega_in, &domega_in->dx, &domega_in->dy, pdf, &sd->lcg_state);
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
- label = bsdf_microfacet_beckmann_sample(kg, sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
+ label = bsdf_microfacet_beckmann_sample(kg, sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID:
- label = bsdf_ashikhmin_shirley_sample(sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
+ label = bsdf_ashikhmin_shirley_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
- label = bsdf_ashikhmin_velvet_sample(sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
+ label = bsdf_ashikhmin_velvet_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_DIFFUSE_TOON_ID:
- label = bsdf_diffuse_toon_sample(sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
+ label = bsdf_diffuse_toon_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_GLOSSY_TOON_ID:
- label = bsdf_glossy_toon_sample(sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
+ label = bsdf_glossy_toon_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_HAIR_REFLECTION_ID:
- label = bsdf_hair_reflection_sample(sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
+ label = bsdf_hair_reflection_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
case CLOSURE_BSDF_HAIR_TRANSMISSION_ID:
- label = bsdf_hair_transmission_sample(sc, ccl_fetch(sd, Ng), ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv,
+ label = bsdf_hair_transmission_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
+#ifdef __PRINCIPLED__
+ case CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID:
+ case CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID:
+ label = bsdf_principled_diffuse_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
+ eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
+ break;
+ case CLOSURE_BSDF_PRINCIPLED_SHEEN_ID:
+ label = bsdf_principled_sheen_sample(sc, sd->Ng, sd->I, sd->dI.dx, sd->dI.dy, randu, randv,
+ eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
+ break;
+#endif /* __PRINCIPLED__ */
#endif
#ifdef __VOLUME__
case CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID:
- label = volume_henyey_greenstein_sample(sc, ccl_fetch(sd, I), ccl_fetch(sd, dI).dx, ccl_fetch(sd, dI).dy, randu, randv, eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
+ label = volume_henyey_greenstein_sample(sc, sd->I, sd->dI.dx, sd->dI.dy, randu, randv, eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
break;
#endif
default:
@@ -157,75 +175,89 @@ float3 bsdf_eval(KernelGlobals *kg,
{
float3 eval;
- if(dot(ccl_fetch(sd, Ng), omega_in) >= 0.0f) {
+ if(dot(sd->Ng, omega_in) >= 0.0f) {
switch(sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_ID:
- eval = bsdf_diffuse_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_diffuse_eval_reflect(sc, sd->I, omega_in, pdf);
break;
#ifdef __SVM__
case CLOSURE_BSDF_OREN_NAYAR_ID:
- eval = bsdf_oren_nayar_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_oren_nayar_eval_reflect(sc, sd->I, omega_in, pdf);
break;
#ifdef __OSL__
case CLOSURE_BSDF_PHONG_RAMP_ID:
- eval = bsdf_phong_ramp_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_phong_ramp_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_DIFFUSE_RAMP_ID:
- eval = bsdf_diffuse_ramp_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_diffuse_ramp_eval_reflect(sc, sd->I, omega_in, pdf);
break;
#endif
case CLOSURE_BSDF_TRANSLUCENT_ID:
- eval = bsdf_translucent_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_translucent_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFLECTION_ID:
- eval = bsdf_reflection_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_reflection_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFRACTION_ID:
- eval = bsdf_refraction_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_refraction_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_TRANSPARENT_ID:
- eval = bsdf_transparent_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_transparent_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
+ case CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID:
+ case CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID:
+ case CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
- eval = bsdf_microfacet_ggx_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_microfacet_ggx_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
- eval = bsdf_microfacet_multi_ggx_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf, &ccl_fetch(sd, lcg_state));
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID:
+ eval = bsdf_microfacet_multi_ggx_eval_reflect(sc, sd->I, omega_in, pdf, &sd->lcg_state);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
- eval = bsdf_microfacet_multi_ggx_glass_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf, &ccl_fetch(sd, lcg_state));
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID:
+ eval = bsdf_microfacet_multi_ggx_glass_eval_reflect(sc, sd->I, omega_in, pdf, &sd->lcg_state);
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
- eval = bsdf_microfacet_beckmann_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_microfacet_beckmann_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID:
- eval = bsdf_ashikhmin_shirley_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_ashikhmin_shirley_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
- eval = bsdf_ashikhmin_velvet_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_ashikhmin_velvet_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_DIFFUSE_TOON_ID:
- eval = bsdf_diffuse_toon_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_diffuse_toon_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_GLOSSY_TOON_ID:
- eval = bsdf_glossy_toon_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_glossy_toon_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_HAIR_REFLECTION_ID:
- eval = bsdf_hair_reflection_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_hair_reflection_eval_reflect(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_HAIR_TRANSMISSION_ID:
- eval = bsdf_hair_transmission_eval_reflect(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_hair_transmission_eval_reflect(sc, sd->I, omega_in, pdf);
+ break;
+#ifdef __PRINCIPLED__
+ case CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID:
+ case CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID:
+ eval = bsdf_principled_diffuse_eval_reflect(sc, sd->I, omega_in, pdf);
break;
+ case CLOSURE_BSDF_PRINCIPLED_SHEEN_ID:
+ eval = bsdf_principled_sheen_eval_reflect(sc, sd->I, omega_in, pdf);
+ break;
+#endif /* __PRINCIPLED__ */
#endif
#ifdef __VOLUME__
case CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID:
- eval = volume_henyey_greenstein_eval_phase(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = volume_henyey_greenstein_eval_phase(sc, sd->I, omega_in, pdf);
break;
#endif
default:
@@ -237,63 +269,77 @@ float3 bsdf_eval(KernelGlobals *kg,
switch(sc->type) {
case CLOSURE_BSDF_DIFFUSE_ID:
case CLOSURE_BSDF_BSSRDF_ID:
- eval = bsdf_diffuse_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_diffuse_eval_transmit(sc, sd->I, omega_in, pdf);
break;
#ifdef __SVM__
case CLOSURE_BSDF_OREN_NAYAR_ID:
- eval = bsdf_oren_nayar_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_oren_nayar_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_TRANSLUCENT_ID:
- eval = bsdf_translucent_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_translucent_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFLECTION_ID:
- eval = bsdf_reflection_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_reflection_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_REFRACTION_ID:
- eval = bsdf_refraction_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_refraction_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_TRANSPARENT_ID:
- eval = bsdf_transparent_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_transparent_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
+ case CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID:
+ case CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID:
+ case CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
- eval = bsdf_microfacet_ggx_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_microfacet_ggx_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
- eval = bsdf_microfacet_multi_ggx_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf, &ccl_fetch(sd, lcg_state));
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID:
+ eval = bsdf_microfacet_multi_ggx_eval_transmit(sc, sd->I, omega_in, pdf, &sd->lcg_state);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
- eval = bsdf_microfacet_multi_ggx_glass_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf, &ccl_fetch(sd, lcg_state));
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID:
+ eval = bsdf_microfacet_multi_ggx_glass_eval_transmit(sc, sd->I, omega_in, pdf, &sd->lcg_state);
break;
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
- eval = bsdf_microfacet_beckmann_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_microfacet_beckmann_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID:
- eval = bsdf_ashikhmin_shirley_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_ashikhmin_shirley_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID:
- eval = bsdf_ashikhmin_velvet_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_ashikhmin_velvet_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_DIFFUSE_TOON_ID:
- eval = bsdf_diffuse_toon_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_diffuse_toon_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_GLOSSY_TOON_ID:
- eval = bsdf_glossy_toon_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_glossy_toon_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_HAIR_REFLECTION_ID:
- eval = bsdf_hair_reflection_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_hair_reflection_eval_transmit(sc, sd->I, omega_in, pdf);
break;
case CLOSURE_BSDF_HAIR_TRANSMISSION_ID:
- eval = bsdf_hair_transmission_eval_transmit(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = bsdf_hair_transmission_eval_transmit(sc, sd->I, omega_in, pdf);
+ break;
+#ifdef __PRINCIPLED__
+ case CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID:
+ case CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID:
+ eval = bsdf_principled_diffuse_eval_transmit(sc, sd->I, omega_in, pdf);
break;
+ case CLOSURE_BSDF_PRINCIPLED_SHEEN_ID:
+ eval = bsdf_principled_sheen_eval_transmit(sc, sd->I, omega_in, pdf);
+ break;
+#endif /* __PRINCIPLED__ */
#endif
#ifdef __VOLUME__
case CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID:
- eval = volume_henyey_greenstein_eval_phase(sc, ccl_fetch(sd, I), omega_in, pdf);
+ eval = volume_henyey_greenstein_eval_phase(sc, sd->I, omega_in, pdf);
break;
#endif
default:
@@ -311,11 +357,16 @@ ccl_device void bsdf_blur(KernelGlobals *kg, ShaderClosure *sc, float roughness)
#ifdef __SVM__
switch(sc->type) {
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID:
bsdf_microfacet_multi_ggx_blur(sc, roughness);
break;
case CLOSURE_BSDF_MICROFACET_GGX_ID:
+ case CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID:
+ case CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID:
+ case CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
bsdf_microfacet_ggx_blur(sc, roughness);
break;
@@ -349,10 +400,15 @@ ccl_device bool bsdf_merge(ShaderClosure *a, ShaderClosure *b)
case CLOSURE_BSDF_REFLECTION_ID:
case CLOSURE_BSDF_REFRACTION_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ID:
+ case CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID:
+ case CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID:
+ case CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID:
+ case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
@@ -367,6 +423,11 @@ ccl_device bool bsdf_merge(ShaderClosure *a, ShaderClosure *b)
case CLOSURE_BSDF_HAIR_REFLECTION_ID:
case CLOSURE_BSDF_HAIR_TRANSMISSION_ID:
return bsdf_hair_merge(a, b);
+#ifdef __PRINCIPLED__
+ case CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID:
+ case CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID:
+ return bsdf_principled_diffuse_merge(a, b);
+#endif
#ifdef __VOLUME__
case CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID:
return volume_henyey_greenstein_merge(a, b);
@@ -379,5 +440,23 @@ ccl_device bool bsdf_merge(ShaderClosure *a, ShaderClosure *b)
#endif
}
+/* Classifies a closure as diffuse-like or specular-like.
+ * This is needed for the denoising feature pass generation,
+ * which are written on the first bounce where more than 25%
+ * of the sampling weight belongs to diffuse-line closures. */
+ccl_device_inline bool bsdf_is_specular_like(ShaderClosure *sc)
+{
+ if(CLOSURE_IS_BSDF_TRANSPARENT(sc->type)) {
+ return true;
+ }
+
+ if(CLOSURE_IS_BSDF_MICROFACET(sc->type)) {
+ MicrofacetBsdf *bsdf = (MicrofacetBsdf*) sc;
+ return (bsdf->alpha_x*bsdf->alpha_y <= 0.075f*0.075f);
+ }
+
+ return false;
+}
+
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/closure/bsdf_ashikhmin_shirley.h b/intern/cycles/kernel/closure/bsdf_ashikhmin_shirley.h
index 1cd8246aa71..b6c896c754b 100644
--- a/intern/cycles/kernel/closure/bsdf_ashikhmin_shirley.h
+++ b/intern/cycles/kernel/closure/bsdf_ashikhmin_shirley.h
@@ -143,6 +143,7 @@ ccl_device int bsdf_ashikhmin_shirley_sample(const ShaderClosure *sc, float3 Ng,
{
const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
float3 N = bsdf->N;
+ int label = LABEL_REFLECT | LABEL_GLOSSY;
float NdotI = dot(N, I);
if(NdotI > 0.0f) {
@@ -211,6 +212,7 @@ ccl_device int bsdf_ashikhmin_shirley_sample(const ShaderClosure *sc, float3 Ng,
/* Some high number for MIS. */
*pdf = 1e6f;
*eval = make_float3(1e6f, 1e6f, 1e6f);
+ label = LABEL_REFLECT | LABEL_SINGULAR;
}
else {
/* leave the rest to eval_reflect */
@@ -224,7 +226,7 @@ ccl_device int bsdf_ashikhmin_shirley_sample(const ShaderClosure *sc, float3 Ng,
#endif
}
- return LABEL_REFLECT|LABEL_GLOSSY;
+ return label;
}
diff --git a/intern/cycles/kernel/closure/bsdf_ashikhmin_velvet.h b/intern/cycles/kernel/closure/bsdf_ashikhmin_velvet.h
index 7e0f5a7ec75..a5ba2cb2972 100644
--- a/intern/cycles/kernel/closure/bsdf_ashikhmin_velvet.h
+++ b/intern/cycles/kernel/closure/bsdf_ashikhmin_velvet.h
@@ -40,7 +40,6 @@ typedef ccl_addr_space struct VelvetBsdf {
float sigma;
float invsigma2;
- float3 N;
} VelvetBsdf;
ccl_device int bsdf_ashikhmin_velvet_setup(VelvetBsdf *bsdf)
diff --git a/intern/cycles/kernel/closure/bsdf_diffuse.h b/intern/cycles/kernel/closure/bsdf_diffuse.h
index dcd187f9305..ec6f1f20996 100644
--- a/intern/cycles/kernel/closure/bsdf_diffuse.h
+++ b/intern/cycles/kernel/closure/bsdf_diffuse.h
@@ -37,7 +37,6 @@ CCL_NAMESPACE_BEGIN
typedef ccl_addr_space struct DiffuseBsdf {
SHADER_CLOSURE_BASE;
- float3 N;
} DiffuseBsdf;
/* DIFFUSE */
diff --git a/intern/cycles/kernel/closure/bsdf_diffuse_ramp.h b/intern/cycles/kernel/closure/bsdf_diffuse_ramp.h
index 2d982a95fe4..24f40af46a3 100644
--- a/intern/cycles/kernel/closure/bsdf_diffuse_ramp.h
+++ b/intern/cycles/kernel/closure/bsdf_diffuse_ramp.h
@@ -40,7 +40,6 @@ CCL_NAMESPACE_BEGIN
typedef ccl_addr_space struct DiffuseRampBsdf {
SHADER_CLOSURE_BASE;
- float3 N;
float3 *colors;
} DiffuseRampBsdf;
diff --git a/intern/cycles/kernel/closure/bsdf_hair.h b/intern/cycles/kernel/closure/bsdf_hair.h
index bede5f45e7e..daaa26dc6ad 100644
--- a/intern/cycles/kernel/closure/bsdf_hair.h
+++ b/intern/cycles/kernel/closure/bsdf_hair.h
@@ -267,7 +267,10 @@ ccl_device int bsdf_hair_transmission_sample(const ShaderClosure *sc, float3 Ng,
*eval = make_float3(*pdf, *pdf, *pdf);
- kernel_assert(dot(locy, *omega_in) < 0.0f);
+ /* TODO(sergey): Should always be negative, but seems some precision issue
+ * is involved here.
+ */
+ kernel_assert(dot(locy, *omega_in) < 1e-4f);
return LABEL_TRANSMIT|LABEL_GLOSSY;
}
diff --git a/intern/cycles/kernel/closure/bsdf_microfacet.h b/intern/cycles/kernel/closure/bsdf_microfacet.h
index 0a8d14a00c2..a780bd0cf28 100644
--- a/intern/cycles/kernel/closure/bsdf_microfacet.h
+++ b/intern/cycles/kernel/closure/bsdf_microfacet.h
@@ -36,7 +36,8 @@
CCL_NAMESPACE_BEGIN
typedef ccl_addr_space struct MicrofacetExtra {
- float3 color;
+ float3 color, cspec0;
+ float clearcoat;
} MicrofacetExtra;
typedef ccl_addr_space struct MicrofacetBsdf {
@@ -45,7 +46,6 @@ typedef ccl_addr_space struct MicrofacetBsdf {
float alpha_x, alpha_y, ior;
MicrofacetExtra *extra;
float3 T;
- float3 N;
} MicrofacetBsdf;
/* Beckmann and GGX microfacet importance sampling. */
@@ -233,6 +233,36 @@ ccl_device_forceinline float3 microfacet_sample_stretched(
return normalize(make_float3(-slope_x, -slope_y, 1.0f));
}
+/* Calculate the reflection color
+ *
+ * If fresnel is used, the color is an interpolation of the F0 color and white
+ * with respect to the fresnel
+ *
+ * Else it is simply white
+ */
+ccl_device_forceinline float3 reflection_color(const MicrofacetBsdf *bsdf, float3 L, float3 H) {
+ float3 F = make_float3(1.0f, 1.0f, 1.0f);
+ bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID
+ || bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID
+ || bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID);
+
+ if(use_fresnel) {
+ float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
+
+ F = interpolate_fresnel_color(L, H, bsdf->ior, F0, bsdf->extra->cspec0);
+ }
+
+ return F;
+}
+
+ccl_device_forceinline float D_GTR1(float NdotH, float alpha)
+{
+ if(alpha >= 1.0f) return M_1_PI_F;
+ float alpha2 = alpha*alpha;
+ float t = 1.0f + (alpha2 - 1.0f) * NdotH*NdotH;
+ return (alpha2 - 1.0f) / (M_PI_F * logf(alpha2) * t);
+}
+
/* GGX microfacet with Smith shadow-masking from:
*
* Microfacet Models for Refraction through Rough Surfaces
@@ -248,14 +278,52 @@ ccl_device_forceinline float3 microfacet_sample_stretched(
ccl_device int bsdf_microfacet_ggx_setup(MicrofacetBsdf *bsdf)
{
+ bsdf->extra = NULL;
+
bsdf->alpha_x = saturate(bsdf->alpha_x);
bsdf->alpha_y = bsdf->alpha_x;
-
+
bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
+ccl_device int bsdf_microfacet_ggx_fresnel_setup(MicrofacetBsdf *bsdf, const ShaderData *sd)
+{
+ bsdf->extra->cspec0.x = saturate(bsdf->extra->cspec0.x);
+ bsdf->extra->cspec0.y = saturate(bsdf->extra->cspec0.y);
+ bsdf->extra->cspec0.z = saturate(bsdf->extra->cspec0.z);
+
+ float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
+ float F = average(interpolate_fresnel_color(sd->I, bsdf->N, bsdf->ior, F0, bsdf->extra->cspec0));
+ bsdf->sample_weight *= F;
+
+ bsdf->alpha_x = saturate(bsdf->alpha_x);
+ bsdf->alpha_y = bsdf->alpha_x;
+
+ bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID;
+
+ return SD_BSDF|SD_BSDF_HAS_EVAL;
+}
+
+ccl_device int bsdf_microfacet_ggx_clearcoat_setup(MicrofacetBsdf *bsdf, const ShaderData *sd)
+{
+ bsdf->extra->cspec0.x = saturate(bsdf->extra->cspec0.x);
+ bsdf->extra->cspec0.y = saturate(bsdf->extra->cspec0.y);
+ bsdf->extra->cspec0.z = saturate(bsdf->extra->cspec0.z);
+
+ float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
+ float F = average(interpolate_fresnel_color(sd->I, bsdf->N, bsdf->ior, F0, bsdf->extra->cspec0));
+ bsdf->sample_weight *= 0.25f * bsdf->extra->clearcoat * F;
+
+ bsdf->alpha_x = saturate(bsdf->alpha_x);
+ bsdf->alpha_y = bsdf->alpha_x;
+
+ bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID;
+
+ return SD_BSDF|SD_BSDF_HAS_EVAL;
+}
+
ccl_device bool bsdf_microfacet_merge(const ShaderClosure *a, const ShaderClosure *b)
{
const MicrofacetBsdf *bsdf_a = (const MicrofacetBsdf*)a;
@@ -266,23 +334,45 @@ ccl_device bool bsdf_microfacet_merge(const ShaderClosure *a, const ShaderClosur
(bsdf_a->alpha_y == bsdf_b->alpha_y) &&
(isequal_float3(bsdf_a->T, bsdf_b->T)) &&
(bsdf_a->ior == bsdf_b->ior) &&
- ((!bsdf_a->extra && !bsdf_b->extra) ||
+ ((bsdf_a->extra == NULL && bsdf_b->extra == NULL) ||
((bsdf_a->extra && bsdf_b->extra) &&
(isequal_float3(bsdf_a->extra->color, bsdf_b->extra->color))));
}
ccl_device int bsdf_microfacet_ggx_aniso_setup(MicrofacetBsdf *bsdf)
{
+ bsdf->extra = NULL;
+
bsdf->alpha_x = saturate(bsdf->alpha_x);
bsdf->alpha_y = saturate(bsdf->alpha_y);
-
+
bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
+ccl_device int bsdf_microfacet_ggx_aniso_fresnel_setup(MicrofacetBsdf *bsdf, const ShaderData *sd)
+{
+ bsdf->extra->cspec0.x = saturate(bsdf->extra->cspec0.x);
+ bsdf->extra->cspec0.y = saturate(bsdf->extra->cspec0.y);
+ bsdf->extra->cspec0.z = saturate(bsdf->extra->cspec0.z);
+
+ float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
+ float F = average(interpolate_fresnel_color(sd->I, bsdf->N, bsdf->ior, F0, bsdf->extra->cspec0));
+ bsdf->sample_weight *= F;
+
+ bsdf->alpha_x = saturate(bsdf->alpha_x);
+ bsdf->alpha_y = saturate(bsdf->alpha_y);
+
+ bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID;
+
+ return SD_BSDF|SD_BSDF_HAS_EVAL;
+}
+
ccl_device int bsdf_microfacet_ggx_refraction_setup(MicrofacetBsdf *bsdf)
{
+ bsdf->extra = NULL;
+
bsdf->alpha_x = saturate(bsdf->alpha_x);
bsdf->alpha_y = bsdf->alpha_x;
@@ -319,6 +409,8 @@ ccl_device float3 bsdf_microfacet_ggx_eval_reflect(const ShaderClosure *sc, cons
float alpha2 = alpha_x * alpha_y;
float D, G1o, G1i;
+ bool is_principled_clearcoat = (bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID);
+
if(alpha_x == alpha_y) {
/* isotropic
* eq. 20: (F*G*D)/(4*in*on)
@@ -327,7 +419,18 @@ ccl_device float3 bsdf_microfacet_ggx_eval_reflect(const ShaderClosure *sc, cons
float cosThetaM2 = cosThetaM * cosThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
- D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
+
+ if(is_principled_clearcoat) {
+ /* use GTR1 for clearcoat */
+ D = D_GTR1(cosThetaM, bsdf->alpha_x);
+
+ /* the alpha value for clearcoat is a fixed 0.25 => alpha2 = 0.25 * 0.25 */
+ alpha2 = 0.0625f;
+ }
+ else {
+ /* use GTR2 otherwise */
+ D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
+ }
/* eq. 34: now calculate G1(i,m) and G1(o,m) */
G1o = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
@@ -374,7 +477,13 @@ ccl_device float3 bsdf_microfacet_ggx_eval_reflect(const ShaderClosure *sc, cons
/* eq. 20 */
float common = D * 0.25f / cosNO;
- float out = G * common;
+
+ float3 F = reflection_color(bsdf, omega_in, m);
+ if(is_principled_clearcoat) {
+ F *= 0.25f * bsdf->extra->clearcoat;
+ }
+
+ float3 out = F * G * common;
/* eq. 2 in distribution of visible normals sampling
* pm = Dw = G1o * dot(m, I) * D / dot(N, I); */
@@ -384,7 +493,7 @@ ccl_device float3 bsdf_microfacet_ggx_eval_reflect(const ShaderClosure *sc, cons
* pdf = pm * 0.25 / dot(m, I); */
*pdf = G1o * common;
- return make_float3(out, out, out);
+ return out;
}
return make_float3(0.0f, 0.0f, 0.0f);
@@ -452,6 +561,7 @@ ccl_device int bsdf_microfacet_ggx_sample(KernelGlobals *kg, const ShaderClosure
float alpha_y = bsdf->alpha_y;
bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID;
float3 N = bsdf->N;
+ int label;
float cosNO = dot(N, I);
if(cosNO > 0) {
@@ -477,6 +587,7 @@ ccl_device int bsdf_microfacet_ggx_sample(KernelGlobals *kg, const ShaderClosure
/* reflection or refraction? */
if(!m_refractive) {
float cosMO = dot(m, I);
+ label = LABEL_REFLECT | LABEL_GLOSSY;
if(cosMO > 0) {
/* eq. 39 - compute actual reflected direction */
@@ -487,6 +598,17 @@ ccl_device int bsdf_microfacet_ggx_sample(KernelGlobals *kg, const ShaderClosure
/* some high number for MIS */
*pdf = 1e6f;
*eval = make_float3(1e6f, 1e6f, 1e6f);
+
+ bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID
+ || bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID
+ || bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID);
+
+ /* if fresnel is used, calculate the color with reflection_color(...) */
+ if(use_fresnel) {
+ *eval *= reflection_color(bsdf, *omega_in, m);
+ }
+
+ label = LABEL_REFLECT | LABEL_SINGULAR;
}
else {
/* microfacet normal is visible to this ray */
@@ -494,16 +616,32 @@ ccl_device int bsdf_microfacet_ggx_sample(KernelGlobals *kg, const ShaderClosure
float alpha2 = alpha_x * alpha_y;
float D, G1i;
+ bool is_principled_clearcoat = (bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID);
+
if(alpha_x == alpha_y) {
/* isotropic */
float cosThetaM2 = cosThetaM * cosThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float tanThetaM2 = 1/(cosThetaM2) - 1;
- D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
/* eval BRDF*cosNI */
float cosNI = dot(N, *omega_in);
+ if(is_principled_clearcoat) {
+ /* use GTR1 for clearcoat */
+ D = D_GTR1(cosThetaM, bsdf->alpha_x);
+
+ /* the alpha value for clearcoat is a fixed 0.25 => alpha2 = 0.25 * 0.25 */
+ alpha2 = 0.0625f;
+
+ /* recalculate G1o */
+ G1o = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
+ }
+ else {
+ /* use GTR2 otherwise */
+ D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
+ }
+
/* eq. 34: now calculate G1(i,m) */
G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
}
@@ -535,10 +673,14 @@ ccl_device int bsdf_microfacet_ggx_sample(KernelGlobals *kg, const ShaderClosure
/* see eval function for derivation */
float common = (G1o * D) * 0.25f / cosNO;
- float out = G1i * common;
*pdf = common;
- *eval = make_float3(out, out, out);
+ float3 F = reflection_color(bsdf, *omega_in, m);
+ if(is_principled_clearcoat) {
+ F *= 0.25f * bsdf->extra->clearcoat;
+ }
+
+ *eval = G1i * common * F;
}
#ifdef __RAY_DIFFERENTIALS__
@@ -549,6 +691,8 @@ ccl_device int bsdf_microfacet_ggx_sample(KernelGlobals *kg, const ShaderClosure
}
}
else {
+ label = LABEL_TRANSMIT | LABEL_GLOSSY;
+
/* CAUTION: the i and o variables are inverted relative to the paper
* eq. 39 - compute actual refractive direction */
float3 R, T;
@@ -576,6 +720,7 @@ ccl_device int bsdf_microfacet_ggx_sample(KernelGlobals *kg, const ShaderClosure
/* some high number for MIS */
*pdf = 1e6f;
*eval = make_float3(1e6f, 1e6f, 1e6f);
+ label = LABEL_TRANSMIT | LABEL_SINGULAR;
}
else {
/* eq. 33 */
@@ -607,7 +752,10 @@ ccl_device int bsdf_microfacet_ggx_sample(KernelGlobals *kg, const ShaderClosure
}
}
}
- return (m_refractive) ? LABEL_TRANSMIT|LABEL_GLOSSY : LABEL_REFLECT|LABEL_GLOSSY;
+ else {
+ label = (m_refractive) ? LABEL_TRANSMIT|LABEL_GLOSSY : LABEL_REFLECT|LABEL_GLOSSY;
+ }
+ return label;
}
/* Beckmann microfacet with Smith shadow-masking from:
@@ -815,6 +963,7 @@ ccl_device int bsdf_microfacet_beckmann_sample(KernelGlobals *kg, const ShaderCl
float alpha_y = bsdf->alpha_y;
bool m_refractive = bsdf->type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID;
float3 N = bsdf->N;
+ int label;
float cosNO = dot(N, I);
if(cosNO > 0) {
@@ -839,6 +988,7 @@ ccl_device int bsdf_microfacet_beckmann_sample(KernelGlobals *kg, const ShaderCl
/* reflection or refraction? */
if(!m_refractive) {
+ label = LABEL_REFLECT | LABEL_GLOSSY;
float cosMO = dot(m, I);
if(cosMO > 0) {
@@ -850,6 +1000,7 @@ ccl_device int bsdf_microfacet_beckmann_sample(KernelGlobals *kg, const ShaderCl
/* some high number for MIS */
*pdf = 1e6f;
*eval = make_float3(1e6f, 1e6f, 1e6f);
+ label = LABEL_REFLECT | LABEL_SINGULAR;
}
else {
/* microfacet normal is visible to this ray
@@ -904,6 +1055,8 @@ ccl_device int bsdf_microfacet_beckmann_sample(KernelGlobals *kg, const ShaderCl
}
}
else {
+ label = LABEL_TRANSMIT | LABEL_GLOSSY;
+
/* CAUTION: the i and o variables are inverted relative to the paper
* eq. 39 - compute actual refractive direction */
float3 R, T;
@@ -931,6 +1084,7 @@ ccl_device int bsdf_microfacet_beckmann_sample(KernelGlobals *kg, const ShaderCl
/* some high number for MIS */
*pdf = 1e6f;
*eval = make_float3(1e6f, 1e6f, 1e6f);
+ label = LABEL_TRANSMIT | LABEL_SINGULAR;
}
else {
/* eq. 33 */
@@ -963,7 +1117,10 @@ ccl_device int bsdf_microfacet_beckmann_sample(KernelGlobals *kg, const ShaderCl
}
}
}
- return (m_refractive) ? LABEL_TRANSMIT|LABEL_GLOSSY : LABEL_REFLECT|LABEL_GLOSSY;
+ else {
+ label = (m_refractive) ? LABEL_TRANSMIT|LABEL_GLOSSY : LABEL_REFLECT|LABEL_GLOSSY;
+ }
+ return label;
}
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/closure/bsdf_microfacet_multi.h b/intern/cycles/kernel/closure/bsdf_microfacet_multi.h
index cea59adfebe..2f2c35d5d1f 100644
--- a/intern/cycles/kernel/closure/bsdf_microfacet_multi.h
+++ b/intern/cycles/kernel/closure/bsdf_microfacet_multi.h
@@ -40,20 +40,20 @@ ccl_device_forceinline float D_ggx_aniso(const float3 wm, const float2 alpha)
}
/* Sample slope distribution (based on page 14 of the supplemental implementation). */
-ccl_device_forceinline float2 mf_sampleP22_11(const float cosI, const float2 randU)
+ccl_device_forceinline float2 mf_sampleP22_11(const float cosI, const float randx, const float randy)
{
- if(cosI > 0.9999f || cosI < 1e-6f) {
- const float r = sqrtf(randU.x / (1.0f - randU.x));
- const float phi = M_2PI_F * randU.y;
+ if(cosI > 0.9999f || fabsf(cosI) < 1e-6f) {
+ const float r = sqrtf(randx / max(1.0f - randx, 1e-7f));
+ const float phi = M_2PI_F * randy;
return make_float2(r*cosf(phi), r*sinf(phi));
}
- const float sinI = sqrtf(1.0f - cosI*cosI);
+ const float sinI = safe_sqrtf(1.0f - cosI*cosI);
const float tanI = sinI/cosI;
const float projA = 0.5f * (cosI + 1.0f);
if(projA < 0.0001f)
return make_float2(0.0f, 0.0f);
- const float A = 2.0f*randU.x*projA / cosI - 1.0f;
+ const float A = 2.0f*randx*projA / cosI - 1.0f;
float tmp = A*A-1.0f;
if(fabsf(tmp) < 1e-7f)
return make_float2(0.0f, 0.0f);
@@ -64,26 +64,26 @@ ccl_device_forceinline float2 mf_sampleP22_11(const float cosI, const float2 ran
const float slopeX = (A < 0.0f || slopeX2 > 1.0f/tanI)? (tanI*tmp - D) : slopeX2;
float U2;
- if(randU.y >= 0.5f)
- U2 = 2.0f*(randU.y - 0.5f);
+ if(randy >= 0.5f)
+ U2 = 2.0f*(randy - 0.5f);
else
- U2 = 2.0f*(0.5f - randU.y);
+ U2 = 2.0f*(0.5f - randy);
const float z = (U2*(U2*(U2*0.27385f-0.73369f)+0.46341f)) / (U2*(U2*(U2*0.093073f+0.309420f)-1.0f)+0.597999f);
const float slopeY = z * sqrtf(1.0f + slopeX*slopeX);
- if(randU.y >= 0.5f)
+ if(randy >= 0.5f)
return make_float2(slopeX, slopeY);
else
return make_float2(slopeX, -slopeY);
}
/* Visible normal sampling for the GGX distribution (based on page 7 of the supplemental implementation). */
-ccl_device_forceinline float3 mf_sample_vndf(const float3 wi, const float2 alpha, const float2 randU)
+ccl_device_forceinline float3 mf_sample_vndf(const float3 wi, const float2 alpha, const float randx, const float randy)
{
const float3 wi_11 = normalize(make_float3(alpha.x*wi.x, alpha.y*wi.y, wi.z));
- const float2 slope_11 = mf_sampleP22_11(wi_11.z, randU);
+ const float2 slope_11 = mf_sampleP22_11(wi_11.z, randx, randy);
- const float2 cossin_phi = normalize(make_float2(wi_11.x, wi_11.y));
+ const float3 cossin_phi = safe_normalize(make_float3(wi_11.x, wi_11.y, 0.0f));
const float slope_x = alpha.x*(cossin_phi.x * slope_11.x - cossin_phi.y * slope_11.y);
const float slope_y = alpha.y*(cossin_phi.y * slope_11.x + cossin_phi.x * slope_11.y);
@@ -91,18 +91,15 @@ ccl_device_forceinline float3 mf_sample_vndf(const float3 wi, const float2 alpha
return normalize(make_float3(-slope_x, -slope_y, 1.0f));
}
-/* === Phase functions: Glossy, Diffuse and Glass === */
+/* === Phase functions: Glossy and Glass === */
-/* Phase function for reflective materials, either without a fresnel term (for compatibility) or with the conductive fresnel term. */
-ccl_device_forceinline float3 mf_sample_phase_glossy(const float3 wi, float3 *n, float3 *k, float3 *weight, const float3 wm)
+/* Phase function for reflective materials. */
+ccl_device_forceinline float3 mf_sample_phase_glossy(const float3 wi, float3 *weight, const float3 wm)
{
- if(n && k)
- *weight *= fresnel_conductor(dot(wi, wm), *n, *k);
-
return -wi + 2.0f * wm * dot(wi, wm);
}
-ccl_device_forceinline float3 mf_eval_phase_glossy(const float3 w, const float lambda, const float3 wo, const float2 alpha, float3 *n, float3 *k)
+ccl_device_forceinline float3 mf_eval_phase_glossy(const float3 w, const float lambda, const float3 wo, const float2 alpha)
{
if(w.z > 0.9999f)
return make_float3(0.0f, 0.0f, 0.0f);
@@ -123,30 +120,9 @@ ccl_device_forceinline float3 mf_eval_phase_glossy(const float3 w, const float l
else
phase *= D_ggx_aniso(wh, alpha);
- if(n && k) {
- /* Apply conductive fresnel term. */
- return phase * fresnel_conductor(dotW_WH, *n, *k);
- }
-
return make_float3(phase, phase, phase);
}
-/* Phase function for rough lambertian diffuse surfaces. */
-ccl_device_forceinline float3 mf_sample_phase_diffuse(const float3 wm, const float randu, const float randv)
-{
- float3 tm, bm;
- make_orthonormals(wm, &tm, &bm);
-
- float2 disk = concentric_sample_disk(randu, randv);
- return disk.x*tm + disk.y*bm + safe_sqrtf(1.0f - disk.x*disk.x - disk.y*disk.y)*wm;
-}
-
-ccl_device_forceinline float3 mf_eval_phase_diffuse(const float3 w, const float3 wm)
-{
- const float v = max(0.0f, dot(w, wm)) * M_1_PI_F;
- return make_float3(v, v, v);
-}
-
/* Phase function for dielectric transmissive materials, including both reflection and refraction according to the dielectric fresnel term. */
ccl_device_forceinline float3 mf_sample_phase_glass(const float3 wi, const float eta, const float3 wm, const float randV, bool *outside)
{
@@ -269,40 +245,69 @@ ccl_device_forceinline float mf_ggx_albedo(float r)
return saturate(albedo);
}
+ccl_device_inline float mf_ggx_transmission_albedo(float a, float ior)
+{
+ if(ior < 1.0f) {
+ ior = 1.0f/ior;
+ }
+ a = saturate(a);
+ ior = clamp(ior, 1.0f, 3.0f);
+ float I_1 = 0.0476898f*expf(-0.978352f*(ior-0.65657f)*(ior-0.65657f)) - 0.033756f*ior + 0.993261f;
+ float R_1 = (((0.116991f*a - 0.270369f)*a + 0.0501366f)*a - 0.00411511f)*a + 1.00008f;
+ float I_2 = (((-2.08704f*ior + 26.3298f)*ior - 127.906f)*ior + 292.958f)*ior - 287.946f + 199.803f/(ior*ior) - 101.668f/(ior*ior*ior);
+ float R_2 = ((((5.3725f*a -24.9307f)*a + 22.7437f)*a - 3.40751f)*a + 0.0986325f)*a + 0.00493504f;
+
+ return saturate(1.0f + I_2*R_2*0.0019127f - (1.0f - I_1)*(1.0f - R_1)*9.3205f);
+}
+
ccl_device_forceinline float mf_ggx_pdf(const float3 wi, const float3 wo, const float alpha)
{
float D = D_ggx(normalize(wi+wo), alpha);
float lambda = mf_lambda(wi, make_float2(alpha, alpha));
+ float singlescatter = 0.25f * D / max((1.0f + lambda) * wi.z, 1e-7f);
+
+ float multiscatter = wo.z * M_1_PI_F;
+
float albedo = mf_ggx_albedo(alpha);
- return 0.25f * D / max((1.0f + lambda) * wi.z, 1e-7f) + (1.0f - albedo) * wo.z;
+ return albedo*singlescatter + (1.0f - albedo)*multiscatter;
}
ccl_device_forceinline float mf_ggx_aniso_pdf(const float3 wi, const float3 wo, const float2 alpha)
{
- return 0.25f * D_ggx_aniso(normalize(wi+wo), alpha) / ((1.0f + mf_lambda(wi, alpha)) * wi.z) + (1.0f - mf_ggx_albedo(sqrtf(alpha.x*alpha.y))) * wo.z;
-}
+ float D = D_ggx_aniso(normalize(wi+wo), alpha);
+ float lambda = mf_lambda(wi, alpha);
+ float singlescatter = 0.25f * D / max((1.0f + lambda) * wi.z, 1e-7f);
-ccl_device_forceinline float mf_diffuse_pdf(const float3 wo)
-{
- return M_1_PI_F * wo.z;
+ float multiscatter = wo.z * M_1_PI_F;
+
+ float albedo = mf_ggx_albedo(sqrtf(alpha.x*alpha.y));
+ return albedo*singlescatter + (1.0f - albedo)*multiscatter;
}
ccl_device_forceinline float mf_glass_pdf(const float3 wi, const float3 wo, const float alpha, const float eta)
{
- float3 wh;
- float fresnel;
- if(wi.z*wo.z > 0.0f) {
- wh = normalize(wi + wo);
- fresnel = fresnel_dielectric_cos(dot(wi, wh), eta);
- }
- else {
- wh = normalize(wi + wo*eta);
- fresnel = 1.0f - fresnel_dielectric_cos(dot(wi, wh), eta);
- }
+ bool reflective = (wi.z*wo.z > 0.0f);
+
+ float wh_len;
+ float3 wh = normalize_len(wi + (reflective? wo : (wo*eta)), &wh_len);
if(wh.z < 0.0f)
wh = -wh;
float3 r_wi = (wi.z < 0.0f)? -wi: wi;
- return fresnel * max(0.0f, dot(r_wi, wh)) * D_ggx(wh, alpha) / ((1.0f + mf_lambda(r_wi, make_float2(alpha, alpha))) * r_wi.z) + fabsf(wo.z);
+ float lambda = mf_lambda(r_wi, make_float2(alpha, alpha));
+ float D = D_ggx(wh, alpha);
+ float fresnel = fresnel_dielectric_cos(dot(r_wi, wh), eta);
+
+ float multiscatter = fabsf(wo.z * M_1_PI_F);
+ if(reflective) {
+ float singlescatter = 0.25f * D / max((1.0f + lambda) * r_wi.z, 1e-7f);
+ float albedo = mf_ggx_albedo(alpha);
+ return fresnel * (albedo*singlescatter + (1.0f - albedo)*multiscatter);
+ }
+ else {
+ float singlescatter = fabsf(dot(r_wi, wh)*dot(wo, wh) * D * eta*eta / max((1.0f + lambda) * r_wi.z * wh_len*wh_len, 1e-7f));
+ float albedo = mf_ggx_transmission_albedo(alpha, eta);
+ return (1.0f - fresnel) * (albedo*singlescatter + (1.0f - albedo)*multiscatter);
+ }
}
/* === Actual random walk implementations, one version of mf_eval and mf_sample per phase function. === */
@@ -313,18 +318,11 @@ ccl_device_forceinline float mf_glass_pdf(const float3 wi, const float3 wo, cons
#define MF_PHASE_FUNCTION glass
#define MF_MULTI_GLASS
-#include "bsdf_microfacet_multi_impl.h"
-
-/* The diffuse phase function is not implemented as a node yet. */
-#if 0
-#define MF_PHASE_FUNCTION diffuse
-#define MF_MULTI_DIFFUSE
-#include "bsdf_microfacet_multi_impl.h"
-#endif
+#include "kernel/closure/bsdf_microfacet_multi_impl.h"
#define MF_PHASE_FUNCTION glossy
#define MF_MULTI_GLOSSY
-#include "bsdf_microfacet_multi_impl.h"
+#include "kernel/closure/bsdf_microfacet_multi_impl.h"
ccl_device void bsdf_microfacet_multi_ggx_blur(ShaderClosure *sc, float roughness)
{
@@ -345,8 +343,9 @@ ccl_device int bsdf_microfacet_multi_ggx_common_setup(MicrofacetBsdf *bsdf)
bsdf->extra->color.x = saturate(bsdf->extra->color.x);
bsdf->extra->color.y = saturate(bsdf->extra->color.y);
bsdf->extra->color.z = saturate(bsdf->extra->color.z);
-
- bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID;
+ bsdf->extra->cspec0.x = saturate(bsdf->extra->cspec0.x);
+ bsdf->extra->cspec0.y = saturate(bsdf->extra->cspec0.y);
+ bsdf->extra->cspec0.z = saturate(bsdf->extra->cspec0.z);
return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_NEEDS_LCG;
}
@@ -356,6 +355,22 @@ ccl_device int bsdf_microfacet_multi_ggx_aniso_setup(MicrofacetBsdf *bsdf)
if(is_zero(bsdf->T))
bsdf->T = make_float3(1.0f, 0.0f, 0.0f);
+ bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID;
+
+ return bsdf_microfacet_multi_ggx_common_setup(bsdf);
+}
+
+ccl_device int bsdf_microfacet_multi_ggx_aniso_fresnel_setup(MicrofacetBsdf *bsdf, const ShaderData *sd)
+{
+ if(is_zero(bsdf->T))
+ bsdf->T = make_float3(1.0f, 0.0f, 0.0f);
+
+ bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID;
+
+ float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
+ float F = average(interpolate_fresnel_color(sd->I, bsdf->N, bsdf->ior, F0, bsdf->extra->cspec0));
+ bsdf->sample_weight *= F;
+
return bsdf_microfacet_multi_ggx_common_setup(bsdf);
}
@@ -363,6 +378,30 @@ ccl_device int bsdf_microfacet_multi_ggx_setup(MicrofacetBsdf *bsdf)
{
bsdf->alpha_y = bsdf->alpha_x;
+ bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID;
+
+ return bsdf_microfacet_multi_ggx_common_setup(bsdf);
+}
+
+ccl_device int bsdf_microfacet_multi_ggx_fresnel_setup(MicrofacetBsdf *bsdf, const ShaderData *sd)
+{
+ bsdf->alpha_y = bsdf->alpha_x;
+
+ bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID;
+
+ float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
+ float F = average(interpolate_fresnel_color(sd->I, bsdf->N, bsdf->ior, F0, bsdf->extra->cspec0));
+ bsdf->sample_weight *= F;
+
+ return bsdf_microfacet_multi_ggx_common_setup(bsdf);
+}
+
+ccl_device int bsdf_microfacet_multi_ggx_refraction_setup(MicrofacetBsdf *bsdf)
+{
+ bsdf->alpha_y = bsdf->alpha_x;
+
+ bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID;
+
return bsdf_microfacet_multi_ggx_common_setup(bsdf);
}
@@ -378,6 +417,8 @@ ccl_device float3 bsdf_microfacet_multi_ggx_eval_reflect(const ShaderClosure *sc
return make_float3(0.0f, 0.0f, 0.0f);
}
+ bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID);
+
bool is_aniso = (bsdf->alpha_x != bsdf->alpha_y);
float3 X, Y, Z;
Z = bsdf->N;
@@ -393,7 +434,7 @@ ccl_device float3 bsdf_microfacet_multi_ggx_eval_reflect(const ShaderClosure *sc
*pdf = mf_ggx_aniso_pdf(localI, localO, make_float2(bsdf->alpha_x, bsdf->alpha_y));
else
*pdf = mf_ggx_pdf(localI, localO, bsdf->alpha_x);
- return mf_eval_glossy(localI, localO, true, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, NULL, NULL);
+ return mf_eval_glossy(localI, localO, true, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, bsdf->ior, use_fresnel, bsdf->extra->cspec0);
}
ccl_device int bsdf_microfacet_multi_ggx_sample(KernelGlobals *kg, const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf, ccl_addr_space uint *lcg_state)
@@ -407,9 +448,15 @@ ccl_device int bsdf_microfacet_multi_ggx_sample(KernelGlobals *kg, const ShaderC
*omega_in = 2*dot(Z, I)*Z - I;
*pdf = 1e6f;
*eval = make_float3(1e6f, 1e6f, 1e6f);
+#ifdef __RAY_DIFFERENTIALS__
+ *domega_in_dx = (2 * dot(Z, dIdx)) * Z - dIdx;
+ *domega_in_dy = (2 * dot(Z, dIdy)) * Z - dIdy;
+#endif
return LABEL_REFLECT|LABEL_SINGULAR;
}
+ bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID);
+
bool is_aniso = (bsdf->alpha_x != bsdf->alpha_y);
if(is_aniso)
make_orthonormals_tangent(Z, bsdf->T, &X, &Y);
@@ -419,7 +466,7 @@ ccl_device int bsdf_microfacet_multi_ggx_sample(KernelGlobals *kg, const ShaderC
float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
float3 localO;
- *eval = mf_sample_glossy(localI, &localO, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, NULL, NULL);
+ *eval = mf_sample_glossy(localI, &localO, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, bsdf->ior, use_fresnel, bsdf->extra->cspec0);
if(is_aniso)
*pdf = mf_ggx_aniso_pdf(localI, localO, make_float2(bsdf->alpha_x, bsdf->alpha_y));
else
@@ -427,6 +474,7 @@ ccl_device int bsdf_microfacet_multi_ggx_sample(KernelGlobals *kg, const ShaderC
*eval *= *pdf;
*omega_in = X*localO.x + Y*localO.y + Z*localO.z;
+
#ifdef __RAY_DIFFERENTIALS__
*domega_in_dx = (2 * dot(Z, dIdx)) * Z - dIdx;
*domega_in_dy = (2 * dot(Z, dIdy)) * Z - dIdy;
@@ -450,6 +498,27 @@ ccl_device int bsdf_microfacet_multi_ggx_glass_setup(MicrofacetBsdf *bsdf)
return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_NEEDS_LCG;
}
+ccl_device int bsdf_microfacet_multi_ggx_glass_fresnel_setup(MicrofacetBsdf *bsdf, const ShaderData *sd)
+{
+ bsdf->alpha_x = clamp(bsdf->alpha_x, 1e-4f, 1.0f);
+ bsdf->alpha_y = bsdf->alpha_x;
+ bsdf->ior = max(0.0f, bsdf->ior);
+ bsdf->extra->color.x = saturate(bsdf->extra->color.x);
+ bsdf->extra->color.y = saturate(bsdf->extra->color.y);
+ bsdf->extra->color.z = saturate(bsdf->extra->color.z);
+ bsdf->extra->cspec0.x = saturate(bsdf->extra->cspec0.x);
+ bsdf->extra->cspec0.y = saturate(bsdf->extra->cspec0.y);
+ bsdf->extra->cspec0.z = saturate(bsdf->extra->cspec0.z);
+
+ bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID;
+
+ float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
+ float F = average(interpolate_fresnel_color(sd->I, bsdf->N, bsdf->ior, F0, bsdf->extra->cspec0));
+ bsdf->sample_weight *= F;
+
+ return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSDF_NEEDS_LCG;
+}
+
ccl_device float3 bsdf_microfacet_multi_ggx_glass_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf, ccl_addr_space uint *lcg_state) {
const MicrofacetBsdf *bsdf = (const MicrofacetBsdf*)sc;
@@ -465,7 +534,7 @@ ccl_device float3 bsdf_microfacet_multi_ggx_glass_eval_transmit(const ShaderClos
float3 localO = make_float3(dot(omega_in, X), dot(omega_in, Y), dot(omega_in, Z));
*pdf = mf_glass_pdf(localI, localO, bsdf->alpha_x, bsdf->ior);
- return mf_eval_glass(localI, localO, false, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, bsdf->ior);
+ return mf_eval_glass(localI, localO, false, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, bsdf->ior, false, bsdf->extra->color);
}
ccl_device float3 bsdf_microfacet_multi_ggx_glass_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf, ccl_addr_space uint *lcg_state) {
@@ -475,6 +544,8 @@ ccl_device float3 bsdf_microfacet_multi_ggx_glass_eval_reflect(const ShaderClosu
return make_float3(0.0f, 0.0f, 0.0f);
}
+ bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID);
+
float3 X, Y, Z;
Z = bsdf->N;
make_orthonormals(Z, &X, &Y);
@@ -483,7 +554,7 @@ ccl_device float3 bsdf_microfacet_multi_ggx_glass_eval_reflect(const ShaderClosu
float3 localO = make_float3(dot(omega_in, X), dot(omega_in, Y), dot(omega_in, Z));
*pdf = mf_glass_pdf(localI, localO, bsdf->alpha_x, bsdf->ior);
- return mf_eval_glass(localI, localO, true, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, bsdf->ior);
+ return mf_eval_glass(localI, localO, true, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, bsdf->ior, use_fresnel, bsdf->extra->cspec0);
}
ccl_device int bsdf_microfacet_multi_ggx_glass_sample(KernelGlobals *kg, const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf, ccl_addr_space uint *lcg_state)
@@ -525,12 +596,14 @@ ccl_device int bsdf_microfacet_multi_ggx_glass_sample(KernelGlobals *kg, const S
}
}
+ bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID);
+
make_orthonormals(Z, &X, &Y);
float3 localI = make_float3(dot(I, X), dot(I, Y), dot(I, Z));
float3 localO;
- *eval = mf_sample_glass(localI, &localO, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, bsdf->ior);
+ *eval = mf_sample_glass(localI, &localO, bsdf->extra->color, bsdf->alpha_x, bsdf->alpha_y, lcg_state, bsdf->ior, use_fresnel, bsdf->extra->cspec0);
*pdf = mf_glass_pdf(localI, localO, bsdf->alpha_x, bsdf->ior);
*eval *= *pdf;
diff --git a/intern/cycles/kernel/closure/bsdf_microfacet_multi_impl.h b/intern/cycles/kernel/closure/bsdf_microfacet_multi_impl.h
index 8054fa8e849..e73915dbda7 100644
--- a/intern/cycles/kernel/closure/bsdf_microfacet_multi_impl.h
+++ b/intern/cycles/kernel/closure/bsdf_microfacet_multi_impl.h
@@ -26,19 +26,16 @@
* the balance heuristic isn't necessarily optimal anymore.
*/
ccl_device_forceinline float3 MF_FUNCTION_FULL_NAME(mf_eval)(
- float3 wi,
- float3 wo,
- const bool wo_outside,
- const float3 color,
- const float alpha_x,
- const float alpha_y,
- ccl_addr_space uint *lcg_state
-#ifdef MF_MULTI_GLASS
- , const float eta
-#elif defined(MF_MULTI_GLOSSY)
- , float3 *n, float3 *k
-#endif
-)
+ float3 wi,
+ float3 wo,
+ const bool wo_outside,
+ const float3 color,
+ const float alpha_x,
+ const float alpha_y,
+ ccl_addr_space uint *lcg_state,
+ const float eta,
+ bool use_fresnel,
+ const float3 cspec0)
{
/* Evaluating for a shallower incoming direction produces less noise, and the properties of the BSDF guarantee reciprocity. */
bool swapped = false;
@@ -71,50 +68,57 @@ ccl_device_forceinline float3 MF_FUNCTION_FULL_NAME(mf_eval)(
/* Analytically compute single scattering for lower noise. */
float3 eval;
+ float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
+ const float3 wh = normalize(wi+wo);
#ifdef MF_MULTI_GLASS
eval = mf_eval_phase_glass(-wi, lambda_r, wo, wo_outside, alpha, eta);
if(wo_outside)
eval *= -lambda_r / (shadowing_lambda - lambda_r);
else
eval *= -lambda_r * beta(-lambda_r, shadowing_lambda+1.0f);
-#elif defined(MF_MULTI_DIFFUSE)
- /* Diffuse has no special closed form for the single scattering bounce */
- eval = make_float3(0.0f, 0.0f, 0.0f);
#else /* MF_MULTI_GLOSSY */
- const float3 wh = normalize(wi+wo);
const float G2 = 1.0f / (1.0f - (lambda_r + 1.0f) + shadowing_lambda);
float val = G2 * 0.25f / wi.z;
if(alpha.x == alpha.y)
val *= D_ggx(wh, alpha.x);
else
val *= D_ggx_aniso(wh, alpha);
- if(n && k) {
- eval = fresnel_conductor(dot(wh, wi), *n, *k) * val;
- }
- else {
- eval = make_float3(val, val, val);
- }
+ eval = make_float3(val, val, val);
#endif
+ float F0 = fresnel_dielectric_cos(1.0f, eta);
+ if(use_fresnel) {
+ throughput = interpolate_fresnel_color(wi, wh, eta, F0, cspec0);
+
+ eval *= throughput;
+ }
+
float3 wr = -wi;
float hr = 1.0f;
float C1_r = 1.0f;
float G1_r = 0.0f;
bool outside = true;
- float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
for(int order = 0; order < 10; order++) {
- /* Sample microfacet height and normal */
- if(!mf_sample_height(wr, &hr, &C1_r, &G1_r, &lambda_r, lcg_step_float_addrspace(lcg_state)))
+ /* Sample microfacet height. */
+ float height_rand = lcg_step_float_addrspace(lcg_state);
+ if(!mf_sample_height(wr, &hr, &C1_r, &G1_r, &lambda_r, height_rand))
break;
- float3 wm = mf_sample_vndf(-wr, alpha, make_float2(lcg_step_float_addrspace(lcg_state),
- lcg_step_float_addrspace(lcg_state)));
-
-#ifdef MF_MULTI_DIFFUSE
- if(order == 0) {
- /* Compute single-scattering for diffuse. */
- const float G2_G1 = -lambda_r / (shadowing_lambda - lambda_r);
- eval += throughput * G2_G1 * mf_eval_phase_diffuse(wo, wm);
+ /* Sample microfacet normal. */
+ float vndf_rand_y = lcg_step_float_addrspace(lcg_state);
+ float vndf_rand_x = lcg_step_float_addrspace(lcg_state);
+ float3 wm = mf_sample_vndf(-wr, alpha, vndf_rand_x, vndf_rand_y);
+
+#ifdef MF_MULTI_GLASS
+ if(order == 0 && use_fresnel) {
+ /* Evaluate amount of scattering towards wo on this microfacet. */
+ float3 phase;
+ if(outside)
+ phase = mf_eval_phase_glass(wr, lambda_r, wo, wo_outside, alpha, eta);
+ else
+ phase = mf_eval_phase_glass(wr, lambda_r, -wo, !wo_outside, alpha, 1.0f / eta);
+
+ eval = throughput * phase * mf_G1(wo_outside ? wo : -wo, mf_C1((outside == wo_outside) ? hr : -hr), shadowing_lambda);
}
#endif
if(order > 0) {
@@ -125,10 +129,8 @@ ccl_device_forceinline float3 MF_FUNCTION_FULL_NAME(mf_eval)(
phase = mf_eval_phase_glass(wr, lambda_r, wo, wo_outside, alpha, eta);
else
phase = mf_eval_phase_glass(wr, lambda_r, -wo, !wo_outside, alpha, 1.0f/eta);
-#elif defined(MF_MULTI_DIFFUSE)
- phase = mf_eval_phase_diffuse(wo, wm);
#else /* MF_MULTI_GLOSSY */
- phase = mf_eval_phase_glossy(wr, lambda_r, wo, alpha, n, k) * throughput;
+ phase = mf_eval_phase_glossy(wr, lambda_r, wo, alpha) * throughput;
#endif
eval += throughput * phase * mf_G1(wo_outside? wo: -wo, mf_C1((outside == wo_outside)? hr: -hr), shadowing_lambda);
}
@@ -136,23 +138,32 @@ ccl_device_forceinline float3 MF_FUNCTION_FULL_NAME(mf_eval)(
/* Bounce from the microfacet. */
#ifdef MF_MULTI_GLASS
bool next_outside;
- wr = mf_sample_phase_glass(-wr, outside? eta: 1.0f/eta, wm, lcg_step_float_addrspace(lcg_state), &next_outside);
+ float3 wi_prev = -wr;
+ float phase_rand = lcg_step_float_addrspace(lcg_state);
+ wr = mf_sample_phase_glass(-wr, outside? eta: 1.0f/eta, wm, phase_rand, &next_outside);
if(!next_outside) {
outside = !outside;
wr = -wr;
hr = -hr;
}
-#elif defined(MF_MULTI_DIFFUSE)
- wr = mf_sample_phase_diffuse(wm,
- lcg_step_float_addrspace(lcg_state),
- lcg_step_float_addrspace(lcg_state));
+
+ if(use_fresnel && !next_outside) {
+ throughput *= color;
+ }
+ else if(use_fresnel && order > 0) {
+ throughput *= interpolate_fresnel_color(wi_prev, wm, eta, F0, cspec0);
+ }
#else /* MF_MULTI_GLOSSY */
- wr = mf_sample_phase_glossy(-wr, n, k, &throughput, wm);
+ if(use_fresnel && order > 0) {
+ throughput *= interpolate_fresnel_color(-wr, wm, eta, F0, cspec0);
+ }
+ wr = mf_sample_phase_glossy(-wr, &throughput, wm);
#endif
lambda_r = mf_lambda(wr, alpha);
- throughput *= color;
+ if(!use_fresnel)
+ throughput *= color;
C1_r = mf_C1(hr);
G1_r = mf_G1(wr, C1_r, lambda_r);
@@ -168,13 +179,16 @@ ccl_device_forceinline float3 MF_FUNCTION_FULL_NAME(mf_eval)(
* escaped the surface in wo. The function returns the throughput between wi and wo.
* Without reflection losses due to coloring or fresnel absorption in conductors, the sampling is optimal.
*/
-ccl_device_forceinline float3 MF_FUNCTION_FULL_NAME(mf_sample)(float3 wi, float3 *wo, const float3 color, const float alpha_x, const float alpha_y, ccl_addr_space uint *lcg_state
-#ifdef MF_MULTI_GLASS
- , const float eta
-#elif defined(MF_MULTI_GLOSSY)
- , float3 *n, float3 *k
-#endif
-)
+ccl_device_forceinline float3 MF_FUNCTION_FULL_NAME(mf_sample)(
+ float3 wi,
+ float3 *wo,
+ const float3 color,
+ const float alpha_x,
+ const float alpha_y,
+ ccl_addr_space uint *lcg_state,
+ const float eta,
+ bool use_fresnel,
+ const float3 cspec0)
{
const float2 alpha = make_float2(alpha_x, alpha_y);
@@ -186,37 +200,64 @@ ccl_device_forceinline float3 MF_FUNCTION_FULL_NAME(mf_sample)(float3 wi, float3
float G1_r = 0.0f;
bool outside = true;
+ float F0 = fresnel_dielectric_cos(1.0f, eta);
+ if(use_fresnel) {
+ throughput = interpolate_fresnel_color(wi, normalize(wi + wr), eta, F0, cspec0);
+ }
+
int order;
for(order = 0; order < 10; order++) {
/* Sample microfacet height. */
- if(!mf_sample_height(wr, &hr, &C1_r, &G1_r, &lambda_r, lcg_step_float_addrspace(lcg_state))) {
+ float height_rand = lcg_step_float_addrspace(lcg_state);
+ if(!mf_sample_height(wr, &hr, &C1_r, &G1_r, &lambda_r, height_rand)) {
/* The random walk has left the surface. */
*wo = outside? wr: -wr;
return throughput;
}
/* Sample microfacet normal. */
- float3 wm = mf_sample_vndf(-wr, alpha, make_float2(lcg_step_float_addrspace(lcg_state),
- lcg_step_float_addrspace(lcg_state)));
+ float vndf_rand_y = lcg_step_float_addrspace(lcg_state);
+ float vndf_rand_x = lcg_step_float_addrspace(lcg_state);
+ float3 wm = mf_sample_vndf(-wr, alpha, vndf_rand_x, vndf_rand_y);
/* First-bounce color is already accounted for in mix weight. */
- if(order > 0)
+ if(!use_fresnel && order > 0)
throughput *= color;
/* Bounce from the microfacet. */
#ifdef MF_MULTI_GLASS
bool next_outside;
- wr = mf_sample_phase_glass(-wr, outside? eta: 1.0f/eta, wm, lcg_step_float_addrspace(lcg_state), &next_outside);
+ float3 wi_prev = -wr;
+ float phase_rand = lcg_step_float_addrspace(lcg_state);
+ wr = mf_sample_phase_glass(-wr, outside? eta: 1.0f/eta, wm, phase_rand, &next_outside);
if(!next_outside) {
hr = -hr;
wr = -wr;
outside = !outside;
}
-#elif defined(MF_MULTI_DIFFUSE)
- wr = mf_sample_phase_diffuse(wm,
- lcg_step_float_addrspace(lcg_state),
- lcg_step_float_addrspace(lcg_state));
+
+ if(use_fresnel) {
+ if(!next_outside) {
+ throughput *= color;
+ }
+ else {
+ float3 t_color = interpolate_fresnel_color(wi_prev, wm, eta, F0, cspec0);
+
+ if(order == 0)
+ throughput = t_color;
+ else
+ throughput *= t_color;
+ }
+ }
#else /* MF_MULTI_GLOSSY */
- wr = mf_sample_phase_glossy(-wr, n, k, &throughput, wm);
+ if(use_fresnel) {
+ float3 t_color = interpolate_fresnel_color(-wr, wm, eta, F0, cspec0);
+
+ if(order == 0)
+ throughput = t_color;
+ else
+ throughput *= t_color;
+ }
+ wr = mf_sample_phase_glossy(-wr, &throughput, wm);
#endif
/* Update random walk parameters. */
@@ -228,6 +269,5 @@ ccl_device_forceinline float3 MF_FUNCTION_FULL_NAME(mf_sample)(float3 wi, float3
}
#undef MF_MULTI_GLASS
-#undef MF_MULTI_DIFFUSE
#undef MF_MULTI_GLOSSY
#undef MF_PHASE_FUNCTION
diff --git a/intern/cycles/kernel/closure/bsdf_oren_nayar.h b/intern/cycles/kernel/closure/bsdf_oren_nayar.h
index cb342a026ef..6b770fc0c16 100644
--- a/intern/cycles/kernel/closure/bsdf_oren_nayar.h
+++ b/intern/cycles/kernel/closure/bsdf_oren_nayar.h
@@ -22,7 +22,6 @@ CCL_NAMESPACE_BEGIN
typedef ccl_addr_space struct OrenNayarBsdf {
SHADER_CLOSURE_BASE;
- float3 N;
float roughness;
float a;
float b;
diff --git a/intern/cycles/kernel/closure/bsdf_phong_ramp.h b/intern/cycles/kernel/closure/bsdf_phong_ramp.h
index e152a8780db..420f94755ee 100644
--- a/intern/cycles/kernel/closure/bsdf_phong_ramp.h
+++ b/intern/cycles/kernel/closure/bsdf_phong_ramp.h
@@ -40,7 +40,6 @@ CCL_NAMESPACE_BEGIN
typedef ccl_addr_space struct PhongRampBsdf {
SHADER_CLOSURE_BASE;
- float3 N;
float exponent;
float3 *colors;
} PhongRampBsdf;
diff --git a/intern/cycles/kernel/closure/bsdf_principled_diffuse.h b/intern/cycles/kernel/closure/bsdf_principled_diffuse.h
new file mode 100644
index 00000000000..f8ca64293b0
--- /dev/null
+++ b/intern/cycles/kernel/closure/bsdf_principled_diffuse.h
@@ -0,0 +1,127 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef __BSDF_PRINCIPLED_DIFFUSE_H__
+#define __BSDF_PRINCIPLED_DIFFUSE_H__
+
+/* DISNEY PRINCIPLED DIFFUSE BRDF
+ *
+ * Shading model by Brent Burley (Disney): "Physically Based Shading at Disney" (2012)
+ */
+
+CCL_NAMESPACE_BEGIN
+
+typedef ccl_addr_space struct PrincipledDiffuseBsdf {
+ SHADER_CLOSURE_BASE;
+
+ float roughness;
+} PrincipledDiffuseBsdf;
+
+ccl_device float3 calculate_principled_diffuse_brdf(const PrincipledDiffuseBsdf *bsdf,
+ float3 N, float3 V, float3 L, float3 H, float *pdf)
+{
+ float NdotL = max(dot(N, L), 0.0f);
+ float NdotV = max(dot(N, V), 0.0f);
+
+ if(NdotL < 0 || NdotV < 0) {
+ *pdf = 0.0f;
+ return make_float3(0.0f, 0.0f, 0.0f);
+ }
+
+ float LdotH = dot(L, H);
+
+ float FL = schlick_fresnel(NdotL), FV = schlick_fresnel(NdotV);
+ const float Fd90 = 0.5f + 2.0f * LdotH*LdotH * bsdf->roughness;
+ float Fd = (1.0f * (1.0f - FL) + Fd90 * FL) * (1.0f * (1.0f - FV) + Fd90 * FV);
+
+ float value = M_1_PI_F * NdotL * Fd;
+
+ return make_float3(value, value, value);
+}
+
+ccl_device int bsdf_principled_diffuse_setup(PrincipledDiffuseBsdf *bsdf)
+{
+ bsdf->type = CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID;
+ return SD_BSDF|SD_BSDF_HAS_EVAL;
+}
+
+ccl_device bool bsdf_principled_diffuse_merge(const ShaderClosure *a, const ShaderClosure *b)
+{
+ const PrincipledDiffuseBsdf *bsdf_a = (const PrincipledDiffuseBsdf*)a;
+ const PrincipledDiffuseBsdf *bsdf_b = (const PrincipledDiffuseBsdf*)b;
+
+ return (isequal_float3(bsdf_a->N, bsdf_b->N) && bsdf_a->roughness == bsdf_b->roughness);
+}
+
+ccl_device float3 bsdf_principled_diffuse_eval_reflect(const ShaderClosure *sc, const float3 I,
+ const float3 omega_in, float *pdf)
+{
+ const PrincipledDiffuseBsdf *bsdf = (const PrincipledDiffuseBsdf *)sc;
+
+ float3 N = bsdf->N;
+ float3 V = I; // outgoing
+ float3 L = omega_in; // incoming
+ float3 H = normalize(L + V);
+
+ if(dot(N, omega_in) > 0.0f) {
+ *pdf = fmaxf(dot(N, omega_in), 0.0f) * M_1_PI_F;
+ return calculate_principled_diffuse_brdf(bsdf, N, V, L, H, pdf);
+ }
+ else {
+ *pdf = 0.0f;
+ return make_float3(0.0f, 0.0f, 0.0f);
+ }
+}
+
+ccl_device float3 bsdf_principled_diffuse_eval_transmit(const ShaderClosure *sc, const float3 I,
+ const float3 omega_in, float *pdf)
+{
+ return make_float3(0.0f, 0.0f, 0.0f);
+}
+
+ccl_device int bsdf_principled_diffuse_sample(const ShaderClosure *sc,
+ float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv,
+ float3 *eval, float3 *omega_in, float3 *domega_in_dx,
+ float3 *domega_in_dy, float *pdf)
+{
+ const PrincipledDiffuseBsdf *bsdf = (const PrincipledDiffuseBsdf *)sc;
+
+ float3 N = bsdf->N;
+
+ sample_cos_hemisphere(N, randu, randv, omega_in, pdf);
+
+ if(dot(Ng, *omega_in) > 0) {
+ float3 H = normalize(I + *omega_in);
+
+ *eval = calculate_principled_diffuse_brdf(bsdf, N, I, *omega_in, H, pdf);
+
+#ifdef __RAY_DIFFERENTIALS__
+ // TODO: find a better approximation for the diffuse bounce
+ *domega_in_dx = -((2 * dot(N, dIdx)) * N - dIdx);
+ *domega_in_dy = -((2 * dot(N, dIdy)) * N - dIdy);
+#endif
+ }
+ else {
+ *pdf = 0.0f;
+ }
+ return LABEL_REFLECT|LABEL_DIFFUSE;
+}
+
+CCL_NAMESPACE_END
+
+#endif /* __BSDF_PRINCIPLED_DIFFUSE_H__ */
+
+
diff --git a/intern/cycles/kernel/closure/bsdf_principled_sheen.h b/intern/cycles/kernel/closure/bsdf_principled_sheen.h
new file mode 100644
index 00000000000..f4476bfecd0
--- /dev/null
+++ b/intern/cycles/kernel/closure/bsdf_principled_sheen.h
@@ -0,0 +1,113 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef __BSDF_PRINCIPLED_SHEEN_H__
+#define __BSDF_PRINCIPLED_SHEEN_H__
+
+/* DISNEY PRINCIPLED SHEEN BRDF
+ *
+ * Shading model by Brent Burley (Disney): "Physically Based Shading at Disney" (2012)
+ */
+
+CCL_NAMESPACE_BEGIN
+
+typedef ccl_addr_space struct PrincipledSheenBsdf {
+ SHADER_CLOSURE_BASE;
+} PrincipledSheenBsdf;
+
+ccl_device float3 calculate_principled_sheen_brdf(const PrincipledSheenBsdf *bsdf,
+ float3 N, float3 V, float3 L, float3 H, float *pdf)
+{
+ float NdotL = dot(N, L);
+ float NdotV = dot(N, V);
+
+ if(NdotL < 0 || NdotV < 0) {
+ *pdf = 0.0f;
+ return make_float3(0.0f, 0.0f, 0.0f);
+ }
+
+ float LdotH = dot(L, H);
+
+ float value = schlick_fresnel(LdotH) * NdotL;
+
+ return make_float3(value, value, value);
+}
+
+ccl_device int bsdf_principled_sheen_setup(PrincipledSheenBsdf *bsdf)
+{
+ bsdf->type = CLOSURE_BSDF_PRINCIPLED_SHEEN_ID;
+ return SD_BSDF|SD_BSDF_HAS_EVAL;
+}
+
+ccl_device float3 bsdf_principled_sheen_eval_reflect(const ShaderClosure *sc, const float3 I,
+ const float3 omega_in, float *pdf)
+{
+ const PrincipledSheenBsdf *bsdf = (const PrincipledSheenBsdf *)sc;
+
+ float3 N = bsdf->N;
+ float3 V = I; // outgoing
+ float3 L = omega_in; // incoming
+ float3 H = normalize(L + V);
+
+ if(dot(N, omega_in) > 0.0f) {
+ *pdf = fmaxf(dot(N, omega_in), 0.0f) * M_1_PI_F;
+ return calculate_principled_sheen_brdf(bsdf, N, V, L, H, pdf);
+ }
+ else {
+ *pdf = 0.0f;
+ return make_float3(0.0f, 0.0f, 0.0f);
+ }
+}
+
+ccl_device float3 bsdf_principled_sheen_eval_transmit(const ShaderClosure *sc, const float3 I,
+ const float3 omega_in, float *pdf)
+{
+ return make_float3(0.0f, 0.0f, 0.0f);
+}
+
+ccl_device int bsdf_principled_sheen_sample(const ShaderClosure *sc,
+ float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv,
+ float3 *eval, float3 *omega_in, float3 *domega_in_dx,
+ float3 *domega_in_dy, float *pdf)
+{
+ const PrincipledSheenBsdf *bsdf = (const PrincipledSheenBsdf *)sc;
+
+ float3 N = bsdf->N;
+
+ sample_cos_hemisphere(N, randu, randv, omega_in, pdf);
+
+ if(dot(Ng, *omega_in) > 0) {
+ float3 H = normalize(I + *omega_in);
+
+ *eval = calculate_principled_sheen_brdf(bsdf, N, I, *omega_in, H, pdf);
+
+#ifdef __RAY_DIFFERENTIALS__
+ // TODO: find a better approximation for the diffuse bounce
+ *domega_in_dx = -((2 * dot(N, dIdx)) * N - dIdx);
+ *domega_in_dy = -((2 * dot(N, dIdy)) * N - dIdy);
+#endif
+ }
+ else {
+ *pdf = 0.0f;
+ }
+ return LABEL_REFLECT|LABEL_DIFFUSE;
+}
+
+CCL_NAMESPACE_END
+
+#endif /* __BSDF_PRINCIPLED_SHEEN_H__ */
+
+
diff --git a/intern/cycles/kernel/closure/bsdf_toon.h b/intern/cycles/kernel/closure/bsdf_toon.h
index 28e775bcbc8..d8b6d8ddead 100644
--- a/intern/cycles/kernel/closure/bsdf_toon.h
+++ b/intern/cycles/kernel/closure/bsdf_toon.h
@@ -38,7 +38,6 @@ CCL_NAMESPACE_BEGIN
typedef ccl_addr_space struct ToonBsdf {
SHADER_CLOSURE_BASE;
- float3 N;
float size;
float smooth;
} ToonBsdf;
diff --git a/intern/cycles/kernel/closure/bsdf_util.h b/intern/cycles/kernel/closure/bsdf_util.h
index b0c5280b6cb..3dc15d5791c 100644
--- a/intern/cycles/kernel/closure/bsdf_util.h
+++ b/intern/cycles/kernel/closure/bsdf_util.h
@@ -124,6 +124,13 @@ ccl_device float3 fresnel_conductor(float cosi, const float3 eta, const float3 k
return(Rparl2 + Rperp2) * 0.5f;
}
+ccl_device float schlick_fresnel(float u)
+{
+ float m = clamp(1.0f - u, 0.0f, 1.0f);
+ float m2 = m * m;
+ return m2 * m2 * m; // pow(m, 5)
+}
+
ccl_device float smooth_step(float edge0, float edge1, float x)
{
float result;
@@ -136,6 +143,19 @@ ccl_device float smooth_step(float edge0, float edge1, float x)
return result;
}
+/* Calculate the fresnel color which is a blend between white and the F0 color (cspec0) */
+ccl_device_forceinline float3 interpolate_fresnel_color(float3 L, float3 H, float ior, float F0, float3 cspec0) {
+ /* Calculate the fresnel interpolation factor
+ * The value from fresnel_dielectric_cos(...) has to be normalized because
+ * the cspec0 keeps the F0 color
+ */
+ float F0_norm = 1.0f / (1.0f - F0);
+ float FH = (fresnel_dielectric_cos(dot(L, H), ior) - F0) * F0_norm;
+
+ /* Blend between white and a specular color with respect to the fresnel */
+ return cspec0 * (1.0f - FH) + make_float3(1.0f, 1.0f, 1.0f) * FH;
+}
+
CCL_NAMESPACE_END
#endif /* __BSDF_UTIL_H__ */
diff --git a/intern/cycles/kernel/closure/bssrdf.h b/intern/cycles/kernel/closure/bssrdf.h
index af0bbd861a9..267aeea6e86 100644
--- a/intern/cycles/kernel/closure/bssrdf.h
+++ b/intern/cycles/kernel/closure/bssrdf.h
@@ -27,7 +27,7 @@ typedef ccl_addr_space struct Bssrdf {
float d;
float texture_blur;
float albedo;
- float3 N;
+ float roughness;
} Bssrdf;
/* Planar Truncated Gaussian
@@ -348,8 +348,9 @@ ccl_device_inline Bssrdf *bssrdf_alloc(ShaderData *sd, float3 weight)
{
Bssrdf *bssrdf = (Bssrdf*)closure_alloc(sd, sizeof(Bssrdf), CLOSURE_NONE_ID, weight);
- if(!bssrdf)
+ if(bssrdf == NULL) {
return NULL;
+ }
float sample_weight = fabsf(average(weight));
bssrdf->sample_weight = sample_weight;
@@ -360,10 +361,32 @@ ccl_device int bssrdf_setup(Bssrdf *bssrdf, ClosureType type)
{
if(bssrdf->radius < BSSRDF_MIN_RADIUS) {
/* revert to diffuse BSDF if radius too small */
- DiffuseBsdf *bsdf = (DiffuseBsdf*)bssrdf;
- bsdf->N = bssrdf->N;
- int flag = bsdf_diffuse_setup(bsdf);
- bsdf->type = CLOSURE_BSDF_BSSRDF_ID;
+ int flag;
+#ifdef __PRINCIPLED__
+ if(type == CLOSURE_BSSRDF_PRINCIPLED_ID) {
+ float roughness = bssrdf->roughness;
+ float3 N = bssrdf->N;
+ float3 weight = bssrdf->weight;
+ float sample_weight = bssrdf->sample_weight;
+
+ PrincipledDiffuseBsdf *bsdf = (PrincipledDiffuseBsdf*)bssrdf;
+
+ bsdf->N = N;
+ bsdf->roughness = roughness;
+ bsdf->weight = weight;
+ bsdf->sample_weight = sample_weight;
+ flag = bsdf_principled_diffuse_setup(bsdf);
+ bsdf->type = CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID;
+ }
+ else
+#endif /* __PRINCIPLED__ */
+ {
+ DiffuseBsdf *bsdf = (DiffuseBsdf*)bssrdf;
+ bsdf->N = bssrdf->N;
+ flag = bsdf_diffuse_setup(bsdf);
+ bsdf->type = CLOSURE_BSDF_BSSRDF_ID;
+ }
+
return flag;
}
else {
@@ -371,11 +394,13 @@ ccl_device int bssrdf_setup(Bssrdf *bssrdf, ClosureType type)
bssrdf->sharpness = saturate(bssrdf->sharpness);
bssrdf->type = type;
- if(type == CLOSURE_BSSRDF_BURLEY_ID) {
+ if(type == CLOSURE_BSSRDF_BURLEY_ID ||
+ type == CLOSURE_BSSRDF_PRINCIPLED_ID)
+ {
bssrdf_burley_setup(bssrdf);
}
- return SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSSRDF;
+ return SD_BSSRDF;
}
}
@@ -385,7 +410,7 @@ ccl_device void bssrdf_sample(const ShaderClosure *sc, float xi, float *r, float
bssrdf_cubic_sample(sc, xi, r, h);
else if(sc->type == CLOSURE_BSSRDF_GAUSSIAN_ID)
bssrdf_gaussian_sample(sc, xi, r, h);
- else /*if(sc->type == CLOSURE_BSSRDF_BURLEY_ID)*/
+ else /*if(sc->type == CLOSURE_BSSRDF_BURLEY_ID || sc->type == CLOSURE_BSSRDF_PRINCIPLED_ID)*/
bssrdf_burley_sample(sc, xi, r, h);
}
@@ -395,7 +420,7 @@ ccl_device_forceinline float bssrdf_pdf(const ShaderClosure *sc, float r)
return bssrdf_cubic_pdf(sc, r);
else if(sc->type == CLOSURE_BSSRDF_GAUSSIAN_ID)
return bssrdf_gaussian_pdf(sc, r);
- else /*if(sc->type == CLOSURE_BSSRDF_BURLEY_ID)*/
+ else /*if(sc->type == CLOSURE_BSSRDF_BURLEY_ID || sc->type == CLOSURE_BSSRDF_PRINCIPLED_ID)*/
return bssrdf_burley_pdf(sc, r);
}
diff --git a/intern/cycles/kernel/filter/filter.h b/intern/cycles/kernel/filter/filter.h
new file mode 100644
index 00000000000..f6e474d6702
--- /dev/null
+++ b/intern/cycles/kernel/filter/filter.h
@@ -0,0 +1,52 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef __FILTER_H__
+#define __FILTER_H__
+
+/* CPU Filter Kernel Interface */
+
+#include "util/util_types.h"
+
+#include "kernel/filter/filter_defines.h"
+
+CCL_NAMESPACE_BEGIN
+
+#define KERNEL_NAME_JOIN(x, y, z) x ## _ ## y ## _ ## z
+#define KERNEL_NAME_EVAL(arch, name) KERNEL_NAME_JOIN(kernel, arch, name)
+#define KERNEL_FUNCTION_FULL_NAME(name) KERNEL_NAME_EVAL(KERNEL_ARCH, name)
+
+#define KERNEL_ARCH cpu
+#include "kernel/kernels/cpu/filter_cpu.h"
+
+#define KERNEL_ARCH cpu_sse2
+#include "kernel/kernels/cpu/filter_cpu.h"
+
+#define KERNEL_ARCH cpu_sse3
+#include "kernel/kernels/cpu/filter_cpu.h"
+
+#define KERNEL_ARCH cpu_sse41
+#include "kernel/kernels/cpu/filter_cpu.h"
+
+#define KERNEL_ARCH cpu_avx
+#include "kernel/kernels/cpu/filter_cpu.h"
+
+#define KERNEL_ARCH cpu_avx2
+#include "kernel/kernels/cpu/filter_cpu.h"
+
+CCL_NAMESPACE_END
+
+#endif /* __FILTER_H__ */
diff --git a/intern/cycles/kernel/filter/filter_defines.h b/intern/cycles/kernel/filter/filter_defines.h
new file mode 100644
index 00000000000..ce96f733aff
--- /dev/null
+++ b/intern/cycles/kernel/filter/filter_defines.h
@@ -0,0 +1,38 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef __FILTER_DEFINES_H__
+#define __FILTER_DEFINES_H__
+
+#define DENOISE_FEATURES 10
+#define TRANSFORM_SIZE (DENOISE_FEATURES*DENOISE_FEATURES)
+#define XTWX_SIZE (((DENOISE_FEATURES+1)*(DENOISE_FEATURES+2))/2)
+#define XTWY_SIZE (DENOISE_FEATURES+1)
+
+typedef struct TilesInfo {
+ int offsets[9];
+ int strides[9];
+ int x[4];
+ int y[4];
+ /* TODO(lukas): CUDA doesn't have uint64_t... */
+#ifdef __KERNEL_OPENCL__
+ ccl_global float *buffers[9];
+#else
+ long long int buffers[9];
+#endif
+} TilesInfo;
+
+#endif /* __FILTER_DEFINES_H__*/
diff --git a/intern/cycles/kernel/filter/filter_features.h b/intern/cycles/kernel/filter/filter_features.h
new file mode 100644
index 00000000000..6226ed2c2ef
--- /dev/null
+++ b/intern/cycles/kernel/filter/filter_features.h
@@ -0,0 +1,124 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+ CCL_NAMESPACE_BEGIN
+
+#define ccl_get_feature(buffer, pass) (buffer)[(pass)*pass_stride]
+
+/* Loop over the pixels in the range [low.x, high.x) x [low.y, high.y).
+ * pixel_buffer always points to the current pixel in the first pass. */
+#define FOR_PIXEL_WINDOW pixel_buffer = buffer + (low.y - rect.y)*buffer_w + (low.x - rect.x); \
+ for(pixel.y = low.y; pixel.y < high.y; pixel.y++) { \
+ for(pixel.x = low.x; pixel.x < high.x; pixel.x++, pixel_buffer++) {
+
+#define END_FOR_PIXEL_WINDOW } \
+ pixel_buffer += buffer_w - (high.x - low.x); \
+ }
+
+ccl_device_inline void filter_get_features(int2 pixel,
+ const ccl_global float *ccl_restrict buffer,
+ float *features,
+ const float *ccl_restrict mean,
+ int pass_stride)
+{
+ features[0] = pixel.x;
+ features[1] = pixel.y;
+ features[2] = fabsf(ccl_get_feature(buffer, 0));
+ features[3] = ccl_get_feature(buffer, 1);
+ features[4] = ccl_get_feature(buffer, 2);
+ features[5] = ccl_get_feature(buffer, 3);
+ features[6] = ccl_get_feature(buffer, 4);
+ features[7] = ccl_get_feature(buffer, 5);
+ features[8] = ccl_get_feature(buffer, 6);
+ features[9] = ccl_get_feature(buffer, 7);
+ if(mean) {
+ for(int i = 0; i < DENOISE_FEATURES; i++)
+ features[i] -= mean[i];
+ }
+}
+
+ccl_device_inline void filter_get_feature_scales(int2 pixel,
+ const ccl_global float *ccl_restrict buffer,
+ float *scales,
+ const float *ccl_restrict mean,
+ int pass_stride)
+{
+ scales[0] = fabsf(pixel.x - mean[0]);
+ scales[1] = fabsf(pixel.y - mean[1]);
+ scales[2] = fabsf(fabsf(ccl_get_feature(buffer, 0)) - mean[2]);
+ scales[3] = len_squared(make_float3(ccl_get_feature(buffer, 1) - mean[3],
+ ccl_get_feature(buffer, 2) - mean[4],
+ ccl_get_feature(buffer, 3) - mean[5]));
+ scales[4] = fabsf(ccl_get_feature(buffer, 4) - mean[6]);
+ scales[5] = len_squared(make_float3(ccl_get_feature(buffer, 5) - mean[7],
+ ccl_get_feature(buffer, 6) - mean[8],
+ ccl_get_feature(buffer, 7) - mean[9]));
+}
+
+ccl_device_inline void filter_calculate_scale(float *scale)
+{
+ scale[0] = 1.0f/max(scale[0], 0.01f);
+ scale[1] = 1.0f/max(scale[1], 0.01f);
+ scale[2] = 1.0f/max(scale[2], 0.01f);
+ scale[6] = 1.0f/max(scale[4], 0.01f);
+ scale[7] = scale[8] = scale[9] = 1.0f/max(sqrtf(scale[5]), 0.01f);
+ scale[3] = scale[4] = scale[5] = 1.0f/max(sqrtf(scale[3]), 0.01f);
+}
+
+ccl_device_inline float3 filter_get_color(const ccl_global float *ccl_restrict buffer,
+ int pass_stride)
+{
+ return make_float3(ccl_get_feature(buffer, 8), ccl_get_feature(buffer, 9), ccl_get_feature(buffer, 10));
+}
+
+ccl_device_inline void design_row_add(float *design_row,
+ int rank,
+ const ccl_global float *ccl_restrict transform,
+ int stride,
+ int row,
+ float feature)
+{
+ for(int i = 0; i < rank; i++) {
+ design_row[1+i] += transform[(row*DENOISE_FEATURES + i)*stride]*feature;
+ }
+}
+
+/* Fill the design row. */
+ccl_device_inline void filter_get_design_row_transform(int2 p_pixel,
+ const ccl_global float *ccl_restrict p_buffer,
+ int2 q_pixel,
+ const ccl_global float *ccl_restrict q_buffer,
+ int pass_stride,
+ int rank,
+ float *design_row,
+ const ccl_global float *ccl_restrict transform,
+ int stride)
+{
+ design_row[0] = 1.0f;
+ math_vector_zero(design_row+1, rank);
+ design_row_add(design_row, rank, transform, stride, 0, q_pixel.x - p_pixel.x);
+ design_row_add(design_row, rank, transform, stride, 1, q_pixel.y - p_pixel.y);
+ design_row_add(design_row, rank, transform, stride, 2, fabsf(ccl_get_feature(q_buffer, 0)) - fabsf(ccl_get_feature(p_buffer, 0)));
+ design_row_add(design_row, rank, transform, stride, 3, ccl_get_feature(q_buffer, 1) - ccl_get_feature(p_buffer, 1));
+ design_row_add(design_row, rank, transform, stride, 4, ccl_get_feature(q_buffer, 2) - ccl_get_feature(p_buffer, 2));
+ design_row_add(design_row, rank, transform, stride, 5, ccl_get_feature(q_buffer, 3) - ccl_get_feature(p_buffer, 3));
+ design_row_add(design_row, rank, transform, stride, 6, ccl_get_feature(q_buffer, 4) - ccl_get_feature(p_buffer, 4));
+ design_row_add(design_row, rank, transform, stride, 7, ccl_get_feature(q_buffer, 5) - ccl_get_feature(p_buffer, 5));
+ design_row_add(design_row, rank, transform, stride, 8, ccl_get_feature(q_buffer, 6) - ccl_get_feature(p_buffer, 6));
+ design_row_add(design_row, rank, transform, stride, 9, ccl_get_feature(q_buffer, 7) - ccl_get_feature(p_buffer, 7));
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/filter/filter_features_sse.h b/intern/cycles/kernel/filter/filter_features_sse.h
new file mode 100644
index 00000000000..3ddd8712266
--- /dev/null
+++ b/intern/cycles/kernel/filter/filter_features_sse.h
@@ -0,0 +1,93 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+#define ccl_get_feature_sse(pass) load_float4(buffer + (pass)*pass_stride)
+
+/* Loop over the pixels in the range [low.x, high.x) x [low.y, high.y), 4 at a time.
+ * pixel_buffer always points to the first of the 4 current pixel in the first pass.
+ * x4 and y4 contain the coordinates of the four pixels, active_pixels contains a mask that's set for all pixels within the window. */
+
+#define FOR_PIXEL_WINDOW_SSE pixel_buffer = buffer + (low.y - rect.y)*buffer_w + (low.x - rect.x); \
+ for(pixel.y = low.y; pixel.y < high.y; pixel.y++) { \
+ float4 y4 = make_float4(pixel.y); \
+ for(pixel.x = low.x; pixel.x < high.x; pixel.x += 4, pixel_buffer += 4) { \
+ float4 x4 = make_float4(pixel.x) + make_float4(0.0f, 1.0f, 2.0f, 3.0f); \
+ int4 active_pixels = x4 < make_float4(high.x);
+
+#define END_FOR_PIXEL_WINDOW_SSE } \
+ pixel_buffer += buffer_w - (pixel.x - low.x); \
+ }
+
+ccl_device_inline void filter_get_features_sse(float4 x, float4 y,
+ int4 active_pixels,
+ const float *ccl_restrict buffer,
+ float4 *features,
+ const float4 *ccl_restrict mean,
+ int pass_stride)
+{
+ features[0] = x;
+ features[1] = y;
+ features[2] = fabs(ccl_get_feature_sse(0));
+ features[3] = ccl_get_feature_sse(1);
+ features[4] = ccl_get_feature_sse(2);
+ features[5] = ccl_get_feature_sse(3);
+ features[6] = ccl_get_feature_sse(4);
+ features[7] = ccl_get_feature_sse(5);
+ features[8] = ccl_get_feature_sse(6);
+ features[9] = ccl_get_feature_sse(7);
+ if(mean) {
+ for(int i = 0; i < DENOISE_FEATURES; i++)
+ features[i] = features[i] - mean[i];
+ }
+ for(int i = 0; i < DENOISE_FEATURES; i++)
+ features[i] = mask(active_pixels, features[i]);
+}
+
+ccl_device_inline void filter_get_feature_scales_sse(float4 x, float4 y,
+ int4 active_pixels,
+ const float *ccl_restrict buffer,
+ float4 *scales,
+ const float4 *ccl_restrict mean,
+ int pass_stride)
+{
+ scales[0] = fabs(x - mean[0]);
+ scales[1] = fabs(y - mean[1]);
+ scales[2] = fabs(fabs(ccl_get_feature_sse(0)) - mean[2]);
+ scales[3] = sqr(ccl_get_feature_sse(1) - mean[3]) +
+ sqr(ccl_get_feature_sse(2) - mean[4]) +
+ sqr(ccl_get_feature_sse(3) - mean[5]);
+ scales[4] = fabs(ccl_get_feature_sse(4) - mean[6]);
+ scales[5] = sqr(ccl_get_feature_sse(5) - mean[7]) +
+ sqr(ccl_get_feature_sse(6) - mean[8]) +
+ sqr(ccl_get_feature_sse(7) - mean[9]);
+ for(int i = 0; i < 6; i++)
+ scales[i] = mask(active_pixels, scales[i]);
+}
+
+ccl_device_inline void filter_calculate_scale_sse(float4 *scale)
+{
+ scale[0] = rcp(max(reduce_max(scale[0]), make_float4(0.01f)));
+ scale[1] = rcp(max(reduce_max(scale[1]), make_float4(0.01f)));
+ scale[2] = rcp(max(reduce_max(scale[2]), make_float4(0.01f)));
+ scale[6] = rcp(max(reduce_max(scale[4]), make_float4(0.01f)));
+ scale[7] = scale[8] = scale[9] = rcp(max(reduce_max(sqrt(scale[5])), make_float4(0.01f)));
+ scale[3] = scale[4] = scale[5] = rcp(max(reduce_max(sqrt(scale[3])), make_float4(0.01f)));
+}
+
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/filter/filter_kernel.h b/intern/cycles/kernel/filter/filter_kernel.h
new file mode 100644
index 00000000000..2ef03dc0a02
--- /dev/null
+++ b/intern/cycles/kernel/filter/filter_kernel.h
@@ -0,0 +1,50 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "util/util_color.h"
+#include "util/util_math.h"
+#include "util/util_math_fast.h"
+#include "util/util_texture.h"
+
+#include "util/util_atomic.h"
+#include "util/util_math_matrix.h"
+
+#include "kernel/filter/filter_defines.h"
+
+#include "kernel/filter/filter_features.h"
+#ifdef __KERNEL_SSE3__
+# include "kernel/filter/filter_features_sse.h"
+#endif
+
+#include "kernel/filter/filter_prefilter.h"
+
+#ifdef __KERNEL_GPU__
+# include "kernel/filter/filter_transform_gpu.h"
+#else
+# ifdef __KERNEL_SSE3__
+# include "kernel/filter/filter_transform_sse.h"
+# else
+# include "kernel/filter/filter_transform.h"
+# endif
+#endif
+
+#include "kernel/filter/filter_reconstruction.h"
+
+#ifdef __KERNEL_CPU__
+# include "kernel/filter/filter_nlm_cpu.h"
+#else
+# include "kernel/filter/filter_nlm_gpu.h"
+#endif
diff --git a/intern/cycles/kernel/filter/filter_nlm_cpu.h b/intern/cycles/kernel/filter/filter_nlm_cpu.h
new file mode 100644
index 00000000000..5e989331bc2
--- /dev/null
+++ b/intern/cycles/kernel/filter/filter_nlm_cpu.h
@@ -0,0 +1,180 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+ccl_device_inline void kernel_filter_nlm_calc_difference(int dx, int dy,
+ const float *ccl_restrict weight_image,
+ const float *ccl_restrict variance_image,
+ float *difference_image,
+ int4 rect,
+ int w,
+ int channel_offset,
+ float a,
+ float k_2)
+{
+ for(int y = rect.y; y < rect.w; y++) {
+ for(int x = rect.x; x < rect.z; x++) {
+ float diff = 0.0f;
+ int numChannels = channel_offset? 3 : 1;
+ for(int c = 0; c < numChannels; c++) {
+ float cdiff = weight_image[c*channel_offset + y*w+x] - weight_image[c*channel_offset + (y+dy)*w+(x+dx)];
+ float pvar = variance_image[c*channel_offset + y*w+x];
+ float qvar = variance_image[c*channel_offset + (y+dy)*w+(x+dx)];
+ diff += (cdiff*cdiff - a*(pvar + min(pvar, qvar))) / (1e-8f + k_2*(pvar+qvar));
+ }
+ if(numChannels > 1) {
+ diff *= 1.0f/numChannels;
+ }
+ difference_image[y*w+x] = diff;
+ }
+ }
+}
+
+ccl_device_inline void kernel_filter_nlm_blur(const float *ccl_restrict difference_image,
+ float *out_image,
+ int4 rect,
+ int w,
+ int f)
+{
+ int aligned_lowx = rect.x / 4;
+ int aligned_highx = (rect.z + 3) / 4;
+ for(int y = rect.y; y < rect.w; y++) {
+ const int low = max(rect.y, y-f);
+ const int high = min(rect.w, y+f+1);
+ for(int x = rect.x; x < rect.z; x++) {
+ out_image[y*w+x] = 0.0f;
+ }
+ for(int y1 = low; y1 < high; y1++) {
+ float4* out_image4 = (float4*)(out_image + y*w);
+ float4* difference_image4 = (float4*)(difference_image + y1*w);
+ for(int x = aligned_lowx; x < aligned_highx; x++) {
+ out_image4[x] += difference_image4[x];
+ }
+ }
+ for(int x = rect.x; x < rect.z; x++) {
+ out_image[y*w+x] *= 1.0f/(high - low);
+ }
+ }
+}
+
+ccl_device_inline void kernel_filter_nlm_calc_weight(const float *ccl_restrict difference_image,
+ float *out_image,
+ int4 rect,
+ int w,
+ int f)
+{
+ for(int y = rect.y; y < rect.w; y++) {
+ for(int x = rect.x; x < rect.z; x++) {
+ out_image[y*w+x] = 0.0f;
+ }
+ }
+ for(int dx = -f; dx <= f; dx++) {
+ int pos_dx = max(0, dx);
+ int neg_dx = min(0, dx);
+ for(int y = rect.y; y < rect.w; y++) {
+ for(int x = rect.x-neg_dx; x < rect.z-pos_dx; x++) {
+ out_image[y*w+x] += difference_image[y*w+dx+x];
+ }
+ }
+ }
+ for(int y = rect.y; y < rect.w; y++) {
+ for(int x = rect.x; x < rect.z; x++) {
+ const int low = max(rect.x, x-f);
+ const int high = min(rect.z, x+f+1);
+ out_image[y*w+x] = fast_expf(-max(out_image[y*w+x] * (1.0f/(high - low)), 0.0f));
+ }
+ }
+}
+
+ccl_device_inline void kernel_filter_nlm_update_output(int dx, int dy,
+ const float *ccl_restrict difference_image,
+ const float *ccl_restrict image,
+ float *out_image,
+ float *accum_image,
+ int4 rect,
+ int w,
+ int f)
+{
+ for(int y = rect.y; y < rect.w; y++) {
+ for(int x = rect.x; x < rect.z; x++) {
+ const int low = max(rect.x, x-f);
+ const int high = min(rect.z, x+f+1);
+ float sum = 0.0f;
+ for(int x1 = low; x1 < high; x1++) {
+ sum += difference_image[y*w+x1];
+ }
+ float weight = sum * (1.0f/(high - low));
+ accum_image[y*w+x] += weight;
+ out_image[y*w+x] += weight*image[(y+dy)*w+(x+dx)];
+ }
+ }
+}
+
+ccl_device_inline void kernel_filter_nlm_construct_gramian(int dx, int dy,
+ const float *ccl_restrict difference_image,
+ const float *ccl_restrict buffer,
+ float *transform,
+ int *rank,
+ float *XtWX,
+ float3 *XtWY,
+ int4 rect,
+ int4 filter_rect,
+ int w, int h, int f,
+ int pass_stride)
+{
+ /* fy and fy are in filter-window-relative coordinates, while x and y are in feature-window-relative coordinates. */
+ for(int fy = max(0, rect.y-filter_rect.y); fy < min(filter_rect.w, rect.w-filter_rect.y); fy++) {
+ int y = fy + filter_rect.y;
+ for(int fx = max(0, rect.x-filter_rect.x); fx < min(filter_rect.z, rect.z-filter_rect.x); fx++) {
+ int x = fx + filter_rect.x;
+ const int low = max(rect.x, x-f);
+ const int high = min(rect.z, x+f+1);
+ float sum = 0.0f;
+ for(int x1 = low; x1 < high; x1++) {
+ sum += difference_image[y*w+x1];
+ }
+ float weight = sum * (1.0f/(high - low));
+
+ int storage_ofs = fy*filter_rect.z + fx;
+ float *l_transform = transform + storage_ofs*TRANSFORM_SIZE;
+ float *l_XtWX = XtWX + storage_ofs*XTWX_SIZE;
+ float3 *l_XtWY = XtWY + storage_ofs*XTWY_SIZE;
+ int *l_rank = rank + storage_ofs;
+
+ kernel_filter_construct_gramian(x, y, 1,
+ dx, dy, w, h,
+ pass_stride,
+ buffer,
+ l_transform, l_rank,
+ weight, l_XtWX, l_XtWY, 0);
+ }
+ }
+}
+
+ccl_device_inline void kernel_filter_nlm_normalize(float *out_image,
+ const float *ccl_restrict accum_image,
+ int4 rect,
+ int w)
+{
+ for(int y = rect.y; y < rect.w; y++) {
+ for(int x = rect.x; x < rect.z; x++) {
+ out_image[y*w+x] /= accum_image[y*w+x];
+ }
+ }
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/filter/filter_nlm_gpu.h b/intern/cycles/kernel/filter/filter_nlm_gpu.h
new file mode 100644
index 00000000000..2c5ac807051
--- /dev/null
+++ b/intern/cycles/kernel/filter/filter_nlm_gpu.h
@@ -0,0 +1,144 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+ccl_device_inline void kernel_filter_nlm_calc_difference(int x, int y,
+ int dx, int dy,
+ const ccl_global float *ccl_restrict weight_image,
+ const ccl_global float *ccl_restrict variance_image,
+ ccl_global float *difference_image,
+ int4 rect, int w,
+ int channel_offset,
+ float a, float k_2)
+{
+ float diff = 0.0f;
+ int numChannels = channel_offset? 3 : 1;
+ for(int c = 0; c < numChannels; c++) {
+ float cdiff = weight_image[c*channel_offset + y*w+x] - weight_image[c*channel_offset + (y+dy)*w+(x+dx)];
+ float pvar = variance_image[c*channel_offset + y*w+x];
+ float qvar = variance_image[c*channel_offset + (y+dy)*w+(x+dx)];
+ diff += (cdiff*cdiff - a*(pvar + min(pvar, qvar))) / (1e-8f + k_2*(pvar+qvar));
+ }
+ if(numChannels > 1) {
+ diff *= 1.0f/numChannels;
+ }
+ difference_image[y*w+x] = diff;
+}
+
+ccl_device_inline void kernel_filter_nlm_blur(int x, int y,
+ const ccl_global float *ccl_restrict difference_image,
+ ccl_global float *out_image,
+ int4 rect, int w, int f)
+{
+ float sum = 0.0f;
+ const int low = max(rect.y, y-f);
+ const int high = min(rect.w, y+f+1);
+ for(int y1 = low; y1 < high; y1++) {
+ sum += difference_image[y1*w+x];
+ }
+ sum *= 1.0f/(high-low);
+ out_image[y*w+x] = sum;
+}
+
+ccl_device_inline void kernel_filter_nlm_calc_weight(int x, int y,
+ const ccl_global float *ccl_restrict difference_image,
+ ccl_global float *out_image,
+ int4 rect, int w, int f)
+{
+ float sum = 0.0f;
+ const int low = max(rect.x, x-f);
+ const int high = min(rect.z, x+f+1);
+ for(int x1 = low; x1 < high; x1++) {
+ sum += difference_image[y*w+x1];
+ }
+ sum *= 1.0f/(high-low);
+ out_image[y*w+x] = fast_expf(-max(sum, 0.0f));
+}
+
+ccl_device_inline void kernel_filter_nlm_update_output(int x, int y,
+ int dx, int dy,
+ const ccl_global float *ccl_restrict difference_image,
+ const ccl_global float *ccl_restrict image,
+ ccl_global float *out_image,
+ ccl_global float *accum_image,
+ int4 rect, int w, int f)
+{
+ float sum = 0.0f;
+ const int low = max(rect.x, x-f);
+ const int high = min(rect.z, x+f+1);
+ for(int x1 = low; x1 < high; x1++) {
+ sum += difference_image[y*w+x1];
+ }
+ sum *= 1.0f/(high-low);
+ if(out_image) {
+ accum_image[y*w+x] += sum;
+ out_image[y*w+x] += sum*image[(y+dy)*w+(x+dx)];
+ }
+ else {
+ accum_image[y*w+x] = sum;
+ }
+}
+
+ccl_device_inline void kernel_filter_nlm_construct_gramian(int fx, int fy,
+ int dx, int dy,
+ const ccl_global float *ccl_restrict difference_image,
+ const ccl_global float *ccl_restrict buffer,
+ const ccl_global float *ccl_restrict transform,
+ ccl_global int *rank,
+ ccl_global float *XtWX,
+ ccl_global float3 *XtWY,
+ int4 rect,
+ int4 filter_rect,
+ int w, int h, int f,
+ int pass_stride,
+ int localIdx)
+{
+ int y = fy + filter_rect.y;
+ int x = fx + filter_rect.x;
+ const int low = max(rect.x, x-f);
+ const int high = min(rect.z, x+f+1);
+ float sum = 0.0f;
+ for(int x1 = low; x1 < high; x1++) {
+ sum += difference_image[y*w+x1];
+ }
+ float weight = sum * (1.0f/(high - low));
+
+ int storage_ofs = fy*filter_rect.z + fx;
+ transform += storage_ofs;
+ rank += storage_ofs;
+ XtWX += storage_ofs;
+ XtWY += storage_ofs;
+
+ kernel_filter_construct_gramian(x, y,
+ filter_rect.z*filter_rect.w,
+ dx, dy, w, h,
+ pass_stride,
+ buffer,
+ transform, rank,
+ weight, XtWX, XtWY,
+ localIdx);
+}
+
+ccl_device_inline void kernel_filter_nlm_normalize(int x, int y,
+ ccl_global float *out_image,
+ const ccl_global float *ccl_restrict accum_image,
+ int4 rect, int w)
+{
+ out_image[y*w+x] /= accum_image[y*w+x];
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/filter/filter_prefilter.h b/intern/cycles/kernel/filter/filter_prefilter.h
new file mode 100644
index 00000000000..eefcbfea230
--- /dev/null
+++ b/intern/cycles/kernel/filter/filter_prefilter.h
@@ -0,0 +1,215 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+/* First step of the shadow prefiltering, performs the shadow division and stores all data
+ * in a nice and easy rectangular array that can be passed to the NLM filter.
+ *
+ * Calculates:
+ * unfiltered: Contains the two half images of the shadow feature pass
+ * sampleVariance: The sample-based variance calculated in the kernel. Note: This calculation is biased in general, and especially here since the variance of the ratio can only be approximated.
+ * sampleVarianceV: Variance of the sample variance estimation, quite noisy (since it's essentially the buffer variance of the two variance halves)
+ * bufferVariance: The buffer-based variance of the shadow feature. Unbiased, but quite noisy.
+ */
+ccl_device void kernel_filter_divide_shadow(int sample,
+ ccl_global TilesInfo *tiles,
+ int x, int y,
+ ccl_global float *unfilteredA,
+ ccl_global float *unfilteredB,
+ ccl_global float *sampleVariance,
+ ccl_global float *sampleVarianceV,
+ ccl_global float *bufferVariance,
+ int4 rect,
+ int buffer_pass_stride,
+ int buffer_denoising_offset)
+{
+ int xtile = (x < tiles->x[1])? 0: ((x < tiles->x[2])? 1: 2);
+ int ytile = (y < tiles->y[1])? 0: ((y < tiles->y[2])? 1: 2);
+ int tile = ytile*3+xtile;
+
+ int offset = tiles->offsets[tile];
+ int stride = tiles->strides[tile];
+ const ccl_global float *ccl_restrict center_buffer = (ccl_global float*) tiles->buffers[tile];
+ center_buffer += (y*stride + x + offset)*buffer_pass_stride;
+ center_buffer += buffer_denoising_offset + 14;
+
+ int buffer_w = align_up(rect.z - rect.x, 4);
+ int idx = (y-rect.y)*buffer_w + (x - rect.x);
+ unfilteredA[idx] = center_buffer[1] / max(center_buffer[0], 1e-7f);
+ unfilteredB[idx] = center_buffer[4] / max(center_buffer[3], 1e-7f);
+
+ float varA = center_buffer[2];
+ float varB = center_buffer[5];
+ int odd_sample = (sample+1)/2;
+ int even_sample = sample/2;
+
+ /* Approximate variance as E[x^2] - 1/N * (E[x])^2, since online variance
+ * update does not work efficiently with atomics in the kernel. */
+ varA = max(0.0f, varA - unfilteredA[idx]*unfilteredA[idx]*odd_sample);
+ varB = max(0.0f, varB - unfilteredB[idx]*unfilteredB[idx]*even_sample);
+
+ varA /= max(odd_sample - 1, 1);
+ varB /= max(even_sample - 1, 1);
+
+ sampleVariance[idx] = 0.5f*(varA + varB) / sample;
+ sampleVarianceV[idx] = 0.5f * (varA - varB) * (varA - varB) / (sample*sample);
+ bufferVariance[idx] = 0.5f * (unfilteredA[idx] - unfilteredB[idx]) * (unfilteredA[idx] - unfilteredB[idx]);
+}
+
+/* Load a regular feature from the render buffers into the denoise buffer.
+ * Parameters:
+ * - sample: The sample amount in the buffer, used to normalize the buffer.
+ * - m_offset, v_offset: Render Buffer Pass offsets of mean and variance of the feature.
+ * - x, y: Current pixel
+ * - mean, variance: Target denoise buffers.
+ * - rect: The prefilter area (lower pixels inclusive, upper pixels exclusive).
+ */
+ccl_device void kernel_filter_get_feature(int sample,
+ ccl_global TilesInfo *tiles,
+ int m_offset, int v_offset,
+ int x, int y,
+ ccl_global float *mean,
+ ccl_global float *variance,
+ int4 rect, int buffer_pass_stride,
+ int buffer_denoising_offset)
+{
+ int xtile = (x < tiles->x[1])? 0: ((x < tiles->x[2])? 1: 2);
+ int ytile = (y < tiles->y[1])? 0: ((y < tiles->y[2])? 1: 2);
+ int tile = ytile*3+xtile;
+ ccl_global float *center_buffer = ((ccl_global float*) tiles->buffers[tile]) + (tiles->offsets[tile] + y*tiles->strides[tile] + x)*buffer_pass_stride + buffer_denoising_offset;
+
+ int buffer_w = align_up(rect.z - rect.x, 4);
+ int idx = (y-rect.y)*buffer_w + (x - rect.x);
+
+ mean[idx] = center_buffer[m_offset] / sample;
+ if(sample > 1) {
+ /* Approximate variance as E[x^2] - 1/N * (E[x])^2, since online variance
+ * update does not work efficiently with atomics in the kernel. */
+ variance[idx] = max(0.0f, (center_buffer[v_offset] - mean[idx]*mean[idx]*sample) / (sample * (sample-1)));
+ }
+ else {
+ /* Can't compute variance with single sample, just set it very high. */
+ variance[idx] = 1e10f;
+ }
+}
+
+ccl_device void kernel_filter_detect_outliers(int x, int y,
+ ccl_global float *image,
+ ccl_global float *variance,
+ ccl_global float *depth,
+ ccl_global float *out,
+ int4 rect,
+ int pass_stride)
+{
+ int buffer_w = align_up(rect.z - rect.x, 4);
+
+ int idx = (y-rect.y)*buffer_w + (x-rect.x);
+ float3 color = make_float3(image[idx], image[idx+pass_stride], image[idx+2*pass_stride]);
+
+ float fac = 1.0f;
+ if(color.x < 0.0f || color.y < 0.0f || color.z < 0.0f) {
+ depth[idx] = -depth[idx];
+ fac = 0.0f;
+ }
+ else {
+ float L = average(color);
+ int n = 0;
+ float values[25];
+ for(int y1 = max(y-2, rect.y); y1 < min(y+3, rect.w); y1++) {
+ for(int x1 = max(x-2, rect.x); x1 < min(x+3, rect.z); x1++) {
+ int idx = (y1-rect.y)*buffer_w + (x1-rect.x);
+ float L = average(make_float3(image[idx], image[idx+pass_stride], image[idx+2*pass_stride]));
+
+ /* Find the position of L. */
+ int i;
+ for(i = 0; i < n; i++) {
+ if(values[i] > L) break;
+ }
+ /* Make space for L by shifting all following values to the right. */
+ for(int j = n; j > i; j--) {
+ values[j] = values[j-1];
+ }
+ /* Insert L. */
+ values[i] = L;
+ n++;
+ }
+ }
+
+ float ref = 2.0f*values[(int)(n*0.75f)];
+ if(L > ref) {
+ /* The pixel appears to be an outlier.
+ * However, it may just be a legitimate highlight. Therefore, it is checked how likely it is that the pixel
+ * should actually be at the reference value:
+ * If the reference is within the 3-sigma interval, the pixel is assumed to be a statistical outlier.
+ * Otherwise, it is very unlikely that the pixel should be darker, which indicates a legitimate highlight.
+ */
+ float stddev = sqrtf(average(make_float3(variance[idx], variance[idx+pass_stride], variance[idx+2*pass_stride])));
+ if(L - 3*stddev < ref) {
+ /* The pixel is an outlier, so negate the depth value to mark it as one.
+ * Also, scale its brightness down to the outlier threshold to avoid trouble with the NLM weights. */
+ depth[idx] = -depth[idx];
+ fac = ref/L;
+ variance[idx ] *= fac*fac;
+ variance[idx + pass_stride] *= fac*fac;
+ variance[idx+2*pass_stride] *= fac*fac;
+ }
+ }
+ }
+ out[idx ] = fac*image[idx];
+ out[idx + pass_stride] = fac*image[idx + pass_stride];
+ out[idx+2*pass_stride] = fac*image[idx+2*pass_stride];
+}
+
+/* Combine A/B buffers.
+ * Calculates the combined mean and the buffer variance. */
+ccl_device void kernel_filter_combine_halves(int x, int y,
+ ccl_global float *mean,
+ ccl_global float *variance,
+ ccl_global float *a,
+ ccl_global float *b,
+ int4 rect, int r)
+{
+ int buffer_w = align_up(rect.z - rect.x, 4);
+ int idx = (y-rect.y)*buffer_w + (x - rect.x);
+
+ if(mean) mean[idx] = 0.5f * (a[idx]+b[idx]);
+ if(variance) {
+ if(r == 0) variance[idx] = 0.25f * (a[idx]-b[idx])*(a[idx]-b[idx]);
+ else {
+ variance[idx] = 0.0f;
+ float values[25];
+ int numValues = 0;
+ for(int py = max(y-r, rect.y); py < min(y+r+1, rect.w); py++) {
+ for(int px = max(x-r, rect.x); px < min(x+r+1, rect.z); px++) {
+ int pidx = (py-rect.y)*buffer_w + (px-rect.x);
+ values[numValues++] = 0.25f * (a[pidx]-b[pidx])*(a[pidx]-b[pidx]);
+ }
+ }
+ /* Insertion-sort the variances (fast enough for 25 elements). */
+ for(int i = 1; i < numValues; i++) {
+ float v = values[i];
+ int j;
+ for(j = i-1; j >= 0 && values[j] > v; j--)
+ values[j+1] = values[j];
+ values[j+1] = v;
+ }
+ variance[idx] = values[(7*numValues)/8];
+ }
+ }
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/filter/filter_reconstruction.h b/intern/cycles/kernel/filter/filter_reconstruction.h
new file mode 100644
index 00000000000..25a3025056c
--- /dev/null
+++ b/intern/cycles/kernel/filter/filter_reconstruction.h
@@ -0,0 +1,117 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+ccl_device_inline void kernel_filter_construct_gramian(int x, int y,
+ int storage_stride,
+ int dx, int dy,
+ int w, int h,
+ int pass_stride,
+ const ccl_global float *ccl_restrict buffer,
+ const ccl_global float *ccl_restrict transform,
+ ccl_global int *rank,
+ float weight,
+ ccl_global float *XtWX,
+ ccl_global float3 *XtWY,
+ int localIdx)
+{
+ if(weight < 1e-3f) {
+ return;
+ }
+
+ int p_offset = y *w + x;
+ int q_offset = (y+dy)*w + (x+dx);
+
+#ifdef __KERNEL_GPU__
+ const int stride = storage_stride;
+#else
+ const int stride = 1;
+ (void) storage_stride;
+#endif
+
+#ifdef __KERNEL_CUDA__
+ ccl_local float shared_design_row[(DENOISE_FEATURES+1)*CCL_MAX_LOCAL_SIZE];
+ ccl_local_param float *design_row = shared_design_row + localIdx*(DENOISE_FEATURES+1);
+#else
+ float design_row[DENOISE_FEATURES+1];
+#endif
+
+ float3 q_color = filter_get_color(buffer + q_offset, pass_stride);
+
+ /* If the pixel was flagged as an outlier during prefiltering, skip it. */
+ if(ccl_get_feature(buffer + q_offset, 0) < 0.0f) {
+ return;
+ }
+
+ filter_get_design_row_transform(make_int2(x, y), buffer + p_offset,
+ make_int2(x+dx, y+dy), buffer + q_offset,
+ pass_stride, *rank, design_row, transform, stride);
+
+ math_trimatrix_add_gramian_strided(XtWX, (*rank)+1, design_row, weight, stride);
+ math_vec3_add_strided(XtWY, (*rank)+1, design_row, weight * q_color, stride);
+}
+
+ccl_device_inline void kernel_filter_finalize(int x, int y, int w, int h,
+ ccl_global float *buffer,
+ ccl_global int *rank,
+ int storage_stride,
+ ccl_global float *XtWX,
+ ccl_global float3 *XtWY,
+ int4 buffer_params,
+ int sample)
+{
+#ifdef __KERNEL_GPU__
+ const int stride = storage_stride;
+#else
+ const int stride = 1;
+ (void) storage_stride;
+#endif
+
+ if(XtWX[0] < 1e-3f) {
+ /* There is not enough information to determine a denoised result.
+ * As a fallback, keep the original value of the pixel. */
+ return;
+ }
+
+ /* The weighted average of pixel colors (essentially, the NLM-filtered image).
+ * In case the solution of the linear model fails due to numerical issues,
+ * fall back to this value. */
+ float3 mean_color = XtWY[0]/XtWX[0];
+
+ math_trimatrix_vec3_solve(XtWX, XtWY, (*rank)+1, stride);
+
+ float3 final_color = XtWY[0];
+ if(!isfinite3_safe(final_color)) {
+ final_color = mean_color;
+ }
+
+ /* Clamp pixel value to positive values. */
+ final_color = max(final_color, make_float3(0.0f, 0.0f, 0.0f));
+
+ ccl_global float *combined_buffer = buffer + (y*buffer_params.y + x + buffer_params.x)*buffer_params.z;
+ final_color *= sample;
+ if(buffer_params.w) {
+ final_color.x += combined_buffer[buffer_params.w+0];
+ final_color.y += combined_buffer[buffer_params.w+1];
+ final_color.z += combined_buffer[buffer_params.w+2];
+ }
+ combined_buffer[0] = final_color.x;
+ combined_buffer[1] = final_color.y;
+ combined_buffer[2] = final_color.z;
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/filter/filter_transform.h b/intern/cycles/kernel/filter/filter_transform.h
new file mode 100644
index 00000000000..a5f87c05ec0
--- /dev/null
+++ b/intern/cycles/kernel/filter/filter_transform.h
@@ -0,0 +1,108 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+ccl_device void kernel_filter_construct_transform(const float *ccl_restrict buffer,
+ int x, int y, int4 rect,
+ int pass_stride,
+ float *transform, int *rank,
+ int radius, float pca_threshold)
+{
+ int buffer_w = align_up(rect.z - rect.x, 4);
+
+ float features[DENOISE_FEATURES];
+
+ /* Temporary storage, used in different steps of the algorithm. */
+ float tempmatrix[DENOISE_FEATURES*DENOISE_FEATURES];
+ float tempvector[2*DENOISE_FEATURES];
+ const float *ccl_restrict pixel_buffer;
+ int2 pixel;
+
+ /* === Calculate denoising window. === */
+ int2 low = make_int2(max(rect.x, x - radius),
+ max(rect.y, y - radius));
+ int2 high = make_int2(min(rect.z, x + radius + 1),
+ min(rect.w, y + radius + 1));
+ int num_pixels = (high.y - low.y) * (high.x - low.x);
+
+ /* === Shift feature passes to have mean 0. === */
+ float feature_means[DENOISE_FEATURES];
+ math_vector_zero(feature_means, DENOISE_FEATURES);
+ FOR_PIXEL_WINDOW {
+ filter_get_features(pixel, pixel_buffer, features, NULL, pass_stride);
+ math_vector_add(feature_means, features, DENOISE_FEATURES);
+ } END_FOR_PIXEL_WINDOW
+
+ math_vector_scale(feature_means, 1.0f / num_pixels, DENOISE_FEATURES);
+
+ /* === Scale the shifted feature passes to a range of [-1; 1], will be baked into the transform later. === */
+ float *feature_scale = tempvector;
+ math_vector_zero(feature_scale, DENOISE_FEATURES);
+
+ FOR_PIXEL_WINDOW {
+ filter_get_feature_scales(pixel, pixel_buffer, features, feature_means, pass_stride);
+ math_vector_max(feature_scale, features, DENOISE_FEATURES);
+ } END_FOR_PIXEL_WINDOW
+
+ filter_calculate_scale(feature_scale);
+
+ /* === Generate the feature transformation. ===
+ * This transformation maps the DENOISE_FEATURES-dimentional feature space to a reduced feature (r-feature) space
+ * which generally has fewer dimensions. This mainly helps to prevent overfitting. */
+ float* feature_matrix = tempmatrix;
+ math_matrix_zero(feature_matrix, DENOISE_FEATURES);
+ FOR_PIXEL_WINDOW {
+ filter_get_features(pixel, pixel_buffer, features, feature_means, pass_stride);
+ math_vector_mul(features, feature_scale, DENOISE_FEATURES);
+ math_matrix_add_gramian(feature_matrix, DENOISE_FEATURES, features, 1.0f);
+ } END_FOR_PIXEL_WINDOW
+
+ math_matrix_jacobi_eigendecomposition(feature_matrix, transform, DENOISE_FEATURES, 1);
+ *rank = 0;
+ /* Prevent overfitting when a small window is used. */
+ int max_rank = min(DENOISE_FEATURES, num_pixels/3);
+ if(pca_threshold < 0.0f) {
+ float threshold_energy = 0.0f;
+ for(int i = 0; i < DENOISE_FEATURES; i++) {
+ threshold_energy += feature_matrix[i*DENOISE_FEATURES+i];
+ }
+ threshold_energy *= 1.0f - (-pca_threshold);
+
+ float reduced_energy = 0.0f;
+ for(int i = 0; i < max_rank; i++, (*rank)++) {
+ if(i >= 2 && reduced_energy >= threshold_energy)
+ break;
+ float s = feature_matrix[i*DENOISE_FEATURES+i];
+ reduced_energy += s;
+ }
+ }
+ else {
+ for(int i = 0; i < max_rank; i++, (*rank)++) {
+ float s = feature_matrix[i*DENOISE_FEATURES+i];
+ if(i >= 2 && sqrtf(s) < pca_threshold)
+ break;
+ }
+ }
+
+ /* Bake the feature scaling into the transformation matrix. */
+ for(int i = 0; i < (*rank); i++) {
+ math_vector_mul(transform + i*DENOISE_FEATURES, feature_scale, DENOISE_FEATURES);
+ }
+ math_matrix_transpose(transform, DENOISE_FEATURES, 1);
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/filter/filter_transform_gpu.h b/intern/cycles/kernel/filter/filter_transform_gpu.h
new file mode 100644
index 00000000000..83a1222bbdb
--- /dev/null
+++ b/intern/cycles/kernel/filter/filter_transform_gpu.h
@@ -0,0 +1,119 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+ccl_device void kernel_filter_construct_transform(const ccl_global float *ccl_restrict buffer,
+ int x, int y, int4 rect,
+ int pass_stride,
+ ccl_global float *transform,
+ ccl_global int *rank,
+ int radius, float pca_threshold,
+ int transform_stride, int localIdx)
+{
+ int buffer_w = align_up(rect.z - rect.x, 4);
+
+#ifdef __KERNEL_CUDA__
+ ccl_local float shared_features[DENOISE_FEATURES*CCL_MAX_LOCAL_SIZE];
+ ccl_local_param float *features = shared_features + localIdx*DENOISE_FEATURES;
+#else
+ float features[DENOISE_FEATURES];
+#endif
+
+ /* === Calculate denoising window. === */
+ int2 low = make_int2(max(rect.x, x - radius),
+ max(rect.y, y - radius));
+ int2 high = make_int2(min(rect.z, x + radius + 1),
+ min(rect.w, y + radius + 1));
+ int num_pixels = (high.y - low.y) * (high.x - low.x);
+ const ccl_global float *ccl_restrict pixel_buffer;
+ int2 pixel;
+
+
+
+
+ /* === Shift feature passes to have mean 0. === */
+ float feature_means[DENOISE_FEATURES];
+ math_vector_zero(feature_means, DENOISE_FEATURES);
+ FOR_PIXEL_WINDOW {
+ filter_get_features(pixel, pixel_buffer, features, NULL, pass_stride);
+ math_vector_add(feature_means, features, DENOISE_FEATURES);
+ } END_FOR_PIXEL_WINDOW
+
+ math_vector_scale(feature_means, 1.0f / num_pixels, DENOISE_FEATURES);
+
+ /* === Scale the shifted feature passes to a range of [-1; 1], will be baked into the transform later. === */
+ float feature_scale[DENOISE_FEATURES];
+ math_vector_zero(feature_scale, DENOISE_FEATURES);
+
+ FOR_PIXEL_WINDOW {
+ filter_get_feature_scales(pixel, pixel_buffer, features, feature_means, pass_stride);
+ math_vector_max(feature_scale, features, DENOISE_FEATURES);
+ } END_FOR_PIXEL_WINDOW
+
+ filter_calculate_scale(feature_scale);
+
+
+
+ /* === Generate the feature transformation. ===
+ * This transformation maps the DENOISE_FEATURES-dimentional feature space to a reduced feature (r-feature) space
+ * which generally has fewer dimensions. This mainly helps to prevent overfitting. */
+ float feature_matrix[DENOISE_FEATURES*DENOISE_FEATURES];
+ math_matrix_zero(feature_matrix, DENOISE_FEATURES);
+ FOR_PIXEL_WINDOW {
+ filter_get_features(pixel, pixel_buffer, features, feature_means, pass_stride);
+ math_vector_mul(features, feature_scale, DENOISE_FEATURES);
+ math_matrix_add_gramian(feature_matrix, DENOISE_FEATURES, features, 1.0f);
+ } END_FOR_PIXEL_WINDOW
+
+ math_matrix_jacobi_eigendecomposition(feature_matrix, transform, DENOISE_FEATURES, transform_stride);
+ *rank = 0;
+ /* Prevent overfitting when a small window is used. */
+ int max_rank = min(DENOISE_FEATURES, num_pixels/3);
+ if(pca_threshold < 0.0f) {
+ float threshold_energy = 0.0f;
+ for(int i = 0; i < DENOISE_FEATURES; i++) {
+ threshold_energy += feature_matrix[i*DENOISE_FEATURES+i];
+ }
+ threshold_energy *= 1.0f - (-pca_threshold);
+
+ float reduced_energy = 0.0f;
+ for(int i = 0; i < max_rank; i++, (*rank)++) {
+ if(i >= 2 && reduced_energy >= threshold_energy)
+ break;
+ float s = feature_matrix[i*DENOISE_FEATURES+i];
+ reduced_energy += s;
+ }
+ }
+ else {
+ for(int i = 0; i < max_rank; i++, (*rank)++) {
+ float s = feature_matrix[i*DENOISE_FEATURES+i];
+ if(i >= 2 && sqrtf(s) < pca_threshold)
+ break;
+ }
+ }
+
+ math_matrix_transpose(transform, DENOISE_FEATURES, transform_stride);
+
+ /* Bake the feature scaling into the transformation matrix. */
+ for(int i = 0; i < DENOISE_FEATURES; i++) {
+ for(int j = 0; j < (*rank); j++) {
+ transform[(i*DENOISE_FEATURES + j)*transform_stride] *= feature_scale[i];
+ }
+ }
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/filter/filter_transform_sse.h b/intern/cycles/kernel/filter/filter_transform_sse.h
new file mode 100644
index 00000000000..9e65f61664b
--- /dev/null
+++ b/intern/cycles/kernel/filter/filter_transform_sse.h
@@ -0,0 +1,105 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+ccl_device void kernel_filter_construct_transform(const float *ccl_restrict buffer,
+ int x, int y, int4 rect,
+ int pass_stride,
+ float *transform, int *rank,
+ int radius, float pca_threshold)
+{
+ int buffer_w = align_up(rect.z - rect.x, 4);
+
+ float4 features[DENOISE_FEATURES];
+ const float *ccl_restrict pixel_buffer;
+ int2 pixel;
+
+ int2 low = make_int2(max(rect.x, x - radius),
+ max(rect.y, y - radius));
+ int2 high = make_int2(min(rect.z, x + radius + 1),
+ min(rect.w, y + radius + 1));
+ int num_pixels = (high.y - low.y) * (high.x - low.x);
+
+ float4 feature_means[DENOISE_FEATURES];
+ math_vector_zero_sse(feature_means, DENOISE_FEATURES);
+ FOR_PIXEL_WINDOW_SSE {
+ filter_get_features_sse(x4, y4, active_pixels, pixel_buffer, features, NULL, pass_stride);
+ math_vector_add_sse(feature_means, DENOISE_FEATURES, features);
+ } END_FOR_PIXEL_WINDOW_SSE
+
+ float4 pixel_scale = make_float4(1.0f / num_pixels);
+ for(int i = 0; i < DENOISE_FEATURES; i++) {
+ feature_means[i] = reduce_add(feature_means[i]) * pixel_scale;
+ }
+
+ float4 feature_scale[DENOISE_FEATURES];
+ math_vector_zero_sse(feature_scale, DENOISE_FEATURES);
+ FOR_PIXEL_WINDOW_SSE {
+ filter_get_feature_scales_sse(x4, y4, active_pixels, pixel_buffer, features, feature_means, pass_stride);
+ math_vector_max_sse(feature_scale, features, DENOISE_FEATURES);
+ } END_FOR_PIXEL_WINDOW_SSE
+
+ filter_calculate_scale_sse(feature_scale);
+
+ float4 feature_matrix_sse[DENOISE_FEATURES*DENOISE_FEATURES];
+ math_matrix_zero_sse(feature_matrix_sse, DENOISE_FEATURES);
+ FOR_PIXEL_WINDOW_SSE {
+ filter_get_features_sse(x4, y4, active_pixels, pixel_buffer, features, feature_means, pass_stride);
+ math_vector_mul_sse(features, DENOISE_FEATURES, feature_scale);
+ math_matrix_add_gramian_sse(feature_matrix_sse, DENOISE_FEATURES, features, make_float4(1.0f));
+ } END_FOR_PIXEL_WINDOW_SSE
+
+ float feature_matrix[DENOISE_FEATURES*DENOISE_FEATURES];
+ math_matrix_hsum(feature_matrix, DENOISE_FEATURES, feature_matrix_sse);
+
+ math_matrix_jacobi_eigendecomposition(feature_matrix, transform, DENOISE_FEATURES, 1);
+
+ *rank = 0;
+ /* Prevent overfitting when a small window is used. */
+ int max_rank = min(DENOISE_FEATURES, num_pixels/3);
+ if(pca_threshold < 0.0f) {
+ float threshold_energy = 0.0f;
+ for(int i = 0; i < DENOISE_FEATURES; i++) {
+ threshold_energy += feature_matrix[i*DENOISE_FEATURES+i];
+ }
+ threshold_energy *= 1.0f - (-pca_threshold);
+
+ float reduced_energy = 0.0f;
+ for(int i = 0; i < max_rank; i++, (*rank)++) {
+ if(i >= 2 && reduced_energy >= threshold_energy)
+ break;
+ float s = feature_matrix[i*DENOISE_FEATURES+i];
+ reduced_energy += s;
+ }
+ }
+ else {
+ for(int i = 0; i < max_rank; i++, (*rank)++) {
+ float s = feature_matrix[i*DENOISE_FEATURES+i];
+ if(i >= 2 && sqrtf(s) < pca_threshold)
+ break;
+ }
+ }
+
+ math_matrix_transpose(transform, DENOISE_FEATURES, 1);
+
+ /* Bake the feature scaling into the transformation matrix. */
+ for(int i = 0; i < DENOISE_FEATURES; i++) {
+ math_vector_scale(transform + i*DENOISE_FEATURES, feature_scale[i][0], *rank);
+ }
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/geom/geom.h b/intern/cycles/kernel/geom/geom.h
index 24ced934c8b..f34b77ebc07 100644
--- a/intern/cycles/kernel/geom/geom.h
+++ b/intern/cycles/kernel/geom/geom.h
@@ -14,17 +14,20 @@
* limitations under the License.
*/
-#include "geom_attribute.h"
-#include "geom_object.h"
+#include "kernel/geom/geom_attribute.h"
+#include "kernel/geom/geom_object.h"
#ifdef __PATCH_EVAL__
-# include "geom_patch.h"
+# include "kernel/geom/geom_patch.h"
#endif
-#include "geom_triangle.h"
-#include "geom_subd_triangle.h"
-#include "geom_triangle_intersect.h"
-#include "geom_motion_triangle.h"
-#include "geom_motion_curve.h"
-#include "geom_curve.h"
-#include "geom_volume.h"
-#include "geom_primitive.h"
+#include "kernel/geom/geom_triangle.h"
+#include "kernel/geom/geom_subd_triangle.h"
+#include "kernel/geom/geom_triangle_intersect.h"
+#include "kernel/geom/geom_motion_triangle.h"
+#include "kernel/geom/geom_motion_triangle_intersect.h"
+#include "kernel/geom/geom_motion_triangle_shader.h"
+#include "kernel/geom/geom_motion_curve.h"
+#include "kernel/geom/geom_curve.h"
+#include "kernel/geom/geom_curve_intersect.h"
+#include "kernel/geom/geom_volume.h"
+#include "kernel/geom/geom_primitive.h"
diff --git a/intern/cycles/kernel/geom/geom_attribute.h b/intern/cycles/kernel/geom/geom_attribute.h
index 08ccee56335..cc62192ef21 100644
--- a/intern/cycles/kernel/geom/geom_attribute.h
+++ b/intern/cycles/kernel/geom/geom_attribute.h
@@ -30,7 +30,7 @@ ccl_device_inline uint subd_triangle_patch(KernelGlobals *kg, const ShaderData *
ccl_device_inline uint attribute_primitive_type(KernelGlobals *kg, const ShaderData *sd)
{
#ifdef __HAIR__
- if(ccl_fetch(sd, type) & PRIMITIVE_ALL_CURVE) {
+ if(sd->type & PRIMITIVE_ALL_CURVE) {
return ATTR_PRIM_CURVE;
}
else
@@ -53,12 +53,12 @@ ccl_device_inline AttributeDescriptor attribute_not_found()
ccl_device_inline AttributeDescriptor find_attribute(KernelGlobals *kg, const ShaderData *sd, uint id)
{
- if(ccl_fetch(sd, object) == PRIM_NONE) {
+ if(sd->object == PRIM_NONE) {
return attribute_not_found();
}
/* for SVM, find attribute by unique id */
- uint attr_offset = ccl_fetch(sd, object)*kernel_data.bvh.attributes_map_stride;
+ uint attr_offset = sd->object*kernel_data.bvh.attributes_map_stride;
attr_offset += attribute_primitive_type(kg, sd);
uint4 attr_map = kernel_tex_fetch(__attributes_map, attr_offset);
@@ -73,7 +73,7 @@ ccl_device_inline AttributeDescriptor find_attribute(KernelGlobals *kg, const Sh
AttributeDescriptor desc;
desc.element = (AttributeElement)attr_map.y;
- if(ccl_fetch(sd, prim) == PRIM_NONE &&
+ if(sd->prim == PRIM_NONE &&
desc.element != ATTR_ELEMENT_MESH &&
desc.element != ATTR_ELEMENT_VOXEL &&
desc.element != ATTR_ELEMENT_OBJECT)
diff --git a/intern/cycles/kernel/geom/geom_curve.h b/intern/cycles/kernel/geom/geom_curve.h
index 84aaaab7453..e35267f02bf 100644
--- a/intern/cycles/kernel/geom/geom_curve.h
+++ b/intern/cycles/kernel/geom/geom_curve.h
@@ -16,9 +16,10 @@ CCL_NAMESPACE_BEGIN
/* Curve Primitive
*
- * Curve primitive for rendering hair and fur. These can be render as flat ribbons
- * or curves with actual thickness. The curve can also be rendered as line segments
- * rather than curves for better performance */
+ * Curve primitive for rendering hair and fur. These can be render as flat
+ * ribbons or curves with actual thickness. The curve can also be rendered as
+ * line segments rather than curves for better performance.
+ */
#ifdef __HAIR__
@@ -32,22 +33,22 @@ ccl_device float curve_attribute_float(KernelGlobals *kg, const ShaderData *sd,
if(dy) *dy = 0.0f;
#endif
- return kernel_tex_fetch(__attributes_float, desc.offset + ccl_fetch(sd, prim));
+ return kernel_tex_fetch(__attributes_float, desc.offset + sd->prim);
}
else if(desc.element == ATTR_ELEMENT_CURVE_KEY || desc.element == ATTR_ELEMENT_CURVE_KEY_MOTION) {
- float4 curvedata = kernel_tex_fetch(__curves, ccl_fetch(sd, prim));
- int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(ccl_fetch(sd, type));
+ float4 curvedata = kernel_tex_fetch(__curves, sd->prim);
+ int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type);
int k1 = k0 + 1;
float f0 = kernel_tex_fetch(__attributes_float, desc.offset + k0);
float f1 = kernel_tex_fetch(__attributes_float, desc.offset + k1);
#ifdef __RAY_DIFFERENTIALS__
- if(dx) *dx = ccl_fetch(sd, du).dx*(f1 - f0);
+ if(dx) *dx = sd->du.dx*(f1 - f0);
if(dy) *dy = 0.0f;
#endif
- return (1.0f - ccl_fetch(sd, u))*f0 + ccl_fetch(sd, u)*f1;
+ return (1.0f - sd->u)*f0 + sd->u*f1;
}
else {
#ifdef __RAY_DIFFERENTIALS__
@@ -71,22 +72,22 @@ ccl_device float3 curve_attribute_float3(KernelGlobals *kg, const ShaderData *sd
if(dy) *dy = make_float3(0.0f, 0.0f, 0.0f);
#endif
- return float4_to_float3(kernel_tex_fetch(__attributes_float3, desc.offset + ccl_fetch(sd, prim)));
+ return float4_to_float3(kernel_tex_fetch(__attributes_float3, desc.offset + sd->prim));
}
else if(desc.element == ATTR_ELEMENT_CURVE_KEY || desc.element == ATTR_ELEMENT_CURVE_KEY_MOTION) {
- float4 curvedata = kernel_tex_fetch(__curves, ccl_fetch(sd, prim));
- int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(ccl_fetch(sd, type));
+ float4 curvedata = kernel_tex_fetch(__curves, sd->prim);
+ int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type);
int k1 = k0 + 1;
float3 f0 = float4_to_float3(kernel_tex_fetch(__attributes_float3, desc.offset + k0));
float3 f1 = float4_to_float3(kernel_tex_fetch(__attributes_float3, desc.offset + k1));
#ifdef __RAY_DIFFERENTIALS__
- if(dx) *dx = ccl_fetch(sd, du).dx*(f1 - f0);
+ if(dx) *dx = sd->du.dx*(f1 - f0);
if(dy) *dy = make_float3(0.0f, 0.0f, 0.0f);
#endif
- return (1.0f - ccl_fetch(sd, u))*f0 + ccl_fetch(sd, u)*f1;
+ return (1.0f - sd->u)*f0 + sd->u*f1;
}
else {
#ifdef __RAY_DIFFERENTIALS__
@@ -104,22 +105,22 @@ ccl_device float curve_thickness(KernelGlobals *kg, ShaderData *sd)
{
float r = 0.0f;
- if(ccl_fetch(sd, type) & PRIMITIVE_ALL_CURVE) {
- float4 curvedata = kernel_tex_fetch(__curves, ccl_fetch(sd, prim));
- int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(ccl_fetch(sd, type));
+ if(sd->type & PRIMITIVE_ALL_CURVE) {
+ float4 curvedata = kernel_tex_fetch(__curves, sd->prim);
+ int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type);
int k1 = k0 + 1;
float4 P_curve[2];
- if(ccl_fetch(sd, type) & PRIMITIVE_CURVE) {
+ if(sd->type & PRIMITIVE_CURVE) {
P_curve[0]= kernel_tex_fetch(__curve_keys, k0);
P_curve[1]= kernel_tex_fetch(__curve_keys, k1);
}
else {
- motion_curve_keys(kg, ccl_fetch(sd, object), ccl_fetch(sd, prim), ccl_fetch(sd, time), k0, k1, P_curve);
+ motion_curve_keys(kg, sd->object, sd->prim, sd->time, k0, k1, P_curve);
}
- r = (P_curve[1].w - P_curve[0].w) * ccl_fetch(sd, u) + P_curve[0].w;
+ r = (P_curve[1].w - P_curve[0].w) * sd->u + P_curve[0].w;
}
return r*2.0f;
@@ -130,8 +131,8 @@ ccl_device float curve_thickness(KernelGlobals *kg, ShaderData *sd)
ccl_device float3 curve_motion_center_location(KernelGlobals *kg, ShaderData *sd)
{
- float4 curvedata = kernel_tex_fetch(__curves, ccl_fetch(sd, prim));
- int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(ccl_fetch(sd, type));
+ float4 curvedata = kernel_tex_fetch(__curves, sd->prim);
+ int k0 = __float_as_int(curvedata.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type);
int k1 = k0 + 1;
float4 P_curve[2];
@@ -139,23 +140,23 @@ ccl_device float3 curve_motion_center_location(KernelGlobals *kg, ShaderData *sd
P_curve[0]= kernel_tex_fetch(__curve_keys, k0);
P_curve[1]= kernel_tex_fetch(__curve_keys, k1);
- return float4_to_float3(P_curve[1]) * ccl_fetch(sd, u) + float4_to_float3(P_curve[0]) * (1.0f - ccl_fetch(sd, u));
+ return float4_to_float3(P_curve[1]) * sd->u + float4_to_float3(P_curve[0]) * (1.0f - sd->u);
}
/* Curve tangent normal */
ccl_device float3 curve_tangent_normal(KernelGlobals *kg, ShaderData *sd)
-{
+{
float3 tgN = make_float3(0.0f,0.0f,0.0f);
- if(ccl_fetch(sd, type) & PRIMITIVE_ALL_CURVE) {
+ if(sd->type & PRIMITIVE_ALL_CURVE) {
- tgN = -(-ccl_fetch(sd, I) - ccl_fetch(sd, dPdu) * (dot(ccl_fetch(sd, dPdu),-ccl_fetch(sd, I)) / len_squared(ccl_fetch(sd, dPdu))));
+ tgN = -(-sd->I - sd->dPdu * (dot(sd->dPdu,-sd->I) / len_squared(sd->dPdu)));
tgN = normalize(tgN);
/* need to find suitable scaled gd for corrected normal */
#if 0
- tgN = normalize(tgN - gd * ccl_fetch(sd, dPdu));
+ tgN = normalize(tgN - gd * sd->dPdu);
#endif
}
@@ -213,817 +214,6 @@ ccl_device_inline void curvebounds(float *lower, float *upper, float *extremta,
}
}
-#ifdef __KERNEL_SSE2__
-ccl_device_inline ssef transform_point_T3(const ssef t[3], const ssef &a)
-{
- return madd(shuffle<0>(a), t[0], madd(shuffle<1>(a), t[1], shuffle<2>(a) * t[2]));
-}
-#endif
-
-#ifdef __KERNEL_SSE2__
-/* Pass P and dir by reference to aligned vector */
-ccl_device_forceinline bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersection *isect,
- const float3 &P, const float3 &dir, uint visibility, int object, int curveAddr, float time, int type, uint *lcg_state, float difl, float extmax)
-#else
-ccl_device_forceinline bool bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersection *isect,
- float3 P, float3 dir, uint visibility, int object, int curveAddr, float time,int type, uint *lcg_state, float difl, float extmax)
-#endif
-{
- int segment = PRIMITIVE_UNPACK_SEGMENT(type);
- float epsilon = 0.0f;
- float r_st, r_en;
-
- int depth = kernel_data.curve.subdivisions;
- int flags = kernel_data.curve.curveflags;
- int prim = kernel_tex_fetch(__prim_index, curveAddr);
-
-#ifdef __KERNEL_SSE2__
- ssef vdir = load4f(dir);
- ssef vcurve_coef[4];
- const float3 *curve_coef = (float3 *)vcurve_coef;
-
- {
- ssef dtmp = vdir * vdir;
- ssef d_ss = mm_sqrt(dtmp + shuffle<2>(dtmp));
- ssef rd_ss = load1f_first(1.0f) / d_ss;
-
- ssei v00vec = load4i((ssei *)&kg->__curves.data[prim]);
- int2 &v00 = (int2 &)v00vec;
-
- int k0 = v00.x + segment;
- int k1 = k0 + 1;
- int ka = max(k0 - 1, v00.x);
- int kb = min(k1 + 1, v00.x + v00.y - 1);
-
- ssef P_curve[4];
-
- if(type & PRIMITIVE_CURVE) {
- P_curve[0] = load4f(&kg->__curve_keys.data[ka].x);
- P_curve[1] = load4f(&kg->__curve_keys.data[k0].x);
- P_curve[2] = load4f(&kg->__curve_keys.data[k1].x);
- P_curve[3] = load4f(&kg->__curve_keys.data[kb].x);
- }
- else {
- int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
- motion_cardinal_curve_keys(kg, fobject, prim, time, ka, k0, k1, kb, (float4*)&P_curve);
- }
-
- ssef rd_sgn = set_sign_bit<0, 1, 1, 1>(shuffle<0>(rd_ss));
- ssef mul_zxxy = shuffle<2, 0, 0, 1>(vdir) * rd_sgn;
- ssef mul_yz = shuffle<1, 2, 1, 2>(vdir) * mul_zxxy;
- ssef mul_shuf = shuffle<0, 1, 2, 3>(mul_zxxy, mul_yz);
- ssef vdir0 = vdir & cast(ssei(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0));
-
- ssef htfm0 = shuffle<0, 2, 0, 3>(mul_shuf, vdir0);
- ssef htfm1 = shuffle<1, 0, 1, 3>(load1f_first(extract<0>(d_ss)), vdir0);
- ssef htfm2 = shuffle<1, 3, 2, 3>(mul_shuf, vdir0);
-
- ssef htfm[] = { htfm0, htfm1, htfm2 };
- ssef vP = load4f(P);
- ssef p0 = transform_point_T3(htfm, P_curve[0] - vP);
- ssef p1 = transform_point_T3(htfm, P_curve[1] - vP);
- ssef p2 = transform_point_T3(htfm, P_curve[2] - vP);
- ssef p3 = transform_point_T3(htfm, P_curve[3] - vP);
-
- float fc = 0.71f;
- ssef vfc = ssef(fc);
- ssef vfcxp3 = vfc * p3;
-
- vcurve_coef[0] = p1;
- vcurve_coef[1] = vfc * (p2 - p0);
- vcurve_coef[2] = madd(ssef(fc * 2.0f), p0, madd(ssef(fc - 3.0f), p1, msub(ssef(3.0f - 2.0f * fc), p2, vfcxp3)));
- vcurve_coef[3] = msub(ssef(fc - 2.0f), p2 - p1, msub(vfc, p0, vfcxp3));
-
- r_st = ((float4 &)P_curve[1]).w;
- r_en = ((float4 &)P_curve[2]).w;
- }
-#else
- float3 curve_coef[4];
-
- /* curve Intersection check */
- /* obtain curve parameters */
- {
- /* ray transform created - this should be created at beginning of intersection loop */
- Transform htfm;
- float d = sqrtf(dir.x * dir.x + dir.z * dir.z);
- htfm = make_transform(
- dir.z / d, 0, -dir.x /d, 0,
- -dir.x * dir.y /d, d, -dir.y * dir.z /d, 0,
- dir.x, dir.y, dir.z, 0,
- 0, 0, 0, 1);
-
- float4 v00 = kernel_tex_fetch(__curves, prim);
-
- int k0 = __float_as_int(v00.x) + segment;
- int k1 = k0 + 1;
-
- int ka = max(k0 - 1,__float_as_int(v00.x));
- int kb = min(k1 + 1,__float_as_int(v00.x) + __float_as_int(v00.y) - 1);
-
- float4 P_curve[4];
-
- if(type & PRIMITIVE_CURVE) {
- P_curve[0] = kernel_tex_fetch(__curve_keys, ka);
- P_curve[1] = kernel_tex_fetch(__curve_keys, k0);
- P_curve[2] = kernel_tex_fetch(__curve_keys, k1);
- P_curve[3] = kernel_tex_fetch(__curve_keys, kb);
- }
- else {
- int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
- motion_cardinal_curve_keys(kg, fobject, prim, time, ka, k0, k1, kb, P_curve);
- }
-
- float3 p0 = transform_point(&htfm, float4_to_float3(P_curve[0]) - P);
- float3 p1 = transform_point(&htfm, float4_to_float3(P_curve[1]) - P);
- float3 p2 = transform_point(&htfm, float4_to_float3(P_curve[2]) - P);
- float3 p3 = transform_point(&htfm, float4_to_float3(P_curve[3]) - P);
-
- float fc = 0.71f;
- curve_coef[0] = p1;
- curve_coef[1] = -fc*p0 + fc*p2;
- curve_coef[2] = 2.0f * fc * p0 + (fc - 3.0f) * p1 + (3.0f - 2.0f * fc) * p2 - fc * p3;
- curve_coef[3] = -fc * p0 + (2.0f - fc) * p1 + (fc - 2.0f) * p2 + fc * p3;
- r_st = P_curve[1].w;
- r_en = P_curve[2].w;
- }
-#endif
-
- float r_curr = max(r_st, r_en);
-
- if((flags & CURVE_KN_RIBBONS) || !(flags & CURVE_KN_BACKFACING))
- epsilon = 2 * r_curr;
-
- /* find bounds - this is slow for cubic curves */
- float upper, lower;
-
- float zextrem[4];
- curvebounds(&lower, &upper, &zextrem[0], &zextrem[1], &zextrem[2], &zextrem[3], curve_coef[0].z, curve_coef[1].z, curve_coef[2].z, curve_coef[3].z);
- if(lower - r_curr > isect->t || upper + r_curr < epsilon)
- return false;
-
- /* minimum width extension */
- float mw_extension = min(difl * fabsf(upper), extmax);
- float r_ext = mw_extension + r_curr;
-
- float xextrem[4];
- curvebounds(&lower, &upper, &xextrem[0], &xextrem[1], &xextrem[2], &xextrem[3], curve_coef[0].x, curve_coef[1].x, curve_coef[2].x, curve_coef[3].x);
- if(lower > r_ext || upper < -r_ext)
- return false;
-
- float yextrem[4];
- curvebounds(&lower, &upper, &yextrem[0], &yextrem[1], &yextrem[2], &yextrem[3], curve_coef[0].y, curve_coef[1].y, curve_coef[2].y, curve_coef[3].y);
- if(lower > r_ext || upper < -r_ext)
- return false;
-
- /* setup recurrent loop */
- int level = 1 << depth;
- int tree = 0;
- float resol = 1.0f / (float)level;
- bool hit = false;
-
- /* begin loop */
- while(!(tree >> (depth))) {
- float i_st = tree * resol;
- float i_en = i_st + (level * resol);
-#ifdef __KERNEL_SSE2__
- ssef vi_st = ssef(i_st), vi_en = ssef(i_en);
- ssef vp_st = madd(madd(madd(vcurve_coef[3], vi_st, vcurve_coef[2]), vi_st, vcurve_coef[1]), vi_st, vcurve_coef[0]);
- ssef vp_en = madd(madd(madd(vcurve_coef[3], vi_en, vcurve_coef[2]), vi_en, vcurve_coef[1]), vi_en, vcurve_coef[0]);
-
- ssef vbmin = min(vp_st, vp_en);
- ssef vbmax = max(vp_st, vp_en);
-
- float3 &bmin = (float3 &)vbmin, &bmax = (float3 &)vbmax;
- float &bminx = bmin.x, &bminy = bmin.y, &bminz = bmin.z;
- float &bmaxx = bmax.x, &bmaxy = bmax.y, &bmaxz = bmax.z;
- float3 &p_st = (float3 &)vp_st, &p_en = (float3 &)vp_en;
-#else
- float3 p_st = ((curve_coef[3] * i_st + curve_coef[2]) * i_st + curve_coef[1]) * i_st + curve_coef[0];
- float3 p_en = ((curve_coef[3] * i_en + curve_coef[2]) * i_en + curve_coef[1]) * i_en + curve_coef[0];
-
- float bminx = min(p_st.x, p_en.x);
- float bmaxx = max(p_st.x, p_en.x);
- float bminy = min(p_st.y, p_en.y);
- float bmaxy = max(p_st.y, p_en.y);
- float bminz = min(p_st.z, p_en.z);
- float bmaxz = max(p_st.z, p_en.z);
-#endif
-
- if(xextrem[0] >= i_st && xextrem[0] <= i_en) {
- bminx = min(bminx,xextrem[1]);
- bmaxx = max(bmaxx,xextrem[1]);
- }
- if(xextrem[2] >= i_st && xextrem[2] <= i_en) {
- bminx = min(bminx,xextrem[3]);
- bmaxx = max(bmaxx,xextrem[3]);
- }
- if(yextrem[0] >= i_st && yextrem[0] <= i_en) {
- bminy = min(bminy,yextrem[1]);
- bmaxy = max(bmaxy,yextrem[1]);
- }
- if(yextrem[2] >= i_st && yextrem[2] <= i_en) {
- bminy = min(bminy,yextrem[3]);
- bmaxy = max(bmaxy,yextrem[3]);
- }
- if(zextrem[0] >= i_st && zextrem[0] <= i_en) {
- bminz = min(bminz,zextrem[1]);
- bmaxz = max(bmaxz,zextrem[1]);
- }
- if(zextrem[2] >= i_st && zextrem[2] <= i_en) {
- bminz = min(bminz,zextrem[3]);
- bmaxz = max(bmaxz,zextrem[3]);
- }
-
- float r1 = r_st + (r_en - r_st) * i_st;
- float r2 = r_st + (r_en - r_st) * i_en;
- r_curr = max(r1, r2);
-
- mw_extension = min(difl * fabsf(bmaxz), extmax);
- float r_ext = mw_extension + r_curr;
- float coverage = 1.0f;
-
- if(bminz - r_curr > isect->t || bmaxz + r_curr < epsilon || bminx > r_ext|| bmaxx < -r_ext|| bminy > r_ext|| bmaxy < -r_ext) {
- /* the bounding box does not overlap the square centered at O */
- tree += level;
- level = tree & -tree;
- }
- else if(level == 1) {
-
- /* the maximum recursion depth is reached.
- * check if dP0.(Q-P0)>=0 and dPn.(Pn-Q)>=0.
- * dP* is reversed if necessary.*/
- float t = isect->t;
- float u = 0.0f;
- float gd = 0.0f;
-
- if(flags & CURVE_KN_RIBBONS) {
- float3 tg = (p_en - p_st);
- float w = tg.x * tg.x + tg.y * tg.y;
- if(w == 0) {
- tree++;
- level = tree & -tree;
- continue;
- }
- w = -(p_st.x * tg.x + p_st.y * tg.y) / w;
- w = saturate(w);
-
- /* compute u on the curve segment */
- u = i_st * (1 - w) + i_en * w;
- r_curr = r_st + (r_en - r_st) * u;
- /* compare x-y distances */
- float3 p_curr = ((curve_coef[3] * u + curve_coef[2]) * u + curve_coef[1]) * u + curve_coef[0];
-
- float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1];
- if(dot(tg, dp_st)< 0)
- dp_st *= -1;
- if(dot(dp_st, -p_st) + p_curr.z * dp_st.z < 0) {
- tree++;
- level = tree & -tree;
- continue;
- }
- float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1];
- if(dot(tg, dp_en) < 0)
- dp_en *= -1;
- if(dot(dp_en, p_en) - p_curr.z * dp_en.z < 0) {
- tree++;
- level = tree & -tree;
- continue;
- }
-
- /* compute coverage */
- float r_ext = r_curr;
- coverage = 1.0f;
- if(difl != 0.0f) {
- mw_extension = min(difl * fabsf(bmaxz), extmax);
- r_ext = mw_extension + r_curr;
- float d = sqrtf(p_curr.x * p_curr.x + p_curr.y * p_curr.y);
- float d0 = d - r_curr;
- float d1 = d + r_curr;
- float inv_mw_extension = 1.0f/mw_extension;
- if(d0 >= 0)
- coverage = (min(d1 * inv_mw_extension, 1.0f) - min(d0 * inv_mw_extension, 1.0f)) * 0.5f;
- else // inside
- coverage = (min(d1 * inv_mw_extension, 1.0f) + min(-d0 * inv_mw_extension, 1.0f)) * 0.5f;
- }
-
- if(p_curr.x * p_curr.x + p_curr.y * p_curr.y >= r_ext * r_ext || p_curr.z <= epsilon || isect->t < p_curr.z) {
- tree++;
- level = tree & -tree;
- continue;
- }
-
- t = p_curr.z;
-
- /* stochastic fade from minimum width */
- if(difl != 0.0f && lcg_state) {
- if(coverage != 1.0f && (lcg_step_float(lcg_state) > coverage))
- return hit;
- }
- }
- else {
- float l = len(p_en - p_st);
- /* minimum width extension */
- float or1 = r1;
- float or2 = r2;
-
- if(difl != 0.0f) {
- mw_extension = min(len(p_st - P) * difl, extmax);
- or1 = r1 < mw_extension ? mw_extension : r1;
- mw_extension = min(len(p_en - P) * difl, extmax);
- or2 = r2 < mw_extension ? mw_extension : r2;
- }
- /* --- */
- float invl = 1.0f/l;
- float3 tg = (p_en - p_st) * invl;
- gd = (or2 - or1) * invl;
- float difz = -dot(p_st,tg);
- float cyla = 1.0f - (tg.z * tg.z * (1 + gd*gd));
- float invcyla = 1.0f/cyla;
- float halfb = (-p_st.z - tg.z*(difz + gd*(difz*gd + or1)));
- float tcentre = -halfb*invcyla;
- float zcentre = difz + (tg.z * tcentre);
- float3 tdif = - p_st;
- tdif.z += tcentre;
- float tdifz = dot(tdif,tg);
- float tb = 2*(tdif.z - tg.z*(tdifz + gd*(tdifz*gd + or1)));
- float tc = dot(tdif,tdif) - tdifz * tdifz * (1 + gd*gd) - or1*or1 - 2*or1*tdifz*gd;
- float td = tb*tb - 4*cyla*tc;
- if(td < 0.0f) {
- tree++;
- level = tree & -tree;
- continue;
- }
-
- float rootd = sqrtf(td);
- float correction = (-tb - rootd) * 0.5f * invcyla;
- t = tcentre + correction;
-
- float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1];
- if(dot(tg, dp_st)< 0)
- dp_st *= -1;
- float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1];
- if(dot(tg, dp_en) < 0)
- dp_en *= -1;
-
- if(flags & CURVE_KN_BACKFACING && (dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 || isect->t < t || t <= 0.0f)) {
- correction = (-tb + rootd) * 0.5f * invcyla;
- t = tcentre + correction;
- }
-
- if(dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 || isect->t < t || t <= 0.0f) {
- tree++;
- level = tree & -tree;
- continue;
- }
-
- float w = (zcentre + (tg.z * correction)) * invl;
- w = saturate(w);
- /* compute u on the curve segment */
- u = i_st * (1 - w) + i_en * w;
-
- /* stochastic fade from minimum width */
- if(difl != 0.0f && lcg_state) {
- r_curr = r1 + (r2 - r1) * w;
- r_ext = or1 + (or2 - or1) * w;
- coverage = r_curr/r_ext;
-
- if(coverage != 1.0f && (lcg_step_float(lcg_state) > coverage))
- return hit;
- }
- }
- /* we found a new intersection */
-
-#ifdef __VISIBILITY_FLAG__
- /* visibility flag test. we do it here under the assumption
- * that most triangles are culled by node flags */
- if(kernel_tex_fetch(__prim_visibility, curveAddr) & visibility)
-#endif
- {
- /* record intersection */
- isect->t = t;
- isect->u = u;
- isect->v = gd;
- isect->prim = curveAddr;
- isect->object = object;
- isect->type = type;
- hit = true;
- }
-
- tree++;
- level = tree & -tree;
- }
- else {
- /* split the curve into two curves and process */
- level = level >> 1;
- }
- }
-
- return hit;
-}
-
-ccl_device_forceinline bool bvh_curve_intersect(KernelGlobals *kg, Intersection *isect,
- float3 P, float3 direction, uint visibility, int object, int curveAddr, float time, int type, uint *lcg_state, float difl, float extmax)
-{
- /* define few macros to minimize code duplication for SSE */
-#ifndef __KERNEL_SSE2__
-# define len3_squared(x) len_squared(x)
-# define len3(x) len(x)
-# define dot3(x, y) dot(x, y)
-#endif
-
- int segment = PRIMITIVE_UNPACK_SEGMENT(type);
- /* curve Intersection check */
- int flags = kernel_data.curve.curveflags;
-
- int prim = kernel_tex_fetch(__prim_index, curveAddr);
- float4 v00 = kernel_tex_fetch(__curves, prim);
-
- int cnum = __float_as_int(v00.x);
- int k0 = cnum + segment;
- int k1 = k0 + 1;
-
-#ifndef __KERNEL_SSE2__
- float4 P_curve[2];
-
- if(type & PRIMITIVE_CURVE) {
- P_curve[0] = kernel_tex_fetch(__curve_keys, k0);
- P_curve[1] = kernel_tex_fetch(__curve_keys, k1);
- }
- else {
- int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
- motion_curve_keys(kg, fobject, prim, time, k0, k1, P_curve);
- }
-
- float or1 = P_curve[0].w;
- float or2 = P_curve[1].w;
- float3 p1 = float4_to_float3(P_curve[0]);
- float3 p2 = float4_to_float3(P_curve[1]);
-
- /* minimum width extension */
- float r1 = or1;
- float r2 = or2;
- float3 dif = P - p1;
- float3 dif_second = P - p2;
- if(difl != 0.0f) {
- float pixelsize = min(len3(dif) * difl, extmax);
- r1 = or1 < pixelsize ? pixelsize : or1;
- pixelsize = min(len3(dif_second) * difl, extmax);
- r2 = or2 < pixelsize ? pixelsize : or2;
- }
- /* --- */
-
- float3 p21_diff = p2 - p1;
- float3 sphere_dif1 = (dif + dif_second) * 0.5f;
- float3 dir = direction;
- float sphere_b_tmp = dot3(dir, sphere_dif1);
- float3 sphere_dif2 = sphere_dif1 - sphere_b_tmp * dir;
-#else
- ssef P_curve[2];
-
- if(type & PRIMITIVE_CURVE) {
- P_curve[0] = load4f(&kg->__curve_keys.data[k0].x);
- P_curve[1] = load4f(&kg->__curve_keys.data[k1].x);
- }
- else {
- int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
- motion_curve_keys(kg, fobject, prim, time, k0, k1, (float4*)&P_curve);
- }
-
- const ssef or12 = shuffle<3, 3, 3, 3>(P_curve[0], P_curve[1]);
-
- ssef r12 = or12;
- const ssef vP = load4f(P);
- const ssef dif = vP - P_curve[0];
- const ssef dif_second = vP - P_curve[1];
- if(difl != 0.0f) {
- const ssef len1_sq = len3_squared_splat(dif);
- const ssef len2_sq = len3_squared_splat(dif_second);
- const ssef len12 = mm_sqrt(shuffle<0, 0, 0, 0>(len1_sq, len2_sq));
- const ssef pixelsize12 = min(len12 * difl, ssef(extmax));
- r12 = max(or12, pixelsize12);
- }
- float or1 = extract<0>(or12), or2 = extract<0>(shuffle<2>(or12));
- float r1 = extract<0>(r12), r2 = extract<0>(shuffle<2>(r12));
-
- const ssef p21_diff = P_curve[1] - P_curve[0];
- const ssef sphere_dif1 = (dif + dif_second) * 0.5f;
- const ssef dir = load4f(direction);
- const ssef sphere_b_tmp = dot3_splat(dir, sphere_dif1);
- const ssef sphere_dif2 = nmadd(sphere_b_tmp, dir, sphere_dif1);
-#endif
-
- float mr = max(r1, r2);
- float l = len3(p21_diff);
- float invl = 1.0f / l;
- float sp_r = mr + 0.5f * l;
-
- float sphere_b = dot3(dir, sphere_dif2);
- float sdisc = sphere_b * sphere_b - len3_squared(sphere_dif2) + sp_r * sp_r;
-
- if(sdisc < 0.0f)
- return false;
-
- /* obtain parameters and test midpoint distance for suitable modes */
-#ifndef __KERNEL_SSE2__
- float3 tg = p21_diff * invl;
-#else
- const ssef tg = p21_diff * invl;
-#endif
- float gd = (r2 - r1) * invl;
-
- float dirz = dot3(dir, tg);
- float difz = dot3(dif, tg);
-
- float a = 1.0f - (dirz*dirz*(1 + gd*gd));
-
- float halfb = dot3(dir, dif) - dirz*(difz + gd*(difz*gd + r1));
-
- float tcentre = -halfb/a;
- float zcentre = difz + (dirz * tcentre);
-
- if((tcentre > isect->t) && !(flags & CURVE_KN_ACCURATE))
- return false;
- if((zcentre < 0 || zcentre > l) && !(flags & CURVE_KN_ACCURATE) && !(flags & CURVE_KN_INTERSECTCORRECTION))
- return false;
-
- /* test minimum separation */
-#ifndef __KERNEL_SSE2__
- float3 cprod = cross(tg, dir);
- float cprod2sq = len3_squared(cross(tg, dif));
-#else
- const ssef cprod = cross(tg, dir);
- float cprod2sq = len3_squared(cross_zxy(tg, dif));
-#endif
- float cprodsq = len3_squared(cprod);
- float distscaled = dot3(cprod, dif);
-
- if(cprodsq == 0)
- distscaled = cprod2sq;
- else
- distscaled = (distscaled*distscaled)/cprodsq;
-
- if(distscaled > mr*mr)
- return false;
-
- /* calculate true intersection */
-#ifndef __KERNEL_SSE2__
- float3 tdif = dif + tcentre * dir;
-#else
- const ssef tdif = madd(ssef(tcentre), dir, dif);
-#endif
- float tdifz = dot3(tdif, tg);
- float tdifma = tdifz*gd + r1;
- float tb = 2*(dot3(dir, tdif) - dirz*(tdifz + gd*tdifma));
- float tc = dot3(tdif, tdif) - tdifz*tdifz - tdifma*tdifma;
- float td = tb*tb - 4*a*tc;
-
- if(td < 0.0f)
- return false;
-
- float rootd = 0.0f;
- float correction = 0.0f;
- if(flags & CURVE_KN_ACCURATE) {
- rootd = sqrtf(td);
- correction = ((-tb - rootd)/(2*a));
- }
-
- float t = tcentre + correction;
-
- if(t < isect->t) {
-
- if(flags & CURVE_KN_INTERSECTCORRECTION) {
- rootd = sqrtf(td);
- correction = ((-tb - rootd)/(2*a));
- t = tcentre + correction;
- }
-
- float z = zcentre + (dirz * correction);
- // bool backface = false;
-
- if(flags & CURVE_KN_BACKFACING && (t < 0.0f || z < 0 || z > l)) {
- // backface = true;
- correction = ((-tb + rootd)/(2*a));
- t = tcentre + correction;
- z = zcentre + (dirz * correction);
- }
-
- /* stochastic fade from minimum width */
- float adjradius = or1 + z * (or2 - or1) * invl;
- adjradius = adjradius / (r1 + z * gd);
- if(lcg_state && adjradius != 1.0f) {
- if(lcg_step_float(lcg_state) > adjradius)
- return false;
- }
- /* --- */
-
- if(t > 0.0f && t < isect->t && z >= 0 && z <= l) {
-
- if(flags & CURVE_KN_ENCLOSEFILTER) {
- float enc_ratio = 1.01f;
- if((difz > -r1 * enc_ratio) && (dot3(dif_second, tg) < r2 * enc_ratio)) {
- float a2 = 1.0f - (dirz*dirz*(1 + gd*gd*enc_ratio*enc_ratio));
- float c2 = dot3(dif, dif) - difz * difz * (1 + gd*gd*enc_ratio*enc_ratio) - r1*r1*enc_ratio*enc_ratio - 2*r1*difz*gd*enc_ratio;
- if(a2*c2 < 0.0f)
- return false;
- }
- }
-
-#ifdef __VISIBILITY_FLAG__
- /* visibility flag test. we do it here under the assumption
- * that most triangles are culled by node flags */
- if(kernel_tex_fetch(__prim_visibility, curveAddr) & visibility)
-#endif
- {
- /* record intersection */
- isect->t = t;
- isect->u = z*invl;
- isect->v = gd;
- isect->prim = curveAddr;
- isect->object = object;
- isect->type = type;
-
- return true;
- }
- }
- }
-
- return false;
-
-#ifndef __KERNEL_SSE2__
-# undef len3_squared
-# undef len3
-# undef dot3
-# endif
-}
-
-ccl_device_inline float3 curvetangent(float t, float3 p0, float3 p1, float3 p2, float3 p3)
-{
- float fc = 0.71f;
- float data[4];
- float t2 = t * t;
- data[0] = -3.0f * fc * t2 + 4.0f * fc * t - fc;
- data[1] = 3.0f * (2.0f - fc) * t2 + 2.0f * (fc - 3.0f) * t;
- data[2] = 3.0f * (fc - 2.0f) * t2 + 2.0f * (3.0f - 2.0f * fc) * t + fc;
- data[3] = 3.0f * fc * t2 - 2.0f * fc * t;
- return data[0] * p0 + data[1] * p1 + data[2] * p2 + data[3] * p3;
-}
-
-ccl_device_inline float3 curvepoint(float t, float3 p0, float3 p1, float3 p2, float3 p3)
-{
- float data[4];
- float fc = 0.71f;
- float t2 = t * t;
- float t3 = t2 * t;
- data[0] = -fc * t3 + 2.0f * fc * t2 - fc * t;
- data[1] = (2.0f - fc) * t3 + (fc - 3.0f) * t2 + 1.0f;
- data[2] = (fc - 2.0f) * t3 + (3.0f - 2.0f * fc) * t2 + fc * t;
- data[3] = fc * t3 - fc * t2;
- return data[0] * p0 + data[1] * p1 + data[2] * p2 + data[3] * p3;
-}
-
-ccl_device_inline float3 bvh_curve_refine(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray)
-{
- int flag = kernel_data.curve.curveflags;
- float t = isect->t;
- float3 P = ray->P;
- float3 D = ray->D;
-
- if(isect->object != OBJECT_NONE) {
-#ifdef __OBJECT_MOTION__
- Transform tfm = ccl_fetch(sd, ob_itfm);
-#else
- Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
-#endif
-
- P = transform_point(&tfm, P);
- D = transform_direction(&tfm, D*t);
- D = normalize_len(D, &t);
- }
-
- int prim = kernel_tex_fetch(__prim_index, isect->prim);
- float4 v00 = kernel_tex_fetch(__curves, prim);
-
- int k0 = __float_as_int(v00.x) + PRIMITIVE_UNPACK_SEGMENT(ccl_fetch(sd, type));
- int k1 = k0 + 1;
-
- float3 tg;
-
- if(flag & CURVE_KN_INTERPOLATE) {
- int ka = max(k0 - 1,__float_as_int(v00.x));
- int kb = min(k1 + 1,__float_as_int(v00.x) + __float_as_int(v00.y) - 1);
-
- float4 P_curve[4];
-
- if(ccl_fetch(sd, type) & PRIMITIVE_CURVE) {
- P_curve[0] = kernel_tex_fetch(__curve_keys, ka);
- P_curve[1] = kernel_tex_fetch(__curve_keys, k0);
- P_curve[2] = kernel_tex_fetch(__curve_keys, k1);
- P_curve[3] = kernel_tex_fetch(__curve_keys, kb);
- }
- else {
- motion_cardinal_curve_keys(kg, ccl_fetch(sd, object), ccl_fetch(sd, prim), ccl_fetch(sd, time), ka, k0, k1, kb, P_curve);
- }
-
- float3 p[4];
- p[0] = float4_to_float3(P_curve[0]);
- p[1] = float4_to_float3(P_curve[1]);
- p[2] = float4_to_float3(P_curve[2]);
- p[3] = float4_to_float3(P_curve[3]);
-
- P = P + D*t;
-
-#ifdef __UV__
- ccl_fetch(sd, u) = isect->u;
- ccl_fetch(sd, v) = 0.0f;
-#endif
-
- tg = normalize(curvetangent(isect->u, p[0], p[1], p[2], p[3]));
-
- if(kernel_data.curve.curveflags & CURVE_KN_RIBBONS) {
- ccl_fetch(sd, Ng) = normalize(-(D - tg * (dot(tg, D))));
- }
- else {
- /* direction from inside to surface of curve */
- float3 p_curr = curvepoint(isect->u, p[0], p[1], p[2], p[3]);
- ccl_fetch(sd, Ng) = normalize(P - p_curr);
-
- /* adjustment for changing radius */
- float gd = isect->v;
-
- if(gd != 0.0f) {
- ccl_fetch(sd, Ng) = ccl_fetch(sd, Ng) - gd * tg;
- ccl_fetch(sd, Ng) = normalize(ccl_fetch(sd, Ng));
- }
- }
-
- /* todo: sometimes the normal is still so that this is detected as
- * backfacing even if cull backfaces is enabled */
-
- ccl_fetch(sd, N) = ccl_fetch(sd, Ng);
- }
- else {
- float4 P_curve[2];
-
- if(ccl_fetch(sd, type) & PRIMITIVE_CURVE) {
- P_curve[0]= kernel_tex_fetch(__curve_keys, k0);
- P_curve[1]= kernel_tex_fetch(__curve_keys, k1);
- }
- else {
- motion_curve_keys(kg, ccl_fetch(sd, object), ccl_fetch(sd, prim), ccl_fetch(sd, time), k0, k1, P_curve);
- }
-
- float l = 1.0f;
- tg = normalize_len(float4_to_float3(P_curve[1] - P_curve[0]), &l);
-
- P = P + D*t;
-
- float3 dif = P - float4_to_float3(P_curve[0]);
-
-#ifdef __UV__
- ccl_fetch(sd, u) = dot(dif,tg)/l;
- ccl_fetch(sd, v) = 0.0f;
-#endif
-
- if(flag & CURVE_KN_TRUETANGENTGNORMAL) {
- ccl_fetch(sd, Ng) = -(D - tg * dot(tg, D));
- ccl_fetch(sd, Ng) = normalize(ccl_fetch(sd, Ng));
- }
- else {
- float gd = isect->v;
-
- /* direction from inside to surface of curve */
- ccl_fetch(sd, Ng) = (dif - tg * ccl_fetch(sd, u) * l) / (P_curve[0].w + ccl_fetch(sd, u) * l * gd);
-
- /* adjustment for changing radius */
- if(gd != 0.0f) {
- ccl_fetch(sd, Ng) = ccl_fetch(sd, Ng) - gd * tg;
- ccl_fetch(sd, Ng) = normalize(ccl_fetch(sd, Ng));
- }
- }
-
- ccl_fetch(sd, N) = ccl_fetch(sd, Ng);
- }
-
-#ifdef __DPDU__
- /* dPdu/dPdv */
- ccl_fetch(sd, dPdu) = tg;
- ccl_fetch(sd, dPdv) = cross(tg, ccl_fetch(sd, Ng));
-#endif
-
- if(isect->object != OBJECT_NONE) {
-#ifdef __OBJECT_MOTION__
- Transform tfm = ccl_fetch(sd, ob_tfm);
-#else
- Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
-#endif
-
- P = transform_point(&tfm, P);
- }
-
- return P;
-}
-
-#endif
+#endif /* __HAIR__ */
CCL_NAMESPACE_END
-
diff --git a/intern/cycles/kernel/geom/geom_curve_intersect.h b/intern/cycles/kernel/geom/geom_curve_intersect.h
new file mode 100644
index 00000000000..e9a149ea1ab
--- /dev/null
+++ b/intern/cycles/kernel/geom/geom_curve_intersect.h
@@ -0,0 +1,934 @@
+/*
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+/* Curve primitive intersection functions. */
+
+#ifdef __HAIR__
+
+#if defined(__KERNEL_CUDA__) && (__CUDA_ARCH__ < 300)
+# define ccl_device_curveintersect ccl_device
+#else
+# define ccl_device_curveintersect ccl_device_forceinline
+#endif
+
+#ifdef __KERNEL_SSE2__
+ccl_device_inline ssef transform_point_T3(const ssef t[3], const ssef &a)
+{
+ return madd(shuffle<0>(a), t[0], madd(shuffle<1>(a), t[1], shuffle<2>(a) * t[2]));
+}
+#endif
+
+/* On CPU pass P and dir by reference to aligned vector. */
+ccl_device_curveintersect bool cardinal_curve_intersect(
+ KernelGlobals *kg,
+ Intersection *isect,
+ const float3 ccl_ref P,
+ const float3 ccl_ref dir,
+ uint visibility,
+ int object,
+ int curveAddr,
+ float time,
+ int type,
+ uint *lcg_state,
+ float difl,
+ float extmax)
+{
+ const bool is_curve_primitive = (type & PRIMITIVE_CURVE);
+
+ if(!is_curve_primitive && kernel_data.bvh.use_bvh_steps) {
+ const float2 prim_time = kernel_tex_fetch(__prim_time, curveAddr);
+ if(time < prim_time.x || time > prim_time.y) {
+ return false;
+ }
+ }
+
+ int segment = PRIMITIVE_UNPACK_SEGMENT(type);
+ float epsilon = 0.0f;
+ float r_st, r_en;
+
+ int depth = kernel_data.curve.subdivisions;
+ int flags = kernel_data.curve.curveflags;
+ int prim = kernel_tex_fetch(__prim_index, curveAddr);
+
+#ifdef __KERNEL_SSE2__
+ ssef vdir = load4f(dir);
+ ssef vcurve_coef[4];
+ const float3 *curve_coef = (float3 *)vcurve_coef;
+
+ {
+ ssef dtmp = vdir * vdir;
+ ssef d_ss = mm_sqrt(dtmp + shuffle<2>(dtmp));
+ ssef rd_ss = load1f_first(1.0f) / d_ss;
+
+ ssei v00vec = load4i((ssei *)&kg->__curves.data[prim]);
+ int2 &v00 = (int2 &)v00vec;
+
+ int k0 = v00.x + segment;
+ int k1 = k0 + 1;
+ int ka = max(k0 - 1, v00.x);
+ int kb = min(k1 + 1, v00.x + v00.y - 1);
+
+#if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__) && (!defined(_MSC_VER) || _MSC_VER > 1800)
+ avxf P_curve_0_1, P_curve_2_3;
+ if(is_curve_primitive) {
+ P_curve_0_1 = _mm256_loadu2_m128(&kg->__curve_keys.data[k0].x, &kg->__curve_keys.data[ka].x);
+ P_curve_2_3 = _mm256_loadu2_m128(&kg->__curve_keys.data[kb].x, &kg->__curve_keys.data[k1].x);
+ }
+ else {
+ int fobject = (object == OBJECT_NONE) ? kernel_tex_fetch(__prim_object, curveAddr) : object;
+ motion_cardinal_curve_keys_avx(kg, fobject, prim, time, ka, k0, k1, kb, &P_curve_0_1,&P_curve_2_3);
+ }
+#else /* __KERNEL_AVX2__ */
+ ssef P_curve[4];
+
+ if(is_curve_primitive) {
+ P_curve[0] = load4f(&kg->__curve_keys.data[ka].x);
+ P_curve[1] = load4f(&kg->__curve_keys.data[k0].x);
+ P_curve[2] = load4f(&kg->__curve_keys.data[k1].x);
+ P_curve[3] = load4f(&kg->__curve_keys.data[kb].x);
+ }
+ else {
+ int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
+ motion_cardinal_curve_keys(kg, fobject, prim, time, ka, k0, k1, kb, (float4*)&P_curve);
+ }
+#endif /* __KERNEL_AVX2__ */
+
+ ssef rd_sgn = set_sign_bit<0, 1, 1, 1>(shuffle<0>(rd_ss));
+ ssef mul_zxxy = shuffle<2, 0, 0, 1>(vdir) * rd_sgn;
+ ssef mul_yz = shuffle<1, 2, 1, 2>(vdir) * mul_zxxy;
+ ssef mul_shuf = shuffle<0, 1, 2, 3>(mul_zxxy, mul_yz);
+ ssef vdir0 = vdir & cast(ssei(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0));
+
+ ssef htfm0 = shuffle<0, 2, 0, 3>(mul_shuf, vdir0);
+ ssef htfm1 = shuffle<1, 0, 1, 3>(load1f_first(extract<0>(d_ss)), vdir0);
+ ssef htfm2 = shuffle<1, 3, 2, 3>(mul_shuf, vdir0);
+
+#if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__) && (!defined(_MSC_VER) || _MSC_VER > 1800)
+ const avxf vPP = _mm256_broadcast_ps(&P.m128);
+ const avxf htfm00 = avxf(htfm0.m128, htfm0.m128);
+ const avxf htfm11 = avxf(htfm1.m128, htfm1.m128);
+ const avxf htfm22 = avxf(htfm2.m128, htfm2.m128);
+
+ const avxf p01 = madd(shuffle<0>(P_curve_0_1 - vPP),
+ htfm00,
+ madd(shuffle<1>(P_curve_0_1 - vPP),
+ htfm11,
+ shuffle<2>(P_curve_0_1 - vPP) * htfm22));
+ const avxf p23 = madd(shuffle<0>(P_curve_2_3 - vPP),
+ htfm00,
+ madd(shuffle<1>(P_curve_2_3 - vPP),
+ htfm11,
+ shuffle<2>(P_curve_2_3 - vPP)*htfm22));
+
+ const ssef p0 = _mm256_castps256_ps128(p01);
+ const ssef p1 = _mm256_extractf128_ps(p01, 1);
+ const ssef p2 = _mm256_castps256_ps128(p23);
+ const ssef p3 = _mm256_extractf128_ps(p23, 1);
+
+ const ssef P_curve_1 = _mm256_extractf128_ps(P_curve_0_1, 1);
+ r_st = ((float4 &)P_curve_1).w;
+ const ssef P_curve_2 = _mm256_castps256_ps128(P_curve_2_3);
+ r_en = ((float4 &)P_curve_2).w;
+#else /* __KERNEL_AVX2__ */
+ ssef htfm[] = { htfm0, htfm1, htfm2 };
+ ssef vP = load4f(P);
+ ssef p0 = transform_point_T3(htfm, P_curve[0] - vP);
+ ssef p1 = transform_point_T3(htfm, P_curve[1] - vP);
+ ssef p2 = transform_point_T3(htfm, P_curve[2] - vP);
+ ssef p3 = transform_point_T3(htfm, P_curve[3] - vP);
+
+ r_st = ((float4 &)P_curve[1]).w;
+ r_en = ((float4 &)P_curve[2]).w;
+#endif /* __KERNEL_AVX2__ */
+
+ float fc = 0.71f;
+ ssef vfc = ssef(fc);
+ ssef vfcxp3 = vfc * p3;
+
+ vcurve_coef[0] = p1;
+ vcurve_coef[1] = vfc * (p2 - p0);
+ vcurve_coef[2] = madd(ssef(fc * 2.0f), p0, madd(ssef(fc - 3.0f), p1, msub(ssef(3.0f - 2.0f * fc), p2, vfcxp3)));
+ vcurve_coef[3] = msub(ssef(fc - 2.0f), p2 - p1, msub(vfc, p0, vfcxp3));
+
+ }
+#else
+ float3 curve_coef[4];
+
+ /* curve Intersection check */
+ /* obtain curve parameters */
+ {
+ /* ray transform created - this should be created at beginning of intersection loop */
+ Transform htfm;
+ float d = sqrtf(dir.x * dir.x + dir.z * dir.z);
+ htfm = make_transform(
+ dir.z / d, 0, -dir.x /d, 0,
+ -dir.x * dir.y /d, d, -dir.y * dir.z /d, 0,
+ dir.x, dir.y, dir.z, 0,
+ 0, 0, 0, 1);
+
+ float4 v00 = kernel_tex_fetch(__curves, prim);
+
+ int k0 = __float_as_int(v00.x) + segment;
+ int k1 = k0 + 1;
+
+ int ka = max(k0 - 1,__float_as_int(v00.x));
+ int kb = min(k1 + 1,__float_as_int(v00.x) + __float_as_int(v00.y) - 1);
+
+ float4 P_curve[4];
+
+ if(is_curve_primitive) {
+ P_curve[0] = kernel_tex_fetch(__curve_keys, ka);
+ P_curve[1] = kernel_tex_fetch(__curve_keys, k0);
+ P_curve[2] = kernel_tex_fetch(__curve_keys, k1);
+ P_curve[3] = kernel_tex_fetch(__curve_keys, kb);
+ }
+ else {
+ int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
+ motion_cardinal_curve_keys(kg, fobject, prim, time, ka, k0, k1, kb, P_curve);
+ }
+
+ float3 p0 = transform_point(&htfm, float4_to_float3(P_curve[0]) - P);
+ float3 p1 = transform_point(&htfm, float4_to_float3(P_curve[1]) - P);
+ float3 p2 = transform_point(&htfm, float4_to_float3(P_curve[2]) - P);
+ float3 p3 = transform_point(&htfm, float4_to_float3(P_curve[3]) - P);
+
+ float fc = 0.71f;
+ curve_coef[0] = p1;
+ curve_coef[1] = -fc*p0 + fc*p2;
+ curve_coef[2] = 2.0f * fc * p0 + (fc - 3.0f) * p1 + (3.0f - 2.0f * fc) * p2 - fc * p3;
+ curve_coef[3] = -fc * p0 + (2.0f - fc) * p1 + (fc - 2.0f) * p2 + fc * p3;
+ r_st = P_curve[1].w;
+ r_en = P_curve[2].w;
+ }
+#endif
+
+ float r_curr = max(r_st, r_en);
+
+ if((flags & CURVE_KN_RIBBONS) || !(flags & CURVE_KN_BACKFACING))
+ epsilon = 2 * r_curr;
+
+ /* find bounds - this is slow for cubic curves */
+ float upper, lower;
+
+ float zextrem[4];
+ curvebounds(&lower, &upper, &zextrem[0], &zextrem[1], &zextrem[2], &zextrem[3], curve_coef[0].z, curve_coef[1].z, curve_coef[2].z, curve_coef[3].z);
+ if(lower - r_curr > isect->t || upper + r_curr < epsilon)
+ return false;
+
+ /* minimum width extension */
+ float mw_extension = min(difl * fabsf(upper), extmax);
+ float r_ext = mw_extension + r_curr;
+
+ float xextrem[4];
+ curvebounds(&lower, &upper, &xextrem[0], &xextrem[1], &xextrem[2], &xextrem[3], curve_coef[0].x, curve_coef[1].x, curve_coef[2].x, curve_coef[3].x);
+ if(lower > r_ext || upper < -r_ext)
+ return false;
+
+ float yextrem[4];
+ curvebounds(&lower, &upper, &yextrem[0], &yextrem[1], &yextrem[2], &yextrem[3], curve_coef[0].y, curve_coef[1].y, curve_coef[2].y, curve_coef[3].y);
+ if(lower > r_ext || upper < -r_ext)
+ return false;
+
+ /* setup recurrent loop */
+ int level = 1 << depth;
+ int tree = 0;
+ float resol = 1.0f / (float)level;
+ bool hit = false;
+
+ /* begin loop */
+ while(!(tree >> (depth))) {
+ const float i_st = tree * resol;
+ const float i_en = i_st + (level * resol);
+
+#ifdef __KERNEL_SSE2__
+ ssef vi_st = ssef(i_st), vi_en = ssef(i_en);
+ ssef vp_st = madd(madd(madd(vcurve_coef[3], vi_st, vcurve_coef[2]), vi_st, vcurve_coef[1]), vi_st, vcurve_coef[0]);
+ ssef vp_en = madd(madd(madd(vcurve_coef[3], vi_en, vcurve_coef[2]), vi_en, vcurve_coef[1]), vi_en, vcurve_coef[0]);
+
+ ssef vbmin = min(vp_st, vp_en);
+ ssef vbmax = max(vp_st, vp_en);
+
+ float3 &bmin = (float3 &)vbmin, &bmax = (float3 &)vbmax;
+ float &bminx = bmin.x, &bminy = bmin.y, &bminz = bmin.z;
+ float &bmaxx = bmax.x, &bmaxy = bmax.y, &bmaxz = bmax.z;
+ float3 &p_st = (float3 &)vp_st, &p_en = (float3 &)vp_en;
+#else
+ float3 p_st = ((curve_coef[3] * i_st + curve_coef[2]) * i_st + curve_coef[1]) * i_st + curve_coef[0];
+ float3 p_en = ((curve_coef[3] * i_en + curve_coef[2]) * i_en + curve_coef[1]) * i_en + curve_coef[0];
+
+ float bminx = min(p_st.x, p_en.x);
+ float bmaxx = max(p_st.x, p_en.x);
+ float bminy = min(p_st.y, p_en.y);
+ float bmaxy = max(p_st.y, p_en.y);
+ float bminz = min(p_st.z, p_en.z);
+ float bmaxz = max(p_st.z, p_en.z);
+#endif
+
+ if(xextrem[0] >= i_st && xextrem[0] <= i_en) {
+ bminx = min(bminx,xextrem[1]);
+ bmaxx = max(bmaxx,xextrem[1]);
+ }
+ if(xextrem[2] >= i_st && xextrem[2] <= i_en) {
+ bminx = min(bminx,xextrem[3]);
+ bmaxx = max(bmaxx,xextrem[3]);
+ }
+ if(yextrem[0] >= i_st && yextrem[0] <= i_en) {
+ bminy = min(bminy,yextrem[1]);
+ bmaxy = max(bmaxy,yextrem[1]);
+ }
+ if(yextrem[2] >= i_st && yextrem[2] <= i_en) {
+ bminy = min(bminy,yextrem[3]);
+ bmaxy = max(bmaxy,yextrem[3]);
+ }
+ if(zextrem[0] >= i_st && zextrem[0] <= i_en) {
+ bminz = min(bminz,zextrem[1]);
+ bmaxz = max(bmaxz,zextrem[1]);
+ }
+ if(zextrem[2] >= i_st && zextrem[2] <= i_en) {
+ bminz = min(bminz,zextrem[3]);
+ bmaxz = max(bmaxz,zextrem[3]);
+ }
+
+ float r1 = r_st + (r_en - r_st) * i_st;
+ float r2 = r_st + (r_en - r_st) * i_en;
+ r_curr = max(r1, r2);
+
+ mw_extension = min(difl * fabsf(bmaxz), extmax);
+ float r_ext = mw_extension + r_curr;
+ float coverage = 1.0f;
+
+ if(bminz - r_curr > isect->t || bmaxz + r_curr < epsilon || bminx > r_ext|| bmaxx < -r_ext|| bminy > r_ext|| bmaxy < -r_ext) {
+ /* the bounding box does not overlap the square centered at O */
+ tree += level;
+ level = tree & -tree;
+ }
+ else if(level == 1) {
+
+ /* the maximum recursion depth is reached.
+ * check if dP0.(Q-P0)>=0 and dPn.(Pn-Q)>=0.
+ * dP* is reversed if necessary.*/
+ float t = isect->t;
+ float u = 0.0f;
+ float gd = 0.0f;
+
+ if(flags & CURVE_KN_RIBBONS) {
+ float3 tg = (p_en - p_st);
+#ifdef __KERNEL_SSE__
+ const float3 tg_sq = tg * tg;
+ float w = tg_sq.x + tg_sq.y;
+#else
+ float w = tg.x * tg.x + tg.y * tg.y;
+#endif
+ if(w == 0) {
+ tree++;
+ level = tree & -tree;
+ continue;
+ }
+#ifdef __KERNEL_SSE__
+ const float3 p_sttg = p_st * tg;
+ w = -(p_sttg.x + p_sttg.y) / w;
+#else
+ w = -(p_st.x * tg.x + p_st.y * tg.y) / w;
+#endif
+ w = saturate(w);
+
+ /* compute u on the curve segment */
+ u = i_st * (1 - w) + i_en * w;
+ r_curr = r_st + (r_en - r_st) * u;
+ /* compare x-y distances */
+ float3 p_curr = ((curve_coef[3] * u + curve_coef[2]) * u + curve_coef[1]) * u + curve_coef[0];
+
+ float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1];
+ if(dot(tg, dp_st)< 0)
+ dp_st *= -1;
+ if(dot(dp_st, -p_st) + p_curr.z * dp_st.z < 0) {
+ tree++;
+ level = tree & -tree;
+ continue;
+ }
+ float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1];
+ if(dot(tg, dp_en) < 0)
+ dp_en *= -1;
+ if(dot(dp_en, p_en) - p_curr.z * dp_en.z < 0) {
+ tree++;
+ level = tree & -tree;
+ continue;
+ }
+
+ /* compute coverage */
+ float r_ext = r_curr;
+ coverage = 1.0f;
+ if(difl != 0.0f) {
+ mw_extension = min(difl * fabsf(bmaxz), extmax);
+ r_ext = mw_extension + r_curr;
+#ifdef __KERNEL_SSE__
+ const float3 p_curr_sq = p_curr * p_curr;
+ const float3 dxxx(_mm_sqrt_ss(_mm_hadd_ps(p_curr_sq.m128, p_curr_sq.m128)));
+ float d = dxxx.x;
+#else
+ float d = sqrtf(p_curr.x * p_curr.x + p_curr.y * p_curr.y);
+#endif
+ float d0 = d - r_curr;
+ float d1 = d + r_curr;
+ float inv_mw_extension = 1.0f/mw_extension;
+ if(d0 >= 0)
+ coverage = (min(d1 * inv_mw_extension, 1.0f) - min(d0 * inv_mw_extension, 1.0f)) * 0.5f;
+ else // inside
+ coverage = (min(d1 * inv_mw_extension, 1.0f) + min(-d0 * inv_mw_extension, 1.0f)) * 0.5f;
+ }
+
+ if(p_curr.x * p_curr.x + p_curr.y * p_curr.y >= r_ext * r_ext || p_curr.z <= epsilon || isect->t < p_curr.z) {
+ tree++;
+ level = tree & -tree;
+ continue;
+ }
+
+ t = p_curr.z;
+
+ /* stochastic fade from minimum width */
+ if(difl != 0.0f && lcg_state) {
+ if(coverage != 1.0f && (lcg_step_float(lcg_state) > coverage))
+ return hit;
+ }
+ }
+ else {
+ float l = len(p_en - p_st);
+ /* minimum width extension */
+ float or1 = r1;
+ float or2 = r2;
+
+ if(difl != 0.0f) {
+ mw_extension = min(len(p_st - P) * difl, extmax);
+ or1 = r1 < mw_extension ? mw_extension : r1;
+ mw_extension = min(len(p_en - P) * difl, extmax);
+ or2 = r2 < mw_extension ? mw_extension : r2;
+ }
+ /* --- */
+ float invl = 1.0f/l;
+ float3 tg = (p_en - p_st) * invl;
+ gd = (or2 - or1) * invl;
+ float difz = -dot(p_st,tg);
+ float cyla = 1.0f - (tg.z * tg.z * (1 + gd*gd));
+ float invcyla = 1.0f/cyla;
+ float halfb = (-p_st.z - tg.z*(difz + gd*(difz*gd + or1)));
+ float tcentre = -halfb*invcyla;
+ float zcentre = difz + (tg.z * tcentre);
+ float3 tdif = - p_st;
+ tdif.z += tcentre;
+ float tdifz = dot(tdif,tg);
+ float tb = 2*(tdif.z - tg.z*(tdifz + gd*(tdifz*gd + or1)));
+ float tc = dot(tdif,tdif) - tdifz * tdifz * (1 + gd*gd) - or1*or1 - 2*or1*tdifz*gd;
+ float td = tb*tb - 4*cyla*tc;
+ if(td < 0.0f) {
+ tree++;
+ level = tree & -tree;
+ continue;
+ }
+
+ float rootd = sqrtf(td);
+ float correction = (-tb - rootd) * 0.5f * invcyla;
+ t = tcentre + correction;
+
+ float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1];
+ if(dot(tg, dp_st)< 0)
+ dp_st *= -1;
+ float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1];
+ if(dot(tg, dp_en) < 0)
+ dp_en *= -1;
+
+ if(flags & CURVE_KN_BACKFACING && (dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 || isect->t < t || t <= 0.0f)) {
+ correction = (-tb + rootd) * 0.5f * invcyla;
+ t = tcentre + correction;
+ }
+
+ if(dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 || isect->t < t || t <= 0.0f) {
+ tree++;
+ level = tree & -tree;
+ continue;
+ }
+
+ float w = (zcentre + (tg.z * correction)) * invl;
+ w = saturate(w);
+ /* compute u on the curve segment */
+ u = i_st * (1 - w) + i_en * w;
+
+ /* stochastic fade from minimum width */
+ if(difl != 0.0f && lcg_state) {
+ r_curr = r1 + (r2 - r1) * w;
+ r_ext = or1 + (or2 - or1) * w;
+ coverage = r_curr/r_ext;
+
+ if(coverage != 1.0f && (lcg_step_float(lcg_state) > coverage))
+ return hit;
+ }
+ }
+ /* we found a new intersection */
+
+#ifdef __VISIBILITY_FLAG__
+ /* visibility flag test. we do it here under the assumption
+ * that most triangles are culled by node flags */
+ if(kernel_tex_fetch(__prim_visibility, curveAddr) & visibility)
+#endif
+ {
+ /* record intersection */
+ isect->t = t;
+ isect->u = u;
+ isect->v = gd;
+ isect->prim = curveAddr;
+ isect->object = object;
+ isect->type = type;
+ hit = true;
+ }
+
+ tree++;
+ level = tree & -tree;
+ }
+ else {
+ /* split the curve into two curves and process */
+ level = level >> 1;
+ }
+ }
+
+ return hit;
+}
+
+ccl_device_curveintersect bool curve_intersect(KernelGlobals *kg,
+ Intersection *isect,
+ float3 P,
+ float3 direction,
+ uint visibility,
+ int object,
+ int curveAddr,
+ float time,
+ int type,
+ uint *lcg_state,
+ float difl,
+ float extmax)
+{
+ /* define few macros to minimize code duplication for SSE */
+#ifndef __KERNEL_SSE2__
+# define len3_squared(x) len_squared(x)
+# define len3(x) len(x)
+# define dot3(x, y) dot(x, y)
+#endif
+
+ const bool is_curve_primitive = (type & PRIMITIVE_CURVE);
+
+ if(!is_curve_primitive && kernel_data.bvh.use_bvh_steps) {
+ const float2 prim_time = kernel_tex_fetch(__prim_time, curveAddr);
+ if(time < prim_time.x || time > prim_time.y) {
+ return false;
+ }
+ }
+
+ int segment = PRIMITIVE_UNPACK_SEGMENT(type);
+ /* curve Intersection check */
+ int flags = kernel_data.curve.curveflags;
+
+ int prim = kernel_tex_fetch(__prim_index, curveAddr);
+ float4 v00 = kernel_tex_fetch(__curves, prim);
+
+ int cnum = __float_as_int(v00.x);
+ int k0 = cnum + segment;
+ int k1 = k0 + 1;
+
+#ifndef __KERNEL_SSE2__
+ float4 P_curve[2];
+
+ if(is_curve_primitive) {
+ P_curve[0] = kernel_tex_fetch(__curve_keys, k0);
+ P_curve[1] = kernel_tex_fetch(__curve_keys, k1);
+ }
+ else {
+ int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
+ motion_curve_keys(kg, fobject, prim, time, k0, k1, P_curve);
+ }
+
+ float or1 = P_curve[0].w;
+ float or2 = P_curve[1].w;
+ float3 p1 = float4_to_float3(P_curve[0]);
+ float3 p2 = float4_to_float3(P_curve[1]);
+
+ /* minimum width extension */
+ float r1 = or1;
+ float r2 = or2;
+ float3 dif = P - p1;
+ float3 dif_second = P - p2;
+ if(difl != 0.0f) {
+ float pixelsize = min(len3(dif) * difl, extmax);
+ r1 = or1 < pixelsize ? pixelsize : or1;
+ pixelsize = min(len3(dif_second) * difl, extmax);
+ r2 = or2 < pixelsize ? pixelsize : or2;
+ }
+ /* --- */
+
+ float3 p21_diff = p2 - p1;
+ float3 sphere_dif1 = (dif + dif_second) * 0.5f;
+ float3 dir = direction;
+ float sphere_b_tmp = dot3(dir, sphere_dif1);
+ float3 sphere_dif2 = sphere_dif1 - sphere_b_tmp * dir;
+#else
+ ssef P_curve[2];
+
+ if(is_curve_primitive) {
+ P_curve[0] = load4f(&kg->__curve_keys.data[k0].x);
+ P_curve[1] = load4f(&kg->__curve_keys.data[k1].x);
+ }
+ else {
+ int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, curveAddr): object;
+ motion_curve_keys(kg, fobject, prim, time, k0, k1, (float4*)&P_curve);
+ }
+
+ const ssef or12 = shuffle<3, 3, 3, 3>(P_curve[0], P_curve[1]);
+
+ ssef r12 = or12;
+ const ssef vP = load4f(P);
+ const ssef dif = vP - P_curve[0];
+ const ssef dif_second = vP - P_curve[1];
+ if(difl != 0.0f) {
+ const ssef len1_sq = len3_squared_splat(dif);
+ const ssef len2_sq = len3_squared_splat(dif_second);
+ const ssef len12 = mm_sqrt(shuffle<0, 0, 0, 0>(len1_sq, len2_sq));
+ const ssef pixelsize12 = min(len12 * difl, ssef(extmax));
+ r12 = max(or12, pixelsize12);
+ }
+ float or1 = extract<0>(or12), or2 = extract<0>(shuffle<2>(or12));
+ float r1 = extract<0>(r12), r2 = extract<0>(shuffle<2>(r12));
+
+ const ssef p21_diff = P_curve[1] - P_curve[0];
+ const ssef sphere_dif1 = (dif + dif_second) * 0.5f;
+ const ssef dir = load4f(direction);
+ const ssef sphere_b_tmp = dot3_splat(dir, sphere_dif1);
+ const ssef sphere_dif2 = nmadd(sphere_b_tmp, dir, sphere_dif1);
+#endif
+
+ float mr = max(r1, r2);
+ float l = len3(p21_diff);
+ float invl = 1.0f / l;
+ float sp_r = mr + 0.5f * l;
+
+ float sphere_b = dot3(dir, sphere_dif2);
+ float sdisc = sphere_b * sphere_b - len3_squared(sphere_dif2) + sp_r * sp_r;
+
+ if(sdisc < 0.0f)
+ return false;
+
+ /* obtain parameters and test midpoint distance for suitable modes */
+#ifndef __KERNEL_SSE2__
+ float3 tg = p21_diff * invl;
+#else
+ const ssef tg = p21_diff * invl;
+#endif
+ float gd = (r2 - r1) * invl;
+
+ float dirz = dot3(dir, tg);
+ float difz = dot3(dif, tg);
+
+ float a = 1.0f - (dirz*dirz*(1 + gd*gd));
+
+ float halfb = dot3(dir, dif) - dirz*(difz + gd*(difz*gd + r1));
+
+ float tcentre = -halfb/a;
+ float zcentre = difz + (dirz * tcentre);
+
+ if((tcentre > isect->t) && !(flags & CURVE_KN_ACCURATE))
+ return false;
+ if((zcentre < 0 || zcentre > l) && !(flags & CURVE_KN_ACCURATE) && !(flags & CURVE_KN_INTERSECTCORRECTION))
+ return false;
+
+ /* test minimum separation */
+#ifndef __KERNEL_SSE2__
+ float3 cprod = cross(tg, dir);
+ float cprod2sq = len3_squared(cross(tg, dif));
+#else
+ const ssef cprod = cross(tg, dir);
+ float cprod2sq = len3_squared(cross_zxy(tg, dif));
+#endif
+ float cprodsq = len3_squared(cprod);
+ float distscaled = dot3(cprod, dif);
+
+ if(cprodsq == 0)
+ distscaled = cprod2sq;
+ else
+ distscaled = (distscaled*distscaled)/cprodsq;
+
+ if(distscaled > mr*mr)
+ return false;
+
+ /* calculate true intersection */
+#ifndef __KERNEL_SSE2__
+ float3 tdif = dif + tcentre * dir;
+#else
+ const ssef tdif = madd(ssef(tcentre), dir, dif);
+#endif
+ float tdifz = dot3(tdif, tg);
+ float tdifma = tdifz*gd + r1;
+ float tb = 2*(dot3(dir, tdif) - dirz*(tdifz + gd*tdifma));
+ float tc = dot3(tdif, tdif) - tdifz*tdifz - tdifma*tdifma;
+ float td = tb*tb - 4*a*tc;
+
+ if(td < 0.0f)
+ return false;
+
+ float rootd = 0.0f;
+ float correction = 0.0f;
+ if(flags & CURVE_KN_ACCURATE) {
+ rootd = sqrtf(td);
+ correction = ((-tb - rootd)/(2*a));
+ }
+
+ float t = tcentre + correction;
+
+ if(t < isect->t) {
+
+ if(flags & CURVE_KN_INTERSECTCORRECTION) {
+ rootd = sqrtf(td);
+ correction = ((-tb - rootd)/(2*a));
+ t = tcentre + correction;
+ }
+
+ float z = zcentre + (dirz * correction);
+ // bool backface = false;
+
+ if(flags & CURVE_KN_BACKFACING && (t < 0.0f || z < 0 || z > l)) {
+ // backface = true;
+ correction = ((-tb + rootd)/(2*a));
+ t = tcentre + correction;
+ z = zcentre + (dirz * correction);
+ }
+
+ /* stochastic fade from minimum width */
+ float adjradius = or1 + z * (or2 - or1) * invl;
+ adjradius = adjradius / (r1 + z * gd);
+ if(lcg_state && adjradius != 1.0f) {
+ if(lcg_step_float(lcg_state) > adjradius)
+ return false;
+ }
+ /* --- */
+
+ if(t > 0.0f && t < isect->t && z >= 0 && z <= l) {
+
+ if(flags & CURVE_KN_ENCLOSEFILTER) {
+ float enc_ratio = 1.01f;
+ if((difz > -r1 * enc_ratio) && (dot3(dif_second, tg) < r2 * enc_ratio)) {
+ float a2 = 1.0f - (dirz*dirz*(1 + gd*gd*enc_ratio*enc_ratio));
+ float c2 = dot3(dif, dif) - difz * difz * (1 + gd*gd*enc_ratio*enc_ratio) - r1*r1*enc_ratio*enc_ratio - 2*r1*difz*gd*enc_ratio;
+ if(a2*c2 < 0.0f)
+ return false;
+ }
+ }
+
+#ifdef __VISIBILITY_FLAG__
+ /* visibility flag test. we do it here under the assumption
+ * that most triangles are culled by node flags */
+ if(kernel_tex_fetch(__prim_visibility, curveAddr) & visibility)
+#endif
+ {
+ /* record intersection */
+ isect->t = t;
+ isect->u = z*invl;
+ isect->v = gd;
+ isect->prim = curveAddr;
+ isect->object = object;
+ isect->type = type;
+
+ return true;
+ }
+ }
+ }
+
+ return false;
+
+#ifndef __KERNEL_SSE2__
+# undef len3_squared
+# undef len3
+# undef dot3
+#endif
+}
+
+ccl_device_inline float3 curvetangent(float t, float3 p0, float3 p1, float3 p2, float3 p3)
+{
+ float fc = 0.71f;
+ float data[4];
+ float t2 = t * t;
+ data[0] = -3.0f * fc * t2 + 4.0f * fc * t - fc;
+ data[1] = 3.0f * (2.0f - fc) * t2 + 2.0f * (fc - 3.0f) * t;
+ data[2] = 3.0f * (fc - 2.0f) * t2 + 2.0f * (3.0f - 2.0f * fc) * t + fc;
+ data[3] = 3.0f * fc * t2 - 2.0f * fc * t;
+ return data[0] * p0 + data[1] * p1 + data[2] * p2 + data[3] * p3;
+}
+
+ccl_device_inline float3 curvepoint(float t, float3 p0, float3 p1, float3 p2, float3 p3)
+{
+ float data[4];
+ float fc = 0.71f;
+ float t2 = t * t;
+ float t3 = t2 * t;
+ data[0] = -fc * t3 + 2.0f * fc * t2 - fc * t;
+ data[1] = (2.0f - fc) * t3 + (fc - 3.0f) * t2 + 1.0f;
+ data[2] = (fc - 2.0f) * t3 + (3.0f - 2.0f * fc) * t2 + fc * t;
+ data[3] = fc * t3 - fc * t2;
+ return data[0] * p0 + data[1] * p1 + data[2] * p2 + data[3] * p3;
+}
+
+ccl_device_inline float3 curve_refine(KernelGlobals *kg,
+ ShaderData *sd,
+ const Intersection *isect,
+ const Ray *ray)
+{
+ int flag = kernel_data.curve.curveflags;
+ float t = isect->t;
+ float3 P = ray->P;
+ float3 D = ray->D;
+
+ if(isect->object != OBJECT_NONE) {
+#ifdef __OBJECT_MOTION__
+ Transform tfm = sd->ob_itfm;
+#else
+ Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
+#endif
+
+ P = transform_point(&tfm, P);
+ D = transform_direction(&tfm, D*t);
+ D = normalize_len(D, &t);
+ }
+
+ int prim = kernel_tex_fetch(__prim_index, isect->prim);
+ float4 v00 = kernel_tex_fetch(__curves, prim);
+
+ int k0 = __float_as_int(v00.x) + PRIMITIVE_UNPACK_SEGMENT(sd->type);
+ int k1 = k0 + 1;
+
+ float3 tg;
+
+ if(flag & CURVE_KN_INTERPOLATE) {
+ int ka = max(k0 - 1,__float_as_int(v00.x));
+ int kb = min(k1 + 1,__float_as_int(v00.x) + __float_as_int(v00.y) - 1);
+
+ float4 P_curve[4];
+
+ if(sd->type & PRIMITIVE_CURVE) {
+ P_curve[0] = kernel_tex_fetch(__curve_keys, ka);
+ P_curve[1] = kernel_tex_fetch(__curve_keys, k0);
+ P_curve[2] = kernel_tex_fetch(__curve_keys, k1);
+ P_curve[3] = kernel_tex_fetch(__curve_keys, kb);
+ }
+ else {
+ motion_cardinal_curve_keys(kg, sd->object, sd->prim, sd->time, ka, k0, k1, kb, P_curve);
+ }
+
+ float3 p[4];
+ p[0] = float4_to_float3(P_curve[0]);
+ p[1] = float4_to_float3(P_curve[1]);
+ p[2] = float4_to_float3(P_curve[2]);
+ p[3] = float4_to_float3(P_curve[3]);
+
+ P = P + D*t;
+
+#ifdef __UV__
+ sd->u = isect->u;
+ sd->v = 0.0f;
+#endif
+
+ tg = normalize(curvetangent(isect->u, p[0], p[1], p[2], p[3]));
+
+ if(kernel_data.curve.curveflags & CURVE_KN_RIBBONS) {
+ sd->Ng = normalize(-(D - tg * (dot(tg, D))));
+ }
+ else {
+ /* direction from inside to surface of curve */
+ float3 p_curr = curvepoint(isect->u, p[0], p[1], p[2], p[3]);
+ sd->Ng = normalize(P - p_curr);
+
+ /* adjustment for changing radius */
+ float gd = isect->v;
+
+ if(gd != 0.0f) {
+ sd->Ng = sd->Ng - gd * tg;
+ sd->Ng = normalize(sd->Ng);
+ }
+ }
+
+ /* todo: sometimes the normal is still so that this is detected as
+ * backfacing even if cull backfaces is enabled */
+
+ sd->N = sd->Ng;
+ }
+ else {
+ float4 P_curve[2];
+
+ if(sd->type & PRIMITIVE_CURVE) {
+ P_curve[0]= kernel_tex_fetch(__curve_keys, k0);
+ P_curve[1]= kernel_tex_fetch(__curve_keys, k1);
+ }
+ else {
+ motion_curve_keys(kg, sd->object, sd->prim, sd->time, k0, k1, P_curve);
+ }
+
+ float l = 1.0f;
+ tg = normalize_len(float4_to_float3(P_curve[1] - P_curve[0]), &l);
+
+ P = P + D*t;
+
+ float3 dif = P - float4_to_float3(P_curve[0]);
+
+#ifdef __UV__
+ sd->u = dot(dif,tg)/l;
+ sd->v = 0.0f;
+#endif
+
+ if(flag & CURVE_KN_TRUETANGENTGNORMAL) {
+ sd->Ng = -(D - tg * dot(tg, D));
+ sd->Ng = normalize(sd->Ng);
+ }
+ else {
+ float gd = isect->v;
+
+ /* direction from inside to surface of curve */
+ sd->Ng = (dif - tg * sd->u * l) / (P_curve[0].w + sd->u * l * gd);
+
+ /* adjustment for changing radius */
+ if(gd != 0.0f) {
+ sd->Ng = sd->Ng - gd * tg;
+ sd->Ng = normalize(sd->Ng);
+ }
+ }
+
+ sd->N = sd->Ng;
+ }
+
+#ifdef __DPDU__
+ /* dPdu/dPdv */
+ sd->dPdu = tg;
+ sd->dPdv = cross(tg, sd->Ng);
+#endif
+
+ if(isect->object != OBJECT_NONE) {
+#ifdef __OBJECT_MOTION__
+ Transform tfm = sd->ob_tfm;
+#else
+ Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
+#endif
+
+ P = transform_point(&tfm, P);
+ }
+
+ return P;
+}
+
+#endif
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/geom/geom_motion_curve.h b/intern/cycles/kernel/geom/geom_motion_curve.h
index 6de5aa7ea99..119bdb2f15c 100644
--- a/intern/cycles/kernel/geom/geom_motion_curve.h
+++ b/intern/cycles/kernel/geom/geom_motion_curve.h
@@ -50,12 +50,12 @@ ccl_device_inline int find_attribute_curve_motion(KernelGlobals *kg, int object,
ccl_device_inline void motion_curve_keys_for_step(KernelGlobals *kg, int offset, int numkeys, int numsteps, int step, int k0, int k1, float4 keys[2])
{
if(step == numsteps) {
- /* center step: regular vertex location */
+ /* center step: regular key location */
keys[0] = kernel_tex_fetch(__curve_keys, k0);
keys[1] = kernel_tex_fetch(__curve_keys, k1);
}
else {
- /* center step not stored in this array */
+ /* center step is not stored in this array */
if(step > numsteps)
step--;
@@ -97,14 +97,14 @@ ccl_device_inline void motion_curve_keys(KernelGlobals *kg, int object, int prim
ccl_device_inline void motion_cardinal_curve_keys_for_step(KernelGlobals *kg, int offset, int numkeys, int numsteps, int step, int k0, int k1, int k2, int k3, float4 keys[4])
{
if(step == numsteps) {
- /* center step: regular vertex location */
+ /* center step: regular key location */
keys[0] = kernel_tex_fetch(__curve_keys, k0);
keys[1] = kernel_tex_fetch(__curve_keys, k1);
keys[2] = kernel_tex_fetch(__curve_keys, k2);
keys[3] = kernel_tex_fetch(__curve_keys, k3);
}
else {
- /* center step not store in this array */
+ /* center step is not stored in this array */
if(step > numsteps)
step--;
@@ -118,7 +118,12 @@ ccl_device_inline void motion_cardinal_curve_keys_for_step(KernelGlobals *kg, in
}
/* return 2 curve key locations */
-ccl_device_inline void motion_cardinal_curve_keys(KernelGlobals *kg, int object, int prim, float time, int k0, int k1, int k2, int k3, float4 keys[4])
+ccl_device_inline void motion_cardinal_curve_keys(KernelGlobals *kg,
+ int object,
+ int prim,
+ float time,
+ int k0, int k1, int k2, int k3,
+ float4 keys[4])
{
/* get motion info */
int numsteps, numkeys;
@@ -147,6 +152,65 @@ ccl_device_inline void motion_cardinal_curve_keys(KernelGlobals *kg, int object,
keys[3] = (1.0f - t)*keys[3] + t*next_keys[3];
}
+#if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__)
+/* Similar to above, but returns keys as pair of two AVX registers with each
+ * holding two float4.
+ */
+ccl_device_inline void motion_cardinal_curve_keys_avx(KernelGlobals *kg,
+ int object,
+ int prim,
+ float time,
+ int k0, int k1,
+ int k2, int k3,
+ avxf *out_keys_0_1,
+ avxf *out_keys_2_3)
+{
+ /* Get motion info. */
+ int numsteps, numkeys;
+ object_motion_info(kg, object, &numsteps, NULL, &numkeys);
+
+ /* Figure out which steps we need to fetch and their interpolation factor. */
+ int maxstep = numsteps * 2;
+ int step = min((int)(time*maxstep), maxstep - 1);
+ float t = time*maxstep - step;
+
+ /* Find attribute. */
+ AttributeElement elem;
+ int offset = find_attribute_curve_motion(kg,
+ object,
+ ATTR_STD_MOTION_VERTEX_POSITION,
+ &elem);
+ kernel_assert(offset != ATTR_STD_NOT_FOUND);
+
+ /* Fetch key coordinates. */
+ float4 next_keys[4];
+ float4 keys[4];
+ motion_cardinal_curve_keys_for_step(kg,
+ offset,
+ numkeys,
+ numsteps,
+ step,
+ k0, k1, k2, k3,
+ keys);
+ motion_cardinal_curve_keys_for_step(kg,
+ offset,
+ numkeys,
+ numsteps,
+ step + 1,
+ k0, k1, k2, k3,
+ next_keys);
+
+ const avxf keys_0_1 = avxf(keys[0].m128, keys[1].m128);
+ const avxf keys_2_3 = avxf(keys[2].m128, keys[3].m128);
+ const avxf next_keys_0_1 = avxf(next_keys[0].m128, next_keys[1].m128);
+ const avxf next_keys_2_3 = avxf(next_keys[2].m128, next_keys[3].m128);
+
+ /* Interpolate between steps. */
+ *out_keys_0_1 = (1.0f - t) * keys_0_1 + t*next_keys_0_1;
+ *out_keys_2_3 = (1.0f - t) * keys_2_3 + t*next_keys_2_3;
+}
+#endif
+
#endif
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/geom/geom_motion_triangle.h b/intern/cycles/kernel/geom/geom_motion_triangle.h
index 3cbe59aaece..4e84aa97776 100644
--- a/intern/cycles/kernel/geom/geom_motion_triangle.h
+++ b/intern/cycles/kernel/geom/geom_motion_triangle.h
@@ -76,7 +76,7 @@ ccl_device_inline void motion_triangle_normals_for_step(KernelGlobals *kg, uint4
normals[2] = float4_to_float3(kernel_tex_fetch(__tri_vnormal, tri_vindex.z));
}
else {
- /* center step not stored in this array */
+ /* center step is not stored in this array */
if(step > numsteps)
step--;
@@ -117,312 +117,4 @@ ccl_device_inline void motion_triangle_vertices(KernelGlobals *kg, int object, i
verts[2] = (1.0f - t)*verts[2] + t*next_verts[2];
}
-/* Refine triangle intersection to more precise hit point. For rays that travel
- * far the precision is often not so good, this reintersects the primitive from
- * a closer distance. */
-
-ccl_device_inline float3 motion_triangle_refine(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray, float3 verts[3])
-{
- float3 P = ray->P;
- float3 D = ray->D;
- float t = isect->t;
-
-#ifdef __INTERSECTION_REFINE__
- if(isect->object != OBJECT_NONE) {
- if(UNLIKELY(t == 0.0f)) {
- return P;
- }
-# ifdef __OBJECT_MOTION__
- Transform tfm = ccl_fetch(sd, ob_itfm);
-# else
- Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
-# endif
-
- P = transform_point(&tfm, P);
- D = transform_direction(&tfm, D*t);
- D = normalize_len(D, &t);
- }
-
- P = P + D*t;
-
- /* compute refined intersection distance */
- const float3 e1 = verts[0] - verts[2];
- const float3 e2 = verts[1] - verts[2];
- const float3 s1 = cross(D, e2);
-
- const float invdivisor = 1.0f/dot(s1, e1);
- const float3 d = P - verts[2];
- const float3 s2 = cross(d, e1);
- float rt = dot(e2, s2)*invdivisor;
-
- /* compute refined position */
- P = P + D*rt;
-
- if(isect->object != OBJECT_NONE) {
-# ifdef __OBJECT_MOTION__
- Transform tfm = ccl_fetch(sd, ob_tfm);
-# else
- Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
-# endif
-
- P = transform_point(&tfm, P);
- }
-
- return P;
-#else
- return P + D*t;
-#endif
-}
-
-/* Same as above, except that isect->t is assumed to be in object space for instancing */
-
-#ifdef __SUBSURFACE__
-# if defined(__KERNEL_CUDA__) && (defined(i386) || defined(_M_IX86))
-ccl_device_noinline
-# else
-ccl_device_inline
-# endif
-float3 motion_triangle_refine_subsurface(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray, float3 verts[3])
-{
- float3 P = ray->P;
- float3 D = ray->D;
- float t = isect->t;
-
-# ifdef __INTERSECTION_REFINE__
- if(isect->object != OBJECT_NONE) {
-# ifdef __OBJECT_MOTION__
- Transform tfm = ccl_fetch(sd, ob_itfm);
-# else
- Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
-# endif
-
- P = transform_point(&tfm, P);
- D = transform_direction(&tfm, D);
- D = normalize(D);
- }
-
- P = P + D*t;
-
- /* compute refined intersection distance */
- const float3 e1 = verts[0] - verts[2];
- const float3 e2 = verts[1] - verts[2];
- const float3 s1 = cross(D, e2);
-
- const float invdivisor = 1.0f/dot(s1, e1);
- const float3 d = P - verts[2];
- const float3 s2 = cross(d, e1);
- float rt = dot(e2, s2)*invdivisor;
-
- P = P + D*rt;
-
- if(isect->object != OBJECT_NONE) {
-# ifdef __OBJECT_MOTION__
- Transform tfm = ccl_fetch(sd, ob_tfm);
-# else
- Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
-# endif
-
- P = transform_point(&tfm, P);
- }
-
- return P;
-# else
- return P + D*t;
-# endif
-}
-#endif
-
-/* Setup of motion triangle specific parts of ShaderData, moved into this one
- * function to more easily share computation of interpolated positions and
- * normals */
-
-/* return 3 triangle vertex normals */
-ccl_device_noinline void motion_triangle_shader_setup(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray, bool subsurface)
-{
- /* get shader */
- ccl_fetch(sd, shader) = kernel_tex_fetch(__tri_shader, ccl_fetch(sd, prim));
-
- /* get motion info */
- int numsteps, numverts;
- object_motion_info(kg, ccl_fetch(sd, object), &numsteps, &numverts, NULL);
-
- /* figure out which steps we need to fetch and their interpolation factor */
- int maxstep = numsteps*2;
- int step = min((int)(ccl_fetch(sd, time)*maxstep), maxstep-1);
- float t = ccl_fetch(sd, time)*maxstep - step;
-
- /* find attribute */
- AttributeElement elem;
- int offset = find_attribute_motion(kg, ccl_fetch(sd, object), ATTR_STD_MOTION_VERTEX_POSITION, &elem);
- kernel_assert(offset != ATTR_STD_NOT_FOUND);
-
- /* fetch vertex coordinates */
- float3 verts[3], next_verts[3];
- uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, ccl_fetch(sd, prim));
-
- motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step, verts);
- motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step+1, next_verts);
-
- /* interpolate between steps */
- verts[0] = (1.0f - t)*verts[0] + t*next_verts[0];
- verts[1] = (1.0f - t)*verts[1] + t*next_verts[1];
- verts[2] = (1.0f - t)*verts[2] + t*next_verts[2];
-
- /* compute refined position */
-#ifdef __SUBSURFACE__
- if(!subsurface)
-#endif
- ccl_fetch(sd, P) = motion_triangle_refine(kg, sd, isect, ray, verts);
-#ifdef __SUBSURFACE__
- else
- ccl_fetch(sd, P) = motion_triangle_refine_subsurface(kg, sd, isect, ray, verts);
-#endif
-
- /* compute face normal */
- float3 Ng;
- if(ccl_fetch(sd, flag) & SD_NEGATIVE_SCALE_APPLIED)
- Ng = normalize(cross(verts[2] - verts[0], verts[1] - verts[0]));
- else
- Ng = normalize(cross(verts[1] - verts[0], verts[2] - verts[0]));
-
- ccl_fetch(sd, Ng) = Ng;
- ccl_fetch(sd, N) = Ng;
-
- /* compute derivatives of P w.r.t. uv */
-#ifdef __DPDU__
- ccl_fetch(sd, dPdu) = (verts[0] - verts[2]);
- ccl_fetch(sd, dPdv) = (verts[1] - verts[2]);
-#endif
-
- /* compute smooth normal */
- if(ccl_fetch(sd, shader) & SHADER_SMOOTH_NORMAL) {
- /* find attribute */
- AttributeElement elem;
- int offset = find_attribute_motion(kg, ccl_fetch(sd, object), ATTR_STD_MOTION_VERTEX_NORMAL, &elem);
- kernel_assert(offset != ATTR_STD_NOT_FOUND);
-
- /* fetch vertex coordinates */
- float3 normals[3], next_normals[3];
- motion_triangle_normals_for_step(kg, tri_vindex, offset, numverts, numsteps, step, normals);
- motion_triangle_normals_for_step(kg, tri_vindex, offset, numverts, numsteps, step+1, next_normals);
-
- /* interpolate between steps */
- normals[0] = (1.0f - t)*normals[0] + t*next_normals[0];
- normals[1] = (1.0f - t)*normals[1] + t*next_normals[1];
- normals[2] = (1.0f - t)*normals[2] + t*next_normals[2];
-
- /* interpolate between vertices */
- float u = ccl_fetch(sd, u);
- float v = ccl_fetch(sd, v);
- float w = 1.0f - u - v;
- ccl_fetch(sd, N) = (u*normals[0] + v*normals[1] + w*normals[2]);
- }
-}
-
-/* Ray intersection. We simply compute the vertex positions at the given ray
- * time and do a ray intersection with the resulting triangle */
-
-ccl_device_inline bool motion_triangle_intersect(KernelGlobals *kg, Intersection *isect,
- float3 P, float3 dir, float time, uint visibility, int object, int triAddr)
-{
- /* primitive index for vertex location lookup */
- int prim = kernel_tex_fetch(__prim_index, triAddr);
- int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, triAddr): object;
-
- /* get vertex locations for intersection */
- float3 verts[3];
- motion_triangle_vertices(kg, fobject, prim, time, verts);
-
- /* ray-triangle intersection, unoptimized */
- float t, u, v;
-
- if(ray_triangle_intersect_uv(P, dir, isect->t, verts[2], verts[0], verts[1], &u, &v, &t)) {
-#ifdef __VISIBILITY_FLAG__
- /* visibility flag test. we do it here under the assumption
- * that most triangles are culled by node flags */
- if(kernel_tex_fetch(__prim_visibility, triAddr) & visibility)
-#endif
- {
- isect->t = t;
- isect->u = u;
- isect->v = v;
- isect->prim = triAddr;
- isect->object = object;
- isect->type = PRIMITIVE_MOTION_TRIANGLE;
-
- return true;
- }
- }
-
- return false;
-}
-
-/* Special ray intersection routines for subsurface scattering. In that case we
- * only want to intersect with primitives in the same object, and if case of
- * multiple hits we pick a single random primitive as the intersection point. */
-
-#ifdef __SUBSURFACE__
-ccl_device_inline void motion_triangle_intersect_subsurface(
- KernelGlobals *kg,
- SubsurfaceIntersection *ss_isect,
- float3 P,
- float3 dir,
- float time,
- int object,
- int triAddr,
- float tmax,
- uint *lcg_state,
- int max_hits)
-{
- /* primitive index for vertex location lookup */
- int prim = kernel_tex_fetch(__prim_index, triAddr);
- int fobject = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, triAddr): object;
-
- /* get vertex locations for intersection */
- float3 verts[3];
- motion_triangle_vertices(kg, fobject, prim, time, verts);
-
- /* ray-triangle intersection, unoptimized */
- float t, u, v;
-
- if(ray_triangle_intersect_uv(P, dir, tmax, verts[2], verts[0], verts[1], &u, &v, &t)) {
- for(int i = min(max_hits, ss_isect->num_hits) - 1; i >= 0; --i) {
- if(ss_isect->hits[i].t == t) {
- return;
- }
- }
-
- ss_isect->num_hits++;
-
- int hit;
-
- if(ss_isect->num_hits <= max_hits) {
- hit = ss_isect->num_hits - 1;
- }
- else {
- /* reservoir sampling: if we are at the maximum number of
- * hits, randomly replace element or skip it */
- hit = lcg_step_uint(lcg_state) % ss_isect->num_hits;
-
- if(hit >= max_hits)
- return;
- }
-
- /* record intersection */
- Intersection *isect = &ss_isect->hits[hit];
- isect->t = t;
- isect->u = u;
- isect->v = v;
- isect->prim = triAddr;
- isect->object = object;
- isect->type = PRIMITIVE_MOTION_TRIANGLE;
-
- /* Record geometric normal. */
- ss_isect->Ng[hit] = normalize(cross(verts[1] - verts[0],
- verts[2] - verts[0]));
- }
-}
-#endif
-
CCL_NAMESPACE_END
-
diff --git a/intern/cycles/kernel/geom/geom_motion_triangle_intersect.h b/intern/cycles/kernel/geom/geom_motion_triangle_intersect.h
new file mode 100644
index 00000000000..f74995becf5
--- /dev/null
+++ b/intern/cycles/kernel/geom/geom_motion_triangle_intersect.h
@@ -0,0 +1,289 @@
+/*
+ * Copyright 2011-2016 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* Motion Triangle Primitive
+ *
+ * These are stored as regular triangles, plus extra positions and normals at
+ * times other than the frame center. Computing the triangle vertex positions
+ * or normals at a given ray time is a matter of interpolation of the two steps
+ * between which the ray time lies.
+ *
+ * The extra positions and normals are stored as ATTR_STD_MOTION_VERTEX_POSITION
+ * and ATTR_STD_MOTION_VERTEX_NORMAL mesh attributes.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+/* Refine triangle intersection to more precise hit point. For rays that travel
+ * far the precision is often not so good, this reintersects the primitive from
+ * a closer distance.
+ */
+
+ccl_device_inline float3 motion_triangle_refine(KernelGlobals *kg,
+ ShaderData *sd,
+ const Intersection *isect,
+ const Ray *ray,
+ float3 verts[3])
+{
+ float3 P = ray->P;
+ float3 D = ray->D;
+ float t = isect->t;
+
+#ifdef __INTERSECTION_REFINE__
+ if(isect->object != OBJECT_NONE) {
+ if(UNLIKELY(t == 0.0f)) {
+ return P;
+ }
+# ifdef __OBJECT_MOTION__
+ Transform tfm = sd->ob_itfm;
+# else
+ Transform tfm = object_fetch_transform(kg,
+ isect->object,
+ OBJECT_INVERSE_TRANSFORM);
+# endif
+
+ P = transform_point(&tfm, P);
+ D = transform_direction(&tfm, D*t);
+ D = normalize_len(D, &t);
+ }
+
+ P = P + D*t;
+
+ /* Compute refined intersection distance. */
+ const float3 e1 = verts[0] - verts[2];
+ const float3 e2 = verts[1] - verts[2];
+ const float3 s1 = cross(D, e2);
+
+ const float invdivisor = 1.0f/dot(s1, e1);
+ const float3 d = P - verts[2];
+ const float3 s2 = cross(d, e1);
+ float rt = dot(e2, s2)*invdivisor;
+
+ /* Compute refined position. */
+ P = P + D*rt;
+
+ if(isect->object != OBJECT_NONE) {
+# ifdef __OBJECT_MOTION__
+ Transform tfm = sd->ob_tfm;
+# else
+ Transform tfm = object_fetch_transform(kg,
+ isect->object,
+ OBJECT_TRANSFORM);
+# endif
+
+ P = transform_point(&tfm, P);
+ }
+
+ return P;
+#else
+ return P + D*t;
+#endif
+}
+
+/* Same as above, except that isect->t is assumed to be in object space
+ * for instancing.
+ */
+
+#ifdef __SUBSURFACE__
+# if defined(__KERNEL_CUDA__) && (defined(i386) || defined(_M_IX86))
+ccl_device_noinline
+# else
+ccl_device_inline
+# endif
+float3 motion_triangle_refine_subsurface(KernelGlobals *kg,
+ ShaderData *sd,
+ const Intersection *isect,
+ const Ray *ray,
+ float3 verts[3])
+{
+ float3 P = ray->P;
+ float3 D = ray->D;
+ float t = isect->t;
+
+# ifdef __INTERSECTION_REFINE__
+ if(isect->object != OBJECT_NONE) {
+# ifdef __OBJECT_MOTION__
+ Transform tfm = sd->ob_itfm;
+# else
+ Transform tfm = object_fetch_transform(kg,
+ isect->object,
+ OBJECT_INVERSE_TRANSFORM);
+# endif
+
+ P = transform_point(&tfm, P);
+ D = transform_direction(&tfm, D);
+ D = normalize(D);
+ }
+
+ P = P + D*t;
+
+ /* compute refined intersection distance */
+ const float3 e1 = verts[0] - verts[2];
+ const float3 e2 = verts[1] - verts[2];
+ const float3 s1 = cross(D, e2);
+
+ const float invdivisor = 1.0f/dot(s1, e1);
+ const float3 d = P - verts[2];
+ const float3 s2 = cross(d, e1);
+ float rt = dot(e2, s2)*invdivisor;
+
+ P = P + D*rt;
+
+ if(isect->object != OBJECT_NONE) {
+# ifdef __OBJECT_MOTION__
+ Transform tfm = sd->ob_tfm;
+# else
+ Transform tfm = object_fetch_transform(kg,
+ isect->object,
+ OBJECT_TRANSFORM);
+# endif
+
+ P = transform_point(&tfm, P);
+ }
+
+ return P;
+# else /* __INTERSECTION_REFINE__ */
+ return P + D*t;
+# endif /* __INTERSECTION_REFINE__ */
+}
+#endif /* __SUBSURFACE__ */
+
+
+/* Ray intersection. We simply compute the vertex positions at the given ray
+ * time and do a ray intersection with the resulting triangle.
+ */
+
+ccl_device_inline bool motion_triangle_intersect(
+ KernelGlobals *kg,
+ Intersection *isect,
+ float3 P,
+ float3 dir,
+ float time,
+ uint visibility,
+ int object,
+ int prim_addr)
+{
+ /* Primitive index for vertex location lookup. */
+ int prim = kernel_tex_fetch(__prim_index, prim_addr);
+ int fobject = (object == OBJECT_NONE)
+ ? kernel_tex_fetch(__prim_object, prim_addr)
+ : object;
+ /* Get vertex locations for intersection. */
+ float3 verts[3];
+ motion_triangle_vertices(kg, fobject, prim, time, verts);
+ /* Ray-triangle intersection, unoptimized. */
+ float t, u, v;
+ if(ray_triangle_intersect(P,
+ dir,
+ isect->t,
+#if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
+ (ssef*)verts,
+#else
+ verts[0], verts[1], verts[2],
+#endif
+ &u, &v, &t))
+ {
+#ifdef __VISIBILITY_FLAG__
+ /* Visibility flag test. we do it here under the assumption
+ * that most triangles are culled by node flags.
+ */
+ if(kernel_tex_fetch(__prim_visibility, prim_addr) & visibility)
+#endif
+ {
+ isect->t = t;
+ isect->u = u;
+ isect->v = v;
+ isect->prim = prim_addr;
+ isect->object = object;
+ isect->type = PRIMITIVE_MOTION_TRIANGLE;
+ return true;
+ }
+ }
+ return false;
+}
+
+/* Special ray intersection routines for subsurface scattering. In that case we
+ * only want to intersect with primitives in the same object, and if case of
+ * multiple hits we pick a single random primitive as the intersection point.
+ */
+#ifdef __SUBSURFACE__
+ccl_device_inline void motion_triangle_intersect_subsurface(
+ KernelGlobals *kg,
+ SubsurfaceIntersection *ss_isect,
+ float3 P,
+ float3 dir,
+ float time,
+ int object,
+ int prim_addr,
+ float tmax,
+ uint *lcg_state,
+ int max_hits)
+{
+ /* Primitive index for vertex location lookup. */
+ int prim = kernel_tex_fetch(__prim_index, prim_addr);
+ int fobject = (object == OBJECT_NONE)
+ ? kernel_tex_fetch(__prim_object, prim_addr)
+ : object;
+ /* Get vertex locations for intersection. */
+ float3 verts[3];
+ motion_triangle_vertices(kg, fobject, prim, time, verts);
+ /* Ray-triangle intersection, unoptimized. */
+ float t, u, v;
+ if(ray_triangle_intersect(P,
+ dir,
+ tmax,
+#if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
+ (ssef*)verts,
+#else
+ verts[0], verts[1], verts[2],
+#endif
+ &u, &v, &t))
+ {
+ for(int i = min(max_hits, ss_isect->num_hits) - 1; i >= 0; --i) {
+ if(ss_isect->hits[i].t == t) {
+ return;
+ }
+ }
+ ss_isect->num_hits++;
+ int hit;
+ if(ss_isect->num_hits <= max_hits) {
+ hit = ss_isect->num_hits - 1;
+ }
+ else {
+ /* Reservoir sampling: if we are at the maximum number of
+ * hits, randomly replace element or skip it.
+ */
+ hit = lcg_step_uint(lcg_state) % ss_isect->num_hits;
+
+ if(hit >= max_hits)
+ return;
+ }
+ /* Record intersection. */
+ Intersection *isect = &ss_isect->hits[hit];
+ isect->t = t;
+ isect->u = u;
+ isect->v = v;
+ isect->prim = prim_addr;
+ isect->object = object;
+ isect->type = PRIMITIVE_MOTION_TRIANGLE;
+ /* Record geometric normal. */
+ ss_isect->Ng[hit] = normalize(cross(verts[1] - verts[0],
+ verts[2] - verts[0]));
+ }
+}
+#endif /* __SUBSURFACE__ */
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/geom/geom_motion_triangle_shader.h b/intern/cycles/kernel/geom/geom_motion_triangle_shader.h
new file mode 100644
index 00000000000..cb456056e20
--- /dev/null
+++ b/intern/cycles/kernel/geom/geom_motion_triangle_shader.h
@@ -0,0 +1,123 @@
+/*
+ * Copyright 2011-2016 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* Motion Triangle Primitive
+ *
+ * These are stored as regular triangles, plus extra positions and normals at
+ * times other than the frame center. Computing the triangle vertex positions
+ * or normals at a given ray time is a matter of interpolation of the two steps
+ * between which the ray time lies.
+ *
+ * The extra positions and normals are stored as ATTR_STD_MOTION_VERTEX_POSITION
+ * and ATTR_STD_MOTION_VERTEX_NORMAL mesh attributes.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+/* Setup of motion triangle specific parts of ShaderData, moved into this one
+ * function to more easily share computation of interpolated positions and
+ * normals */
+
+/* return 3 triangle vertex normals */
+ccl_device_noinline void motion_triangle_shader_setup(KernelGlobals *kg,
+ ShaderData *sd, const
+ Intersection *isect,
+ const Ray *ray,
+ bool subsurface)
+{
+ /* Get shader. */
+ sd->shader = kernel_tex_fetch(__tri_shader, sd->prim);
+ /* Get motion info. */
+ /* TODO(sergey): This logic is really similar to motion_triangle_vertices(),
+ * can we de-duplicate something here?
+ */
+ int numsteps, numverts;
+ object_motion_info(kg, sd->object, &numsteps, &numverts, NULL);
+ /* Figure out which steps we need to fetch and their interpolation factor. */
+ int maxstep = numsteps*2;
+ int step = min((int)(sd->time*maxstep), maxstep-1);
+ float t = sd->time*maxstep - step;
+ /* Find attribute. */
+ AttributeElement elem;
+ int offset = find_attribute_motion(kg, sd->object,
+ ATTR_STD_MOTION_VERTEX_POSITION,
+ &elem);
+ kernel_assert(offset != ATTR_STD_NOT_FOUND);
+ /* Fetch vertex coordinates. */
+ float3 verts[3], next_verts[3];
+ uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim);
+ motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step, verts);
+ motion_triangle_verts_for_step(kg, tri_vindex, offset, numverts, numsteps, step+1, next_verts);
+ /* Interpolate between steps. */
+ verts[0] = (1.0f - t)*verts[0] + t*next_verts[0];
+ verts[1] = (1.0f - t)*verts[1] + t*next_verts[1];
+ verts[2] = (1.0f - t)*verts[2] + t*next_verts[2];
+ /* Compute refined position. */
+#ifdef __SUBSURFACE__
+ if(subsurface) {
+ sd->P = motion_triangle_refine_subsurface(kg,
+ sd,
+ isect,
+ ray,
+ verts);
+ }
+ else
+#endif /* __SUBSURFACE__*/
+ {
+ sd->P = motion_triangle_refine(kg, sd, isect, ray, verts);
+ }
+ /* Compute face normal. */
+ float3 Ng;
+ if(sd->object_flag & SD_OBJECT_NEGATIVE_SCALE_APPLIED) {
+ Ng = normalize(cross(verts[2] - verts[0], verts[1] - verts[0]));
+ }
+ else {
+ Ng = normalize(cross(verts[1] - verts[0], verts[2] - verts[0]));
+ }
+ sd->Ng = Ng;
+ sd->N = Ng;
+ /* Compute derivatives of P w.r.t. uv. */
+#ifdef __DPDU__
+ sd->dPdu = (verts[0] - verts[2]);
+ sd->dPdv = (verts[1] - verts[2]);
+#endif
+ /* Compute smooth normal. */
+ if(sd->shader & SHADER_SMOOTH_NORMAL) {
+ /* Find attribute. */
+ AttributeElement elem;
+ int offset = find_attribute_motion(kg,
+ sd->object,
+ ATTR_STD_MOTION_VERTEX_NORMAL,
+ &elem);
+ kernel_assert(offset != ATTR_STD_NOT_FOUND);
+ /* Fetch vertex coordinates. */
+ float3 normals[3], next_normals[3];
+ motion_triangle_normals_for_step(kg, tri_vindex, offset, numverts, numsteps, step, normals);
+ motion_triangle_normals_for_step(kg, tri_vindex, offset, numverts, numsteps, step+1, next_normals);
+ /* Interpolate between steps. */
+ normals[0] = (1.0f - t)*normals[0] + t*next_normals[0];
+ normals[1] = (1.0f - t)*normals[1] + t*next_normals[1];
+ normals[2] = (1.0f - t)*normals[2] + t*next_normals[2];
+ /* Interpolate between vertices. */
+ float u = sd->u;
+ float v = sd->v;
+ float w = 1.0f - u - v;
+ sd->N = (u*normals[0] + v*normals[1] + w*normals[2]);
+ }
+}
+
+CCL_NAMESPACE_END
+
diff --git a/intern/cycles/kernel/geom/geom_object.h b/intern/cycles/kernel/geom/geom_object.h
index 9f0fe032ba4..1ffc143be34 100644
--- a/intern/cycles/kernel/geom/geom_object.h
+++ b/intern/cycles/kernel/geom/geom_object.h
@@ -113,7 +113,6 @@ ccl_device_inline Transform object_fetch_transform_motion(KernelGlobals *kg, int
ccl_device_inline Transform object_fetch_transform_motion_test(KernelGlobals *kg, int object, float time, Transform *itfm)
{
int object_flag = kernel_tex_fetch(__object_flag, object);
-
if(object_flag & SD_OBJECT_MOTION) {
/* if we do motion blur */
Transform tfm = object_fetch_transform_motion(kg, object, time);
@@ -138,9 +137,9 @@ ccl_device_inline Transform object_fetch_transform_motion_test(KernelGlobals *kg
ccl_device_inline void object_position_transform(KernelGlobals *kg, const ShaderData *sd, float3 *P)
{
#ifdef __OBJECT_MOTION__
- *P = transform_point_auto(&ccl_fetch(sd, ob_tfm), *P);
+ *P = transform_point_auto(&sd->ob_tfm, *P);
#else
- Transform tfm = object_fetch_transform(kg, ccl_fetch(sd, object), OBJECT_TRANSFORM);
+ Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
*P = transform_point(&tfm, *P);
#endif
}
@@ -150,9 +149,9 @@ ccl_device_inline void object_position_transform(KernelGlobals *kg, const Shader
ccl_device_inline void object_inverse_position_transform(KernelGlobals *kg, const ShaderData *sd, float3 *P)
{
#ifdef __OBJECT_MOTION__
- *P = transform_point_auto(&ccl_fetch(sd, ob_itfm), *P);
+ *P = transform_point_auto(&sd->ob_itfm, *P);
#else
- Transform tfm = object_fetch_transform(kg, ccl_fetch(sd, object), OBJECT_INVERSE_TRANSFORM);
+ Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM);
*P = transform_point(&tfm, *P);
#endif
}
@@ -162,12 +161,12 @@ ccl_device_inline void object_inverse_position_transform(KernelGlobals *kg, cons
ccl_device_inline void object_inverse_normal_transform(KernelGlobals *kg, const ShaderData *sd, float3 *N)
{
#ifdef __OBJECT_MOTION__
- if((ccl_fetch(sd, object) != OBJECT_NONE) || (ccl_fetch(sd, type) == PRIMITIVE_LAMP)) {
- *N = normalize(transform_direction_transposed_auto(&ccl_fetch(sd, ob_tfm), *N));
+ if((sd->object != OBJECT_NONE) || (sd->type == PRIMITIVE_LAMP)) {
+ *N = normalize(transform_direction_transposed_auto(&sd->ob_tfm, *N));
}
#else
- if(ccl_fetch(sd, object) != OBJECT_NONE) {
- Transform tfm = object_fetch_transform(kg, ccl_fetch(sd, object), OBJECT_TRANSFORM);
+ if(sd->object != OBJECT_NONE) {
+ Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
*N = normalize(transform_direction_transposed(&tfm, *N));
}
#endif
@@ -178,9 +177,9 @@ ccl_device_inline void object_inverse_normal_transform(KernelGlobals *kg, const
ccl_device_inline void object_normal_transform(KernelGlobals *kg, const ShaderData *sd, float3 *N)
{
#ifdef __OBJECT_MOTION__
- *N = normalize(transform_direction_transposed_auto(&ccl_fetch(sd, ob_itfm), *N));
+ *N = normalize(transform_direction_transposed_auto(&sd->ob_itfm, *N));
#else
- Transform tfm = object_fetch_transform(kg, ccl_fetch(sd, object), OBJECT_INVERSE_TRANSFORM);
+ Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM);
*N = normalize(transform_direction_transposed(&tfm, *N));
#endif
}
@@ -190,9 +189,9 @@ ccl_device_inline void object_normal_transform(KernelGlobals *kg, const ShaderDa
ccl_device_inline void object_dir_transform(KernelGlobals *kg, const ShaderData *sd, float3 *D)
{
#ifdef __OBJECT_MOTION__
- *D = transform_direction_auto(&ccl_fetch(sd, ob_tfm), *D);
+ *D = transform_direction_auto(&sd->ob_tfm, *D);
#else
- Transform tfm = object_fetch_transform(kg, ccl_fetch(sd, object), OBJECT_TRANSFORM);
+ Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
*D = transform_direction(&tfm, *D);
#endif
}
@@ -202,9 +201,9 @@ ccl_device_inline void object_dir_transform(KernelGlobals *kg, const ShaderData
ccl_device_inline void object_inverse_dir_transform(KernelGlobals *kg, const ShaderData *sd, float3 *D)
{
#ifdef __OBJECT_MOTION__
- *D = transform_direction_auto(&ccl_fetch(sd, ob_itfm), *D);
+ *D = transform_direction_auto(&sd->ob_itfm, *D);
#else
- Transform tfm = object_fetch_transform(kg, ccl_fetch(sd, object), OBJECT_INVERSE_TRANSFORM);
+ Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM);
*D = transform_direction(&tfm, *D);
#endif
}
@@ -213,13 +212,13 @@ ccl_device_inline void object_inverse_dir_transform(KernelGlobals *kg, const Sha
ccl_device_inline float3 object_location(KernelGlobals *kg, const ShaderData *sd)
{
- if(ccl_fetch(sd, object) == OBJECT_NONE)
+ if(sd->object == OBJECT_NONE)
return make_float3(0.0f, 0.0f, 0.0f);
#ifdef __OBJECT_MOTION__
- return make_float3(ccl_fetch(sd, ob_tfm).x.w, ccl_fetch(sd, ob_tfm).y.w, ccl_fetch(sd, ob_tfm).z.w);
+ return make_float3(sd->ob_tfm.x.w, sd->ob_tfm.y.w, sd->ob_tfm.z.w);
#else
- Transform tfm = object_fetch_transform(kg, ccl_fetch(sd, object), OBJECT_TRANSFORM);
+ Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
return make_float3(tfm.x.w, tfm.y.w, tfm.z.w);
#endif
}
@@ -327,7 +326,7 @@ ccl_device_inline uint object_patch_map_offset(KernelGlobals *kg, int object)
ccl_device int shader_pass_id(KernelGlobals *kg, const ShaderData *sd)
{
- return kernel_tex_fetch(__shader_flag, (ccl_fetch(sd, shader) & SHADER_MASK)*SHADER_SIZE + 1);
+ return kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*SHADER_SIZE + 1);
}
/* Particle data from which object was instanced */
@@ -416,17 +415,18 @@ ccl_device_inline float3 bvh_clamp_direction(float3 dir)
ccl_device_inline float3 bvh_inverse_direction(float3 dir)
{
- /* TODO(sergey): Currently disabled, gives speedup but causes precision issues. */
-#if defined(__KERNEL_SSE__) && 0
return rcp(dir);
-#else
- return 1.0f / dir;
-#endif
}
/* Transform ray into object space to enter static object in BVH */
-ccl_device_inline void bvh_instance_push(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *dir, float3 *idir, ccl_addr_space float *t)
+ccl_device_inline float bvh_instance_push(KernelGlobals *kg,
+ int object,
+ const Ray *ray,
+ float3 *P,
+ float3 *dir,
+ float3 *idir,
+ float t)
{
Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
@@ -436,8 +436,11 @@ ccl_device_inline void bvh_instance_push(KernelGlobals *kg, int object, const Ra
*dir = bvh_clamp_direction(normalize_len(transform_direction(&tfm, ray->D), &len));
*idir = bvh_inverse_direction(*dir);
- if(*t != FLT_MAX)
- *t *= len;
+ if(t != FLT_MAX) {
+ t *= len;
+ }
+
+ return t;
}
#ifdef __QBVH__
@@ -474,16 +477,24 @@ ccl_device_inline void qbvh_instance_push(KernelGlobals *kg,
/* Transorm ray to exit static object in BVH */
-ccl_device_inline void bvh_instance_pop(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *dir, float3 *idir, ccl_addr_space float *t)
+ccl_device_inline float bvh_instance_pop(KernelGlobals *kg,
+ int object,
+ const Ray *ray,
+ float3 *P,
+ float3 *dir,
+ float3 *idir,
+ float t)
{
- if(*t != FLT_MAX) {
+ if(t != FLT_MAX) {
Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
- *t /= len(transform_direction(&tfm, ray->D));
+ t /= len(transform_direction(&tfm, ray->D));
}
*P = ray->P;
*dir = bvh_clamp_direction(ray->D);
*idir = bvh_inverse_direction(*dir);
+
+ return t;
}
/* Same as above, but returns scale factor to apply to multiple intersection distances */
@@ -502,13 +513,13 @@ ccl_device_inline void bvh_instance_pop_factor(KernelGlobals *kg, int object, co
#ifdef __OBJECT_MOTION__
/* Transform ray into object space to enter motion blurred object in BVH */
-ccl_device_inline void bvh_instance_motion_push(KernelGlobals *kg,
+ccl_device_inline float bvh_instance_motion_push(KernelGlobals *kg,
int object,
const Ray *ray,
float3 *P,
float3 *dir,
float3 *idir,
- ccl_addr_space float *t,
+ float t,
Transform *itfm)
{
object_fetch_transform_motion_test(kg, object, ray->time, itfm);
@@ -519,8 +530,11 @@ ccl_device_inline void bvh_instance_motion_push(KernelGlobals *kg,
*dir = bvh_clamp_direction(normalize_len(transform_direction(itfm, ray->D), &len));
*idir = bvh_inverse_direction(*dir);
- if(*t != FLT_MAX)
- *t *= len;
+ if(t != FLT_MAX) {
+ t *= len;
+ }
+
+ return t;
}
#ifdef __QBVH__
@@ -558,22 +572,24 @@ ccl_device_inline void qbvh_instance_motion_push(KernelGlobals *kg,
/* Transorm ray to exit motion blurred object in BVH */
-ccl_device_inline void bvh_instance_motion_pop(KernelGlobals *kg,
- int object,
- const Ray *ray,
- float3 *P,
- float3 *dir,
- float3 *idir,
- ccl_addr_space float *t,
- Transform *itfm)
-{
- if(*t != FLT_MAX) {
- *t /= len(transform_direction(itfm, ray->D));
+ccl_device_inline float bvh_instance_motion_pop(KernelGlobals *kg,
+ int object,
+ const Ray *ray,
+ float3 *P,
+ float3 *dir,
+ float3 *idir,
+ float t,
+ Transform *itfm)
+{
+ if(t != FLT_MAX) {
+ t /= len(transform_direction(itfm, ray->D));
}
*P = ray->P;
*dir = bvh_clamp_direction(ray->D);
*idir = bvh_inverse_direction(*dir);
+
+ return t;
}
/* Same as above, but returns scale factor to apply to multiple intersection distances */
diff --git a/intern/cycles/kernel/geom/geom_patch.h b/intern/cycles/kernel/geom/geom_patch.h
index 6a0ff5a4a04..5663b598508 100644
--- a/intern/cycles/kernel/geom/geom_patch.h
+++ b/intern/cycles/kernel/geom/geom_patch.h
@@ -267,7 +267,7 @@ ccl_device float patch_eval_float(KernelGlobals *kg, const ShaderData *sd, int o
float weights_du[PATCH_MAX_CONTROL_VERTS];
float weights_dv[PATCH_MAX_CONTROL_VERTS];
- int num_control = patch_eval_control_verts(kg, ccl_fetch(sd, object), patch, u, v, channel,
+ int num_control = patch_eval_control_verts(kg, sd->object, patch, u, v, channel,
indices, weights, weights_du, weights_dv);
float val = 0.0f;
@@ -294,7 +294,7 @@ ccl_device float3 patch_eval_float3(KernelGlobals *kg, const ShaderData *sd, int
float weights_du[PATCH_MAX_CONTROL_VERTS];
float weights_dv[PATCH_MAX_CONTROL_VERTS];
- int num_control = patch_eval_control_verts(kg, ccl_fetch(sd, object), patch, u, v, channel,
+ int num_control = patch_eval_control_verts(kg, sd->object, patch, u, v, channel,
indices, weights, weights_du, weights_dv);
float3 val = make_float3(0.0f, 0.0f, 0.0f);
@@ -321,7 +321,7 @@ ccl_device float3 patch_eval_uchar4(KernelGlobals *kg, const ShaderData *sd, int
float weights_du[PATCH_MAX_CONTROL_VERTS];
float weights_dv[PATCH_MAX_CONTROL_VERTS];
- int num_control = patch_eval_control_verts(kg, ccl_fetch(sd, object), patch, u, v, channel,
+ int num_control = patch_eval_control_verts(kg, sd->object, patch, u, v, channel,
indices, weights, weights_du, weights_dv);
float3 val = make_float3(0.0f, 0.0f, 0.0f);
diff --git a/intern/cycles/kernel/geom/geom_primitive.h b/intern/cycles/kernel/geom/geom_primitive.h
index dbf0b804b5d..989f1574e94 100644
--- a/intern/cycles/kernel/geom/geom_primitive.h
+++ b/intern/cycles/kernel/geom/geom_primitive.h
@@ -28,19 +28,19 @@ ccl_device_inline float primitive_attribute_float(KernelGlobals *kg,
const AttributeDescriptor desc,
float *dx, float *dy)
{
- if(ccl_fetch(sd, type) & PRIMITIVE_ALL_TRIANGLE) {
+ if(sd->type & PRIMITIVE_ALL_TRIANGLE) {
if(subd_triangle_patch(kg, sd) == ~0)
return triangle_attribute_float(kg, sd, desc, dx, dy);
else
return subd_triangle_attribute_float(kg, sd, desc, dx, dy);
}
#ifdef __HAIR__
- else if(ccl_fetch(sd, type) & PRIMITIVE_ALL_CURVE) {
+ else if(sd->type & PRIMITIVE_ALL_CURVE) {
return curve_attribute_float(kg, sd, desc, dx, dy);
}
#endif
#ifdef __VOLUME__
- else if(ccl_fetch(sd, type) & PRIMITIVE_ALL_VOLUME) {
+ else if(sd->type & PRIMITIVE_ALL_VOLUME) {
return volume_attribute_float(kg, sd, desc, dx, dy);
}
#endif
@@ -56,19 +56,19 @@ ccl_device_inline float3 primitive_attribute_float3(KernelGlobals *kg,
const AttributeDescriptor desc,
float3 *dx, float3 *dy)
{
- if(ccl_fetch(sd, type) & PRIMITIVE_ALL_TRIANGLE) {
+ if(sd->type & PRIMITIVE_ALL_TRIANGLE) {
if(subd_triangle_patch(kg, sd) == ~0)
return triangle_attribute_float3(kg, sd, desc, dx, dy);
else
return subd_triangle_attribute_float3(kg, sd, desc, dx, dy);
}
#ifdef __HAIR__
- else if(ccl_fetch(sd, type) & PRIMITIVE_ALL_CURVE) {
+ else if(sd->type & PRIMITIVE_ALL_CURVE) {
return curve_attribute_float3(kg, sd, desc, dx, dy);
}
#endif
#ifdef __VOLUME__
- else if(ccl_fetch(sd, type) & PRIMITIVE_ALL_VOLUME) {
+ else if(sd->type & PRIMITIVE_ALL_VOLUME) {
return volume_attribute_float3(kg, sd, desc, dx, dy);
}
#endif
@@ -118,9 +118,9 @@ ccl_device bool primitive_ptex(KernelGlobals *kg, ShaderData *sd, float2 *uv, in
ccl_device float3 primitive_tangent(KernelGlobals *kg, ShaderData *sd)
{
#ifdef __HAIR__
- if(ccl_fetch(sd, type) & PRIMITIVE_ALL_CURVE)
+ if(sd->type & PRIMITIVE_ALL_CURVE)
# ifdef __DPDU__
- return normalize(ccl_fetch(sd, dPdu));
+ return normalize(sd->dPdu);
# else
return make_float3(0.0f, 0.0f, 0.0f);
# endif
@@ -133,12 +133,12 @@ ccl_device float3 primitive_tangent(KernelGlobals *kg, ShaderData *sd)
float3 data = primitive_attribute_float3(kg, sd, desc, NULL, NULL);
data = make_float3(-(data.y - 0.5f), (data.x - 0.5f), 0.0f);
object_normal_transform(kg, sd, &data);
- return cross(ccl_fetch(sd, N), normalize(cross(data, ccl_fetch(sd, N))));
+ return cross(sd->N, normalize(cross(data, sd->N)));
}
else {
/* otherwise use surface derivatives */
#ifdef __DPDU__
- return normalize(ccl_fetch(sd, dPdu));
+ return normalize(sd->dPdu);
#else
return make_float3(0.0f, 0.0f, 0.0f);
#endif
@@ -153,16 +153,17 @@ ccl_device_inline float4 primitive_motion_vector(KernelGlobals *kg, ShaderData *
float3 center;
#ifdef __HAIR__
- bool is_curve_primitive = ccl_fetch(sd, type) & PRIMITIVE_ALL_CURVE;
+ bool is_curve_primitive = sd->type & PRIMITIVE_ALL_CURVE;
if(is_curve_primitive) {
center = curve_motion_center_location(kg, sd);
- if(!(ccl_fetch(sd, flag) & SD_TRANSFORM_APPLIED))
+ if(!(sd->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
object_position_transform(kg, sd, &center);
+ }
}
else
#endif
- center = ccl_fetch(sd, P);
+ center = sd->P;
float3 motion_pre = center, motion_post = center;
@@ -172,16 +173,16 @@ ccl_device_inline float4 primitive_motion_vector(KernelGlobals *kg, ShaderData *
if(desc.offset != ATTR_STD_NOT_FOUND) {
/* get motion info */
int numverts, numkeys;
- object_motion_info(kg, ccl_fetch(sd, object), NULL, &numverts, &numkeys);
+ object_motion_info(kg, sd->object, NULL, &numverts, &numkeys);
/* lookup attributes */
motion_pre = primitive_attribute_float3(kg, sd, desc, NULL, NULL);
- desc.offset += (ccl_fetch(sd, type) & PRIMITIVE_ALL_TRIANGLE)? numverts: numkeys;
+ desc.offset += (sd->type & PRIMITIVE_ALL_TRIANGLE)? numverts: numkeys;
motion_post = primitive_attribute_float3(kg, sd, desc, NULL, NULL);
#ifdef __HAIR__
- if(is_curve_primitive && (ccl_fetch(sd, flag) & SD_OBJECT_HAS_VERTEX_MOTION) == 0) {
+ if(is_curve_primitive && (sd->object_flag & SD_OBJECT_HAS_VERTEX_MOTION) == 0) {
object_position_transform(kg, sd, &motion_pre);
object_position_transform(kg, sd, &motion_post);
}
@@ -192,10 +193,10 @@ ccl_device_inline float4 primitive_motion_vector(KernelGlobals *kg, ShaderData *
* transformation was set match the world/object space of motion_pre/post */
Transform tfm;
- tfm = object_fetch_vector_transform(kg, ccl_fetch(sd, object), OBJECT_VECTOR_MOTION_PRE);
+ tfm = object_fetch_vector_transform(kg, sd->object, OBJECT_VECTOR_MOTION_PRE);
motion_pre = transform_point(&tfm, motion_pre);
- tfm = object_fetch_vector_transform(kg, ccl_fetch(sd, object), OBJECT_VECTOR_MOTION_POST);
+ tfm = object_fetch_vector_transform(kg, sd->object, OBJECT_VECTOR_MOTION_POST);
motion_post = transform_point(&tfm, motion_post);
float3 motion_center;
diff --git a/intern/cycles/kernel/geom/geom_subd_triangle.h b/intern/cycles/kernel/geom/geom_subd_triangle.h
index 647840dc696..044e82f03d4 100644
--- a/intern/cycles/kernel/geom/geom_subd_triangle.h
+++ b/intern/cycles/kernel/geom/geom_subd_triangle.h
@@ -22,14 +22,14 @@ CCL_NAMESPACE_BEGIN
ccl_device_inline uint subd_triangle_patch(KernelGlobals *kg, const ShaderData *sd)
{
- return (ccl_fetch(sd, prim) != PRIM_NONE) ? kernel_tex_fetch(__tri_patch, ccl_fetch(sd, prim)) : ~0;
+ return (sd->prim != PRIM_NONE) ? kernel_tex_fetch(__tri_patch, sd->prim) : ~0;
}
/* UV coords of triangle within patch */
ccl_device_inline void subd_triangle_patch_uv(KernelGlobals *kg, const ShaderData *sd, float2 uv[3])
{
- uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, ccl_fetch(sd, prim));
+ uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim);
uv[0] = kernel_tex_fetch(__tri_patch_uv, tri_vindex.x);
uv[1] = kernel_tex_fetch(__tri_patch_uv, tri_vindex.y);
@@ -110,7 +110,7 @@ ccl_device_noinline float subd_triangle_attribute_float(KernelGlobals *kg, const
float2 dpdv = uv[1] - uv[2];
/* p is [s, t] */
- float2 p = dpdu * ccl_fetch(sd, u) + dpdv * ccl_fetch(sd, v) + uv[2];
+ float2 p = dpdu * sd->u + dpdv * sd->v + uv[2];
float a, dads, dadt;
a = patch_eval_float(kg, sd, desc.offset, patch, p.x, p.y, 0, &dads, &dadt);
@@ -123,8 +123,8 @@ ccl_device_noinline float subd_triangle_attribute_float(KernelGlobals *kg, const
float dtdv = dpdv.y;
if(dx) {
- float dudx = ccl_fetch(sd, du).dx;
- float dvdx = ccl_fetch(sd, dv).dx;
+ float dudx = sd->du.dx;
+ float dvdx = sd->dv.dx;
float dsdx = dsdu*dudx + dsdv*dvdx;
float dtdx = dtdu*dudx + dtdv*dvdx;
@@ -132,8 +132,8 @@ ccl_device_noinline float subd_triangle_attribute_float(KernelGlobals *kg, const
*dx = dads*dsdx + dadt*dtdx;
}
if(dy) {
- float dudy = ccl_fetch(sd, du).dy;
- float dvdy = ccl_fetch(sd, dv).dy;
+ float dudy = sd->du.dy;
+ float dvdy = sd->dv.dy;
float dsdy = dsdu*dudy + dsdv*dvdy;
float dtdy = dtdu*dudy + dtdv*dvdy;
@@ -174,11 +174,11 @@ ccl_device_noinline float subd_triangle_attribute_float(KernelGlobals *kg, const
float c = mix(mix(f0, f1, uv[2].x), mix(f3, f2, uv[2].x), uv[2].y);
#ifdef __RAY_DIFFERENTIALS__
- if(dx) *dx = ccl_fetch(sd, du).dx*a + ccl_fetch(sd, dv).dx*b - (ccl_fetch(sd, du).dx + ccl_fetch(sd, dv).dx)*c;
- if(dy) *dy = ccl_fetch(sd, du).dy*a + ccl_fetch(sd, dv).dy*b - (ccl_fetch(sd, du).dy + ccl_fetch(sd, dv).dy)*c;
+ if(dx) *dx = sd->du.dx*a + sd->dv.dx*b - (sd->du.dx + sd->dv.dx)*c;
+ if(dy) *dy = sd->du.dy*a + sd->dv.dy*b - (sd->du.dy + sd->dv.dy)*c;
#endif
- return ccl_fetch(sd, u)*a + ccl_fetch(sd, v)*b + (1.0f - ccl_fetch(sd, u) - ccl_fetch(sd, v))*c;
+ return sd->u*a + sd->v*b + (1.0f - sd->u - sd->v)*c;
}
else if(desc.element == ATTR_ELEMENT_CORNER) {
float2 uv[3];
@@ -202,11 +202,11 @@ ccl_device_noinline float subd_triangle_attribute_float(KernelGlobals *kg, const
float c = mix(mix(f0, f1, uv[2].x), mix(f3, f2, uv[2].x), uv[2].y);
#ifdef __RAY_DIFFERENTIALS__
- if(dx) *dx = ccl_fetch(sd, du).dx*a + ccl_fetch(sd, dv).dx*b - (ccl_fetch(sd, du).dx + ccl_fetch(sd, dv).dx)*c;
- if(dy) *dy = ccl_fetch(sd, du).dy*a + ccl_fetch(sd, dv).dy*b - (ccl_fetch(sd, du).dy + ccl_fetch(sd, dv).dy)*c;
+ if(dx) *dx = sd->du.dx*a + sd->dv.dx*b - (sd->du.dx + sd->dv.dx)*c;
+ if(dy) *dy = sd->du.dy*a + sd->dv.dy*b - (sd->du.dy + sd->dv.dy)*c;
#endif
- return ccl_fetch(sd, u)*a + ccl_fetch(sd, v)*b + (1.0f - ccl_fetch(sd, u) - ccl_fetch(sd, v))*c;
+ return sd->u*a + sd->v*b + (1.0f - sd->u - sd->v)*c;
}
else {
if(dx) *dx = 0.0f;
@@ -229,7 +229,7 @@ ccl_device_noinline float3 subd_triangle_attribute_float3(KernelGlobals *kg, con
float2 dpdv = uv[1] - uv[2];
/* p is [s, t] */
- float2 p = dpdu * ccl_fetch(sd, u) + dpdv * ccl_fetch(sd, v) + uv[2];
+ float2 p = dpdu * sd->u + dpdv * sd->v + uv[2];
float3 a, dads, dadt;
@@ -248,8 +248,8 @@ ccl_device_noinline float3 subd_triangle_attribute_float3(KernelGlobals *kg, con
float dtdv = dpdv.y;
if(dx) {
- float dudx = ccl_fetch(sd, du).dx;
- float dvdx = ccl_fetch(sd, dv).dx;
+ float dudx = sd->du.dx;
+ float dvdx = sd->dv.dx;
float dsdx = dsdu*dudx + dsdv*dvdx;
float dtdx = dtdu*dudx + dtdv*dvdx;
@@ -257,8 +257,8 @@ ccl_device_noinline float3 subd_triangle_attribute_float3(KernelGlobals *kg, con
*dx = dads*dsdx + dadt*dtdx;
}
if(dy) {
- float dudy = ccl_fetch(sd, du).dy;
- float dvdy = ccl_fetch(sd, dv).dy;
+ float dudy = sd->du.dy;
+ float dvdy = sd->dv.dy;
float dsdy = dsdu*dudy + dsdv*dvdy;
float dtdy = dtdu*dudy + dtdv*dvdy;
@@ -299,11 +299,11 @@ ccl_device_noinline float3 subd_triangle_attribute_float3(KernelGlobals *kg, con
float3 c = mix(mix(f0, f1, uv[2].x), mix(f3, f2, uv[2].x), uv[2].y);
#ifdef __RAY_DIFFERENTIALS__
- if(dx) *dx = ccl_fetch(sd, du).dx*a + ccl_fetch(sd, dv).dx*b - (ccl_fetch(sd, du).dx + ccl_fetch(sd, dv).dx)*c;
- if(dy) *dy = ccl_fetch(sd, du).dy*a + ccl_fetch(sd, dv).dy*b - (ccl_fetch(sd, du).dy + ccl_fetch(sd, dv).dy)*c;
+ if(dx) *dx = sd->du.dx*a + sd->dv.dx*b - (sd->du.dx + sd->dv.dx)*c;
+ if(dy) *dy = sd->du.dy*a + sd->dv.dy*b - (sd->du.dy + sd->dv.dy)*c;
#endif
- return ccl_fetch(sd, u)*a + ccl_fetch(sd, v)*b + (1.0f - ccl_fetch(sd, u) - ccl_fetch(sd, v))*c;
+ return sd->u*a + sd->v*b + (1.0f - sd->u - sd->v)*c;
}
else if(desc.element == ATTR_ELEMENT_CORNER || desc.element == ATTR_ELEMENT_CORNER_BYTE) {
float2 uv[3];
@@ -337,11 +337,11 @@ ccl_device_noinline float3 subd_triangle_attribute_float3(KernelGlobals *kg, con
float3 c = mix(mix(f0, f1, uv[2].x), mix(f3, f2, uv[2].x), uv[2].y);
#ifdef __RAY_DIFFERENTIALS__
- if(dx) *dx = ccl_fetch(sd, du).dx*a + ccl_fetch(sd, dv).dx*b - (ccl_fetch(sd, du).dx + ccl_fetch(sd, dv).dx)*c;
- if(dy) *dy = ccl_fetch(sd, du).dy*a + ccl_fetch(sd, dv).dy*b - (ccl_fetch(sd, du).dy + ccl_fetch(sd, dv).dy)*c;
+ if(dx) *dx = sd->du.dx*a + sd->dv.dx*b - (sd->du.dx + sd->dv.dx)*c;
+ if(dy) *dy = sd->du.dy*a + sd->dv.dy*b - (sd->du.dy + sd->dv.dy)*c;
#endif
- return ccl_fetch(sd, u)*a + ccl_fetch(sd, v)*b + (1.0f - ccl_fetch(sd, u) - ccl_fetch(sd, v))*c;
+ return sd->u*a + sd->v*b + (1.0f - sd->u - sd->v)*c;
}
else {
if(dx) *dx = make_float3(0.0f, 0.0f, 0.0f);
diff --git a/intern/cycles/kernel/geom/geom_triangle.h b/intern/cycles/kernel/geom/geom_triangle.h
index 17538872ead..105aee8da15 100644
--- a/intern/cycles/kernel/geom/geom_triangle.h
+++ b/intern/cycles/kernel/geom/geom_triangle.h
@@ -26,16 +26,18 @@ CCL_NAMESPACE_BEGIN
ccl_device_inline float3 triangle_normal(KernelGlobals *kg, ShaderData *sd)
{
/* load triangle vertices */
- const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, ccl_fetch(sd, prim));
+ const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim);
const float3 v0 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+0));
const float3 v1 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+1));
const float3 v2 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+2));
/* return normal */
- if(ccl_fetch(sd, flag) & SD_NEGATIVE_SCALE_APPLIED)
+ if(sd->object_flag & SD_OBJECT_NEGATIVE_SCALE_APPLIED) {
return normalize(cross(v2 - v0, v1 - v0));
- else
+ }
+ else {
return normalize(cross(v1 - v0, v2 - v0));
+ }
}
/* point and normal on triangle */
@@ -46,20 +48,18 @@ ccl_device_inline void triangle_point_normal(KernelGlobals *kg, int object, int
float3 v0 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+0));
float3 v1 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+1));
float3 v2 = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex.w+2));
-
/* compute point */
float t = 1.0f - u - v;
*P = (u*v0 + v*v1 + t*v2);
-
/* get object flags */
int object_flag = kernel_tex_fetch(__object_flag, object);
-
/* compute normal */
- if(object_flag & SD_NEGATIVE_SCALE_APPLIED)
+ if(object_flag & SD_OBJECT_NEGATIVE_SCALE_APPLIED) {
*Ng = normalize(cross(v2 - v0, v1 - v0));
- else
+ }
+ else {
*Ng = normalize(cross(v1 - v0, v2 - v0));
-
+ }
/* shader`*/
*shader = kernel_tex_fetch(__tri_shader, prim);
}
@@ -76,7 +76,7 @@ ccl_device_inline void triangle_vertices(KernelGlobals *kg, int prim, float3 P[3
/* Interpolate smooth vertex normal from vertices */
-ccl_device_inline float3 triangle_smooth_normal(KernelGlobals *kg, int prim, float u, float v)
+ccl_device_inline float3 triangle_smooth_normal(KernelGlobals *kg, float3 Ng, int prim, float u, float v)
{
/* load triangle vertices */
const uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, prim);
@@ -84,7 +84,9 @@ ccl_device_inline float3 triangle_smooth_normal(KernelGlobals *kg, int prim, flo
float3 n1 = float4_to_float3(kernel_tex_fetch(__tri_vnormal, tri_vindex.y));
float3 n2 = float4_to_float3(kernel_tex_fetch(__tri_vnormal, tri_vindex.z));
- return normalize((1.0f - u - v)*n2 + u*n0 + v*n1);
+ float3 N = safe_normalize((1.0f - u - v)*n2 + u*n0 + v*n1);
+
+ return is_zero(N)? Ng: N;
}
/* Ray differentials on triangle */
@@ -110,34 +112,34 @@ ccl_device float triangle_attribute_float(KernelGlobals *kg, const ShaderData *s
if(dx) *dx = 0.0f;
if(dy) *dy = 0.0f;
- return kernel_tex_fetch(__attributes_float, desc.offset + ccl_fetch(sd, prim));
+ return kernel_tex_fetch(__attributes_float, desc.offset + sd->prim);
}
else if(desc.element == ATTR_ELEMENT_VERTEX || desc.element == ATTR_ELEMENT_VERTEX_MOTION) {
- uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, ccl_fetch(sd, prim));
+ uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim);
float f0 = kernel_tex_fetch(__attributes_float, desc.offset + tri_vindex.x);
float f1 = kernel_tex_fetch(__attributes_float, desc.offset + tri_vindex.y);
float f2 = kernel_tex_fetch(__attributes_float, desc.offset + tri_vindex.z);
#ifdef __RAY_DIFFERENTIALS__
- if(dx) *dx = ccl_fetch(sd, du).dx*f0 + ccl_fetch(sd, dv).dx*f1 - (ccl_fetch(sd, du).dx + ccl_fetch(sd, dv).dx)*f2;
- if(dy) *dy = ccl_fetch(sd, du).dy*f0 + ccl_fetch(sd, dv).dy*f1 - (ccl_fetch(sd, du).dy + ccl_fetch(sd, dv).dy)*f2;
+ if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2;
+ if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2;
#endif
- return ccl_fetch(sd, u)*f0 + ccl_fetch(sd, v)*f1 + (1.0f - ccl_fetch(sd, u) - ccl_fetch(sd, v))*f2;
+ return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2;
}
else if(desc.element == ATTR_ELEMENT_CORNER) {
- int tri = desc.offset + ccl_fetch(sd, prim)*3;
+ int tri = desc.offset + sd->prim*3;
float f0 = kernel_tex_fetch(__attributes_float, tri + 0);
float f1 = kernel_tex_fetch(__attributes_float, tri + 1);
float f2 = kernel_tex_fetch(__attributes_float, tri + 2);
#ifdef __RAY_DIFFERENTIALS__
- if(dx) *dx = ccl_fetch(sd, du).dx*f0 + ccl_fetch(sd, dv).dx*f1 - (ccl_fetch(sd, du).dx + ccl_fetch(sd, dv).dx)*f2;
- if(dy) *dy = ccl_fetch(sd, du).dy*f0 + ccl_fetch(sd, dv).dy*f1 - (ccl_fetch(sd, du).dy + ccl_fetch(sd, dv).dy)*f2;
+ if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2;
+ if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2;
#endif
- return ccl_fetch(sd, u)*f0 + ccl_fetch(sd, v)*f1 + (1.0f - ccl_fetch(sd, u) - ccl_fetch(sd, v))*f2;
+ return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2;
}
else {
if(dx) *dx = 0.0f;
@@ -153,24 +155,24 @@ ccl_device float3 triangle_attribute_float3(KernelGlobals *kg, const ShaderData
if(dx) *dx = make_float3(0.0f, 0.0f, 0.0f);
if(dy) *dy = make_float3(0.0f, 0.0f, 0.0f);
- return float4_to_float3(kernel_tex_fetch(__attributes_float3, desc.offset + ccl_fetch(sd, prim)));
+ return float4_to_float3(kernel_tex_fetch(__attributes_float3, desc.offset + sd->prim));
}
else if(desc.element == ATTR_ELEMENT_VERTEX || desc.element == ATTR_ELEMENT_VERTEX_MOTION) {
- uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, ccl_fetch(sd, prim));
+ uint4 tri_vindex = kernel_tex_fetch(__tri_vindex, sd->prim);
float3 f0 = float4_to_float3(kernel_tex_fetch(__attributes_float3, desc.offset + tri_vindex.x));
float3 f1 = float4_to_float3(kernel_tex_fetch(__attributes_float3, desc.offset + tri_vindex.y));
float3 f2 = float4_to_float3(kernel_tex_fetch(__attributes_float3, desc.offset + tri_vindex.z));
#ifdef __RAY_DIFFERENTIALS__
- if(dx) *dx = ccl_fetch(sd, du).dx*f0 + ccl_fetch(sd, dv).dx*f1 - (ccl_fetch(sd, du).dx + ccl_fetch(sd, dv).dx)*f2;
- if(dy) *dy = ccl_fetch(sd, du).dy*f0 + ccl_fetch(sd, dv).dy*f1 - (ccl_fetch(sd, du).dy + ccl_fetch(sd, dv).dy)*f2;
+ if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2;
+ if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2;
#endif
- return ccl_fetch(sd, u)*f0 + ccl_fetch(sd, v)*f1 + (1.0f - ccl_fetch(sd, u) - ccl_fetch(sd, v))*f2;
+ return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2;
}
else if(desc.element == ATTR_ELEMENT_CORNER || desc.element == ATTR_ELEMENT_CORNER_BYTE) {
- int tri = desc.offset + ccl_fetch(sd, prim)*3;
+ int tri = desc.offset + sd->prim*3;
float3 f0, f1, f2;
if(desc.element == ATTR_ELEMENT_CORNER) {
@@ -185,11 +187,11 @@ ccl_device float3 triangle_attribute_float3(KernelGlobals *kg, const ShaderData
}
#ifdef __RAY_DIFFERENTIALS__
- if(dx) *dx = ccl_fetch(sd, du).dx*f0 + ccl_fetch(sd, dv).dx*f1 - (ccl_fetch(sd, du).dx + ccl_fetch(sd, dv).dx)*f2;
- if(dy) *dy = ccl_fetch(sd, du).dy*f0 + ccl_fetch(sd, dv).dy*f1 - (ccl_fetch(sd, du).dy + ccl_fetch(sd, dv).dy)*f2;
+ if(dx) *dx = sd->du.dx*f0 + sd->dv.dx*f1 - (sd->du.dx + sd->dv.dx)*f2;
+ if(dy) *dy = sd->du.dy*f0 + sd->dv.dy*f1 - (sd->du.dy + sd->dv.dy)*f2;
#endif
- return ccl_fetch(sd, u)*f0 + ccl_fetch(sd, v)*f1 + (1.0f - ccl_fetch(sd, u) - ccl_fetch(sd, v))*f2;
+ return sd->u*f0 + sd->v*f1 + (1.0f - sd->u - sd->v)*f2;
}
else {
if(dx) *dx = make_float3(0.0f, 0.0f, 0.0f);
diff --git a/intern/cycles/kernel/geom/geom_triangle_intersect.h b/intern/cycles/kernel/geom/geom_triangle_intersect.h
index eb7340583c8..804e74d7e37 100644
--- a/intern/cycles/kernel/geom/geom_triangle_intersect.h
+++ b/intern/cycles/kernel/geom/geom_triangle_intersect.h
@@ -22,232 +22,50 @@
CCL_NAMESPACE_BEGIN
-/* Workaround stupidness of CUDA/OpenCL which doesn't allow to access indexed
- * component of float3 value.
- */
-#ifndef __KERNEL_CPU__
-# define IDX(vec, idx) \
- ((idx == 0) ? ((vec).x) : ( (idx == 1) ? ((vec).y) : ((vec).z) ))
-#else
-# define IDX(vec, idx) ((vec)[idx])
-#endif
-
-/* Ray-Triangle intersection for BVH traversal
- *
- * Sven Woop
- * Watertight Ray/Triangle Intersection
- *
- * http://jcgt.org/published/0002/01/05/paper.pdf
- */
-
-/* Precalculated data for the ray->tri intersection. */
-typedef struct IsectPrecalc {
- /* Maximal dimension kz, and orthogonal dimensions. */
- int kx, ky, kz;
-
- /* Shear constants. */
- float Sx, Sy, Sz;
-} IsectPrecalc;
-
-#if (defined(__KERNEL_OPENCL_APPLE__)) || \
- (defined(__KERNEL_CUDA__) && (defined(i386) || defined(_M_IX86)))
-ccl_device_noinline
-#else
-ccl_device_inline
-#endif
-void triangle_intersect_precalc(float3 dir,
- IsectPrecalc *isect_precalc)
-{
- /* Calculate dimension where the ray direction is maximal. */
-#ifndef __KERNEL_SSE__
- int kz = util_max_axis(make_float3(fabsf(dir.x),
- fabsf(dir.y),
- fabsf(dir.z)));
- int kx = kz + 1; if(kx == 3) kx = 0;
- int ky = kx + 1; if(ky == 3) ky = 0;
-#else
- int kx, ky, kz;
- /* Avoiding mispredicted branch on direction. */
- kz = util_max_axis(fabs(dir));
- static const char inc_xaxis[] = {1, 2, 0, 55};
- static const char inc_yaxis[] = {2, 0, 1, 55};
- kx = inc_xaxis[kz];
- ky = inc_yaxis[kz];
-#endif
-
- float dir_kz = IDX(dir, kz);
-
- /* Swap kx and ky dimensions to preserve winding direction of triangles. */
- if(dir_kz < 0.0f) {
- int tmp = kx;
- kx = ky;
- ky = tmp;
- }
-
- /* Calculate the shear constants. */
- float inv_dir_z = 1.0f / dir_kz;
- isect_precalc->Sx = IDX(dir, kx) * inv_dir_z;
- isect_precalc->Sy = IDX(dir, ky) * inv_dir_z;
- isect_precalc->Sz = inv_dir_z;
-
- /* Store the dimensions. */
- isect_precalc->kx = kx;
- isect_precalc->ky = ky;
- isect_precalc->kz = kz;
-}
-
-/* TODO(sergey): Make it general utility function. */
-ccl_device_inline float xor_signmask(float x, int y)
-{
- return __int_as_float(__float_as_int(x) ^ y);
-}
-
ccl_device_inline bool triangle_intersect(KernelGlobals *kg,
- const IsectPrecalc *isect_precalc,
Intersection *isect,
float3 P,
+ float3 dir,
uint visibility,
int object,
- int triAddr)
+ int prim_addr)
{
- const int kx = isect_precalc->kx;
- const int ky = isect_precalc->ky;
- const int kz = isect_precalc->kz;
- const float Sx = isect_precalc->Sx;
- const float Sy = isect_precalc->Sy;
- const float Sz = isect_precalc->Sz;
-
- /* Calculate vertices relative to ray origin. */
- const uint tri_vindex = kernel_tex_fetch(__prim_tri_index, triAddr);
-
-#if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__)
- const avxf avxf_P(P.m128, P.m128);
-
- const avxf tri_ab = kernel_tex_fetch_avxf(__prim_tri_verts, tri_vindex + 0);
- const avxf tri_bc = kernel_tex_fetch_avxf(__prim_tri_verts, tri_vindex + 1);
-
- const avxf AB = tri_ab - avxf_P;
- const avxf BC = tri_bc - avxf_P;
-
- const __m256i permuteMask = _mm256_set_epi32(0x3, kz, ky, kx, 0x3, kz, ky, kx);
-
- const avxf AB_k = shuffle(AB, permuteMask);
- const avxf BC_k = shuffle(BC, permuteMask);
-
- /* Akz, Akz, Bkz, Bkz, Bkz, Bkz, Ckz, Ckz */
- const avxf ABBC_kz = shuffle<2>(AB_k, BC_k);
-
- /* Akx, Aky, Bkx, Bky, Bkx,Bky, Ckx, Cky */
- const avxf ABBC_kxy = shuffle<0,1,0,1>(AB_k, BC_k);
-
- const avxf Sxy(Sy, Sx, Sy, Sx);
-
- /* Ax, Ay, Bx, By, Bx, By, Cx, Cy */
- const avxf ABBC_xy = nmadd(ABBC_kz, Sxy, ABBC_kxy);
-
- float ABBC_kz_array[8];
- _mm256_storeu_ps((float*)&ABBC_kz_array, ABBC_kz);
-
- const float A_kz = ABBC_kz_array[0];
- const float B_kz = ABBC_kz_array[2];
- const float C_kz = ABBC_kz_array[6];
-
- /* By, Bx, Cy, Cx, By, Bx, Ay, Ax */
- const avxf BCBA_yx = permute<3,2,7,6,3,2,1,0>(ABBC_xy);
-
- const avxf negMask(0,0,0,0,0x80000000, 0x80000000, 0x80000000, 0x80000000);
-
- /* W U V
- * (AxBy-AyBx) (BxCy-ByCx) XX XX (BxBy-ByBx) (CxAy-CyAx) XX XX
- */
- const avxf WUxxxxVxx_neg = _mm256_hsub_ps(ABBC_xy * BCBA_yx, negMask /* Dont care */);
-
- const avxf WUVWnegWUVW = permute<0,1,5,0,0,1,5,0>(WUxxxxVxx_neg) ^ negMask;
-
- /* Calculate scaled barycentric coordinates. */
- float WUVW_array[4];
- _mm_storeu_ps((float*)&WUVW_array, _mm256_castps256_ps128 (WUVWnegWUVW));
-
- const float W = WUVW_array[0];
- const float U = WUVW_array[1];
- const float V = WUVW_array[2];
-
- const int WUVW_mask = 0x7 & _mm256_movemask_ps(WUVWnegWUVW);
- const int WUVW_zero = 0x7 & _mm256_movemask_ps(_mm256_cmp_ps(WUVWnegWUVW,
- _mm256_setzero_ps(), 0));
-
- if(!((WUVW_mask == 7) || (WUVW_mask == 0)) && ((WUVW_mask | WUVW_zero) != 7)) {
- return false;
- }
+ const uint tri_vindex = kernel_tex_fetch(__prim_tri_index, prim_addr);
+#if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
+ const ssef *ssef_verts = (ssef*)&kg->__prim_tri_verts.data[tri_vindex];
#else
const float4 tri_a = kernel_tex_fetch(__prim_tri_verts, tri_vindex+0),
tri_b = kernel_tex_fetch(__prim_tri_verts, tri_vindex+1),
tri_c = kernel_tex_fetch(__prim_tri_verts, tri_vindex+2);
- const float3 A = make_float3(tri_a.x - P.x, tri_a.y - P.y, tri_a.z - P.z);
- const float3 B = make_float3(tri_b.x - P.x, tri_b.y - P.y, tri_b.z - P.z);
- const float3 C = make_float3(tri_c.x - P.x, tri_c.y - P.y, tri_c.z - P.z);
-
- const float A_kx = IDX(A, kx), A_ky = IDX(A, ky), A_kz = IDX(A, kz);
- const float B_kx = IDX(B, kx), B_ky = IDX(B, ky), B_kz = IDX(B, kz);
- const float C_kx = IDX(C, kx), C_ky = IDX(C, ky), C_kz = IDX(C, kz);
-
- /* Perform shear and scale of vertices. */
- const float Ax = A_kx - Sx * A_kz;
- const float Ay = A_ky - Sy * A_kz;
- const float Bx = B_kx - Sx * B_kz;
- const float By = B_ky - Sy * B_kz;
- const float Cx = C_kx - Sx * C_kz;
- const float Cy = C_ky - Sy * C_kz;
-
- /* Calculate scaled barycentric coordinates. */
- float U = Cx * By - Cy * Bx;
- float V = Ax * Cy - Ay * Cx;
- float W = Bx * Ay - By * Ax;
- if((U < 0.0f || V < 0.0f || W < 0.0f) &&
- (U > 0.0f || V > 0.0f || W > 0.0f))
- {
- return false;
- }
#endif
-
- /* Calculate determinant. */
- float det = U + V + W;
- if(UNLIKELY(det == 0.0f)) {
- return false;
- }
-
- /* Calculate scaled z-coordinates of vertices and use them to calculate
- * the hit distance.
- */
- const float T = (U * A_kz + V * B_kz + W * C_kz) * Sz;
- const int sign_det = (__float_as_int(det) & 0x80000000);
- const float sign_T = xor_signmask(T, sign_det);
- if((sign_T < 0.0f) ||
- (sign_T > isect->t * xor_signmask(det, sign_det)))
+ float t, u, v;
+ if(ray_triangle_intersect(P,
+ dir,
+ isect->t,
+#if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
+ ssef_verts,
+#else
+ float4_to_float3(tri_a),
+ float4_to_float3(tri_b),
+ float4_to_float3(tri_c),
+#endif
+ &u, &v, &t))
{
- return false;
- }
-
#ifdef __VISIBILITY_FLAG__
- /* visibility flag test. we do it here under the assumption
- * that most triangles are culled by node flags */
- if(kernel_tex_fetch(__prim_visibility, triAddr) & visibility)
+ /* Visibility flag test. we do it here under the assumption
+ * that most triangles are culled by node flags.
+ */
+ if(kernel_tex_fetch(__prim_visibility, prim_addr) & visibility)
#endif
- {
-#ifdef __KERNEL_CUDA__
- if(A == B && B == C) {
- return false;
+ {
+ isect->prim = prim_addr;
+ isect->object = object;
+ isect->type = PRIMITIVE_TRIANGLE;
+ isect->u = u;
+ isect->v = v;
+ isect->t = t;
+ return true;
}
-#endif
- /* Normalize U, V, W, and T. */
- const float inv_det = 1.0f / det;
- isect->prim = triAddr;
- isect->object = object;
- isect->type = PRIMITIVE_TRIANGLE;
- isect->u = U * inv_det;
- isect->v = V * inv_det;
- isect->t = T * inv_det;
- return true;
}
return false;
}
@@ -260,138 +78,37 @@ ccl_device_inline bool triangle_intersect(KernelGlobals *kg,
#ifdef __SUBSURFACE__
ccl_device_inline void triangle_intersect_subsurface(
KernelGlobals *kg,
- const IsectPrecalc *isect_precalc,
SubsurfaceIntersection *ss_isect,
float3 P,
+ float3 dir,
int object,
- int triAddr,
+ int prim_addr,
float tmax,
uint *lcg_state,
int max_hits)
{
- const int kx = isect_precalc->kx;
- const int ky = isect_precalc->ky;
- const int kz = isect_precalc->kz;
- const float Sx = isect_precalc->Sx;
- const float Sy = isect_precalc->Sy;
- const float Sz = isect_precalc->Sz;
-
- /* Calculate vertices relative to ray origin. */
- const uint tri_vindex = kernel_tex_fetch(__prim_tri_index, triAddr);
- const float4 tri_a = kernel_tex_fetch(__prim_tri_verts, tri_vindex+0),
- tri_b = kernel_tex_fetch(__prim_tri_verts, tri_vindex+1),
- tri_c = kernel_tex_fetch(__prim_tri_verts, tri_vindex+2);
-
-#if defined(__KERNEL_AVX2__) && defined(__KERNEL_SSE__)
- const avxf avxf_P(P.m128, P.m128);
-
- const avxf tri_ab = kernel_tex_fetch_avxf(__prim_tri_verts, tri_vindex + 0);
- const avxf tri_bc = kernel_tex_fetch_avxf(__prim_tri_verts, tri_vindex + 1);
-
- const avxf AB = tri_ab - avxf_P;
- const avxf BC = tri_bc - avxf_P;
-
- const __m256i permuteMask = _mm256_set_epi32(0x3, kz, ky, kx, 0x3, kz, ky, kx);
-
- const avxf AB_k = shuffle(AB, permuteMask);
- const avxf BC_k = shuffle(BC, permuteMask);
-
- /* Akz, Akz, Bkz, Bkz, Bkz, Bkz, Ckz, Ckz */
- const avxf ABBC_kz = shuffle<2>(AB_k, BC_k);
-
- /* Akx, Aky, Bkx, Bky, Bkx,Bky, Ckx, Cky */
- const avxf ABBC_kxy = shuffle<0,1,0,1>(AB_k, BC_k);
-
- const avxf Sxy(Sy, Sx, Sy, Sx);
-
- /* Ax, Ay, Bx, By, Bx, By, Cx, Cy */
- const avxf ABBC_xy = nmadd(ABBC_kz, Sxy, ABBC_kxy);
-
- float ABBC_kz_array[8];
- _mm256_storeu_ps((float*)&ABBC_kz_array, ABBC_kz);
-
- const float A_kz = ABBC_kz_array[0];
- const float B_kz = ABBC_kz_array[2];
- const float C_kz = ABBC_kz_array[6];
-
- /* By, Bx, Cy, Cx, By, Bx, Ay, Ax */
- const avxf BCBA_yx = permute<3,2,7,6,3,2,1,0>(ABBC_xy);
-
- const avxf negMask(0,0,0,0,0x80000000, 0x80000000, 0x80000000, 0x80000000);
-
- /* W U V
- * (AxBy-AyBx) (BxCy-ByCx) XX XX (BxBy-ByBx) (CxAy-CyAx) XX XX
- */
- const avxf WUxxxxVxx_neg = _mm256_hsub_ps(ABBC_xy * BCBA_yx, negMask /* Dont care */);
-
- const avxf WUVWnegWUVW = permute<0,1,5,0,0,1,5,0>(WUxxxxVxx_neg) ^ negMask;
-
- /* Calculate scaled barycentric coordinates. */
- float WUVW_array[4];
- _mm_storeu_ps((float*)&WUVW_array, _mm256_castps256_ps128 (WUVWnegWUVW));
-
- const float W = WUVW_array[0];
- const float U = WUVW_array[1];
- const float V = WUVW_array[2];
-
- const int WUVW_mask = 0x7 & _mm256_movemask_ps(WUVWnegWUVW);
- const int WUVW_zero = 0x7 & _mm256_movemask_ps(_mm256_cmp_ps(WUVWnegWUVW,
- _mm256_setzero_ps(), 0));
-
- if(!((WUVW_mask == 7) || (WUVW_mask == 0)) && ((WUVW_mask | WUVW_zero) != 7)) {
- return;
- }
+ const uint tri_vindex = kernel_tex_fetch(__prim_tri_index, prim_addr);
+#if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
+ const ssef *ssef_verts = (ssef*)&kg->__prim_tri_verts.data[tri_vindex];
#else
- const float3 A = make_float3(tri_a.x - P.x, tri_a.y - P.y, tri_a.z - P.z);
- const float3 B = make_float3(tri_b.x - P.x, tri_b.y - P.y, tri_b.z - P.z);
- const float3 C = make_float3(tri_c.x - P.x, tri_c.y - P.y, tri_c.z - P.z);
-
- const float A_kx = IDX(A, kx), A_ky = IDX(A, ky), A_kz = IDX(A, kz);
- const float B_kx = IDX(B, kx), B_ky = IDX(B, ky), B_kz = IDX(B, kz);
- const float C_kx = IDX(C, kx), C_ky = IDX(C, ky), C_kz = IDX(C, kz);
-
- /* Perform shear and scale of vertices. */
- const float Ax = A_kx - Sx * A_kz;
- const float Ay = A_ky - Sy * A_kz;
- const float Bx = B_kx - Sx * B_kz;
- const float By = B_ky - Sy * B_kz;
- const float Cx = C_kx - Sx * C_kz;
- const float Cy = C_ky - Sy * C_kz;
-
- /* Calculate scaled barycentric coordinates. */
- float U = Cx * By - Cy * Bx;
- float V = Ax * Cy - Ay * Cx;
- float W = Bx * Ay - By * Ax;
-
- if((U < 0.0f || V < 0.0f || W < 0.0f) &&
- (U > 0.0f || V > 0.0f || W > 0.0f))
- {
- return;
- }
+ const float3 tri_a = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex+0)),
+ tri_b = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex+1)),
+ tri_c = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex+2));
#endif
-
- /* Calculate determinant. */
- float det = U + V + W;
- if(UNLIKELY(det == 0.0f)) {
- return;
- }
-
- /* Calculate scaled z−coordinates of vertices and use them to calculate
- * the hit distance.
- */
- const int sign_det = (__float_as_int(det) & 0x80000000);
- const float T = (U * A_kz + V * B_kz + W * C_kz) * Sz;
- const float sign_T = xor_signmask(T, sign_det);
- if((sign_T < 0.0f) ||
- (sign_T > tmax * xor_signmask(det, sign_det)))
+ float t, u, v;
+ if(!ray_triangle_intersect(P,
+ dir,
+ tmax,
+#if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
+ ssef_verts,
+#else
+ tri_a, tri_b, tri_c,
+#endif
+ &u, &v, &t))
{
return;
}
- /* Normalize U, V, W, and T. */
- const float inv_det = 1.0f / det;
-
- const float t = T * inv_det;
for(int i = min(max_hits, ss_isect->num_hits) - 1; i >= 0; --i) {
if(ss_isect->hits[i].t == t) {
return;
@@ -415,21 +132,22 @@ ccl_device_inline void triangle_intersect_subsurface(
/* record intersection */
Intersection *isect = &ss_isect->hits[hit];
- isect->prim = triAddr;
+ isect->prim = prim_addr;
isect->object = object;
isect->type = PRIMITIVE_TRIANGLE;
- isect->u = U * inv_det;
- isect->v = V * inv_det;
+ isect->u = u;
+ isect->v = v;
isect->t = t;
/* Record geometric normal. */
- /* TODO(sergey): Use float4_to_float3() on just an edges. */
- const float3 v0 = float4_to_float3(tri_a);
- const float3 v1 = float4_to_float3(tri_b);
- const float3 v2 = float4_to_float3(tri_c);
- ss_isect->Ng[hit] = normalize(cross(v1 - v0, v2 - v0));
-}
+#if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
+ const float3 tri_a = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex+0)),
+ tri_b = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex+1)),
+ tri_c = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex+2));
#endif
+ ss_isect->Ng[hit] = normalize(cross(tri_b - tri_a, tri_c - tri_a));
+}
+#endif /* __SUBSURFACE__ */
/* Refine triangle intersection to more precise hit point. For rays that travel
* far the precision is often not so good, this reintersects the primitive from
@@ -457,7 +175,7 @@ ccl_device_inline float3 triangle_refine(KernelGlobals *kg,
return P;
}
# ifdef __OBJECT_MOTION__
- Transform tfm = ccl_fetch(sd, ob_itfm);
+ Transform tfm = sd->ob_itfm;
# else
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
# endif
@@ -491,7 +209,7 @@ ccl_device_inline float3 triangle_refine(KernelGlobals *kg,
if(isect->object != OBJECT_NONE) {
# ifdef __OBJECT_MOTION__
- Transform tfm = ccl_fetch(sd, ob_tfm);
+ Transform tfm = sd->ob_tfm;
# else
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
# endif
@@ -519,7 +237,7 @@ ccl_device_inline float3 triangle_refine_subsurface(KernelGlobals *kg,
if(isect->object != OBJECT_NONE) {
#ifdef __OBJECT_MOTION__
- Transform tfm = ccl_fetch(sd, ob_itfm);
+ Transform tfm = sd->ob_itfm;
#else
Transform tfm = object_fetch_transform(kg,
isect->object,
@@ -557,7 +275,7 @@ ccl_device_inline float3 triangle_refine_subsurface(KernelGlobals *kg,
if(isect->object != OBJECT_NONE) {
#ifdef __OBJECT_MOTION__
- Transform tfm = ccl_fetch(sd, ob_tfm);
+ Transform tfm = sd->ob_tfm;
#else
Transform tfm = object_fetch_transform(kg,
isect->object,
@@ -570,6 +288,4 @@ ccl_device_inline float3 triangle_refine_subsurface(KernelGlobals *kg,
return P;
}
-#undef IDX
-
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/geom/geom_volume.h b/intern/cycles/kernel/geom/geom_volume.h
index 28ea80f1a65..9a5b94c1f46 100644
--- a/intern/cycles/kernel/geom/geom_volume.h
+++ b/intern/cycles/kernel/geom/geom_volume.h
@@ -33,21 +33,6 @@ CCL_NAMESPACE_BEGIN
/* Return position normalized to 0..1 in mesh bounds */
-#if defined(__KERNEL_CUDA__) && __CUDA_ARCH__ < 300
-ccl_device float4 volume_image_texture_3d(int id, float x, float y, float z)
-{
- float4 r;
- switch(id) {
- case 0: r = kernel_tex_image_interp_3d(__tex_image_float4_3d_000, x, y, z); break;
- case 1: r = kernel_tex_image_interp_3d(__tex_image_float4_3d_001, x, y, z); break;
- case 2: r = kernel_tex_image_interp_3d(__tex_image_float4_3d_002, x, y, z); break;
- case 3: r = kernel_tex_image_interp_3d(__tex_image_float4_3d_003, x, y, z); break;
- case 4: r = kernel_tex_image_interp_3d(__tex_image_float4_3d_004, x, y, z); break;
- }
- return r;
-}
-#endif /* __KERNEL_CUDA__ */
-
ccl_device_inline float3 volume_normalized_position(KernelGlobals *kg,
const ShaderData *sd,
float3 P)
@@ -68,39 +53,14 @@ ccl_device_inline float3 volume_normalized_position(KernelGlobals *kg,
ccl_device float volume_attribute_float(KernelGlobals *kg, const ShaderData *sd, const AttributeDescriptor desc, float *dx, float *dy)
{
- float r;
-
-#ifdef __KERNEL_CUDA__
-# if __CUDA_ARCH__ >= 300
- float3 P = volume_normalized_position(kg, sd, ccl_fetch(sd, P));
- CUtexObject tex = kernel_tex_fetch(__bindless_mapping, desc.offset);
- r = kernel_tex_image_interp_3d_float(tex, P.x, P.y, P.z);
-# else
- float3 P = volume_normalized_position(kg, sd, ccl_fetch(sd, P));
- r = average(float4_to_float3(volume_image_texture_3d(desc.offset, P.x, P.y, P.z)));
-# endif
-#elif defined(__KERNEL_OPENCL__)
- float3 P = volume_normalized_position(kg, sd, ccl_fetch(sd, P));
- r = average(float4_to_float3(kernel_tex_image_interp_3d(kg, desc.offset, P.x, P.y, P.z)));
-#else
-
-#if 1 /* XXX WITH_OPENVDB ? */
- float3 P = ccl_fetch(sd, P);
- /* XXX OpenVDB does not support cubic interpolation (could use quadratic though) - lukas_t */
-#if 0
- if(sd->flag & SD_VOLUME_CUBIC)
- r = kernel_tex_voxel_float(desc.offset, P.x, P.y, P.z, ...)
- else
-#endif
- r = kernel_tex_voxel_float(desc.offset, P.x, P.y, P.z, OPENVDB_SAMPLE_BOX);
+#ifdef __OPENVDB__
+ float3 P = sd->P;
+ /* XXX OpenVDB does not support cubic interpolation - lukas_t */
+ float r = kernel_tex_voxel_float(desc.offset, P.x, P.y, P.z, OPENVDB_SAMPLE_BOX);
#else
- float3 P = volume_normalized_position(kg, sd, ccl_fetch(sd, P));
- if(sd->flag & SD_VOLUME_CUBIC)
- r = average(float4_to_float3(kernel_tex_image_interp_3d_ex(desc.offset, P.x, P.y, P.z, INTERPOLATION_CUBIC)));
- else
- r = average(float4_to_float3(kernel_tex_image_interp_3d(desc.offset, P.x, P.y, P.z)));
-#endif
-
+ float3 P = volume_normalized_position(kg, sd, sd->P);
+ InterpolationType interp = (sd->flag & SD_VOLUME_CUBIC)? INTERPOLATION_CUBIC: INTERPOLATION_NONE;
+ float r = average(float4_to_float3(kernel_tex_image_interp_3d_float(kg, desc.offset, P.x, P.y, P.z, interp)));
#endif
if(dx) *dx = 0.0f;
@@ -111,33 +71,14 @@ ccl_device float volume_attribute_float(KernelGlobals *kg, const ShaderData *sd,
ccl_device float3 volume_attribute_float3(KernelGlobals *kg, const ShaderData *sd, const AttributeDescriptor desc, float3 *dx, float3 *dy)
{
- float3 r;
-
-#ifdef __KERNEL_CUDA__
-# if __CUDA_ARCH__ >= 300
- float3 P = volume_normalized_position(kg, sd, ccl_fetch(sd, P));
- CUtexObject tex = kernel_tex_fetch(__bindless_mapping, desc.offset);
- r = float4_to_float3(kernel_tex_image_interp_3d_float4(tex, P.x, P.y, P.z));
-# else
- float3 P = volume_normalized_position(kg, sd, ccl_fetch(sd, P));
- r = float4_to_float3(volume_image_texture_3d(desc.offset, P.x, P.y, P.z));
-# endif
-#elif defined(__KERNEL_OPENCL__)
- float3 P = volume_normalized_position(kg, sd, ccl_fetch(sd, P));
- r = float4_to_float3(kernel_tex_image_interp_3d(kg, desc.offset, P.x, P.y, P.z));
+#ifdef __OPENVDB__
+ float3 P = sd->P;
+ /* XXX OpenVDB does not support cubic interpolation - lukas_t */
+ float3 r = kernel_tex_voxel_float3(desc.offset, P.x, P.y, P.z, OPENVDB_SAMPLE_BOX);
#else
-
-#if 1 /* XXX WITH_OPENVDB ? */
- float3 P = ccl_fetch(sd, P);
- r = kernel_tex_voxel_float3(desc.offset, P.x, P.y, P.z, OPENVDB_SAMPLE_POINT);
-#else
- float3 P = volume_normalized_position(kg, sd, ccl_fetch(sd, P));
- if(sd->flag & SD_VOLUME_CUBIC)
- r = float4_to_float3(kernel_tex_image_interp_3d_ex(desc.offset, P.x, P.y, P.z, INTERPOLATION_CUBIC));
- else
- r = float4_to_float3(kernel_tex_image_interp_3d(desc.offset, P.x, P.y, P.z));
-#endif
-
+ float3 P = volume_normalized_position(kg, sd, sd->P);
+ InterpolationType interp = (sd->flag & SD_VOLUME_CUBIC)? INTERPOLATION_CUBIC: INTERPOLATION_NONE;
+ float3 r = float4_to_float3(kernel_tex_image_interp_3d(kg, desc.offset, P.x, P.y, P.z, interp));
#endif
if(dx) *dx = make_float3(0.0f, 0.0f, 0.0f);
diff --git a/intern/cycles/kernel/kernel.h b/intern/cycles/kernel/kernel.h
index 9279a94c13a..84a988f1dbc 100644
--- a/intern/cycles/kernel/kernel.h
+++ b/intern/cycles/kernel/kernel.h
@@ -19,7 +19,8 @@
/* CPU Kernel Interface */
-#include "util_types.h"
+#include "util/util_types.h"
+#include "kernel/kernel_types.h"
CCL_NAMESPACE_BEGIN
@@ -28,6 +29,7 @@ CCL_NAMESPACE_BEGIN
#define KERNEL_FUNCTION_FULL_NAME(name) KERNEL_NAME_EVAL(KERNEL_ARCH, name)
struct KernelGlobals;
+struct KernelData;
KernelGlobals *kernel_globals_create();
void kernel_globals_free(KernelGlobals *kg);
@@ -46,32 +48,22 @@ void kernel_tex_copy(KernelGlobals *kg,
ExtensionType extension = EXTENSION_REPEAT);
#define KERNEL_ARCH cpu
-#include "kernels/cpu/kernel_cpu.h"
-
-#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
-# define KERNEL_ARCH cpu_sse2
-# include "kernels/cpu/kernel_cpu.h"
-#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_SSE2 */
-
-#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
-# define KERNEL_ARCH cpu_sse3
-# include "kernels/cpu/kernel_cpu.h"
-#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_SSE2 */
-
-#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
-# define KERNEL_ARCH cpu_sse41
-# include "kernels/cpu/kernel_cpu.h"
-#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_SSE41 */
-
-#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
-# define KERNEL_ARCH cpu_avx
-# include "kernels/cpu/kernel_cpu.h"
-#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_AVX */
-
-#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
-# define KERNEL_ARCH cpu_avx2
-# include "kernels/cpu/kernel_cpu.h"
-#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_AVX2 */
+#include "kernel/kernels/cpu/kernel_cpu.h"
+
+#define KERNEL_ARCH cpu_sse2
+#include "kernel/kernels/cpu/kernel_cpu.h"
+
+#define KERNEL_ARCH cpu_sse3
+#include "kernel/kernels/cpu/kernel_cpu.h"
+
+#define KERNEL_ARCH cpu_sse41
+#include "kernel/kernels/cpu/kernel_cpu.h"
+
+#define KERNEL_ARCH cpu_avx
+#include "kernel/kernels/cpu/kernel_cpu.h"
+
+#define KERNEL_ARCH cpu_avx2
+#include "kernel/kernels/cpu/kernel_cpu.h"
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/kernel_accumulate.h b/intern/cycles/kernel/kernel_accumulate.h
index 6c3ee6b8098..366f25422fd 100644
--- a/intern/cycles/kernel/kernel_accumulate.h
+++ b/intern/cycles/kernel/kernel_accumulate.h
@@ -21,6 +21,9 @@ CCL_NAMESPACE_BEGIN
* BSDF evaluation result, split per BSDF type. This is used to accumulate
* render passes separately. */
+ccl_device float3 shader_bsdf_transparency(KernelGlobals *kg,
+ const ShaderData *sd);
+
ccl_device_inline void bsdf_eval_init(BsdfEval *eval, ClosureType type, float3 value, int use_light_pass)
{
#ifdef __PASSES__
@@ -52,10 +55,17 @@ ccl_device_inline void bsdf_eval_init(BsdfEval *eval, ClosureType type, float3 v
{
eval->diffuse = value;
}
+#ifdef __SHADOW_TRICKS__
+ eval->sum_no_mis = make_float3(0.0f, 0.0f, 0.0f);
+#endif
}
-ccl_device_inline void bsdf_eval_accum(BsdfEval *eval, ClosureType type, float3 value)
+ccl_device_inline void bsdf_eval_accum(BsdfEval *eval, ClosureType type, float3 value, float mis_weight)
{
+#ifdef __SHADOW_TRICKS__
+ eval->sum_no_mis += value;
+#endif
+ value *= mis_weight;
#ifdef __PASSES__
if(eval->use_light_pass) {
if(CLOSURE_IS_BSDF_DIFFUSE(type))
@@ -96,7 +106,7 @@ ccl_device_inline bool bsdf_eval_is_zero(BsdfEval *eval)
}
}
-ccl_device_inline void bsdf_eval_mul(BsdfEval *eval, float value)
+ccl_device_inline void bsdf_eval_mis(BsdfEval *eval, float value)
{
#ifdef __PASSES__
if(eval->use_light_pass) {
@@ -115,8 +125,19 @@ ccl_device_inline void bsdf_eval_mul(BsdfEval *eval, float value)
}
}
+ccl_device_inline void bsdf_eval_mul(BsdfEval *eval, float value)
+{
+#ifdef __SHADOW_TRICKS__
+ eval->sum_no_mis *= value;
+#endif
+ bsdf_eval_mis(eval, value);
+}
+
ccl_device_inline void bsdf_eval_mul3(BsdfEval *eval, float3 value)
{
+#ifdef __SHADOW_TRICKS__
+ eval->sum_no_mis *= value;
+#endif
#ifdef __PASSES__
if(eval->use_light_pass) {
eval->diffuse *= value;
@@ -134,7 +155,7 @@ ccl_device_inline void bsdf_eval_mul3(BsdfEval *eval, float3 value)
#endif
}
-ccl_device_inline float3 bsdf_eval_sum(BsdfEval *eval)
+ccl_device_inline float3 bsdf_eval_sum(const BsdfEval *eval)
{
#ifdef __PASSES__
if(eval->use_light_pass) {
@@ -160,7 +181,6 @@ ccl_device_inline void path_radiance_init(PathRadiance *L, int use_light_pass)
if(use_light_pass) {
L->indirect = make_float3(0.0f, 0.0f, 0.0f);
- L->direct_throughput = make_float3(0.0f, 0.0f, 0.0f);
L->direct_emission = make_float3(0.0f, 0.0f, 0.0f);
L->color_diffuse = make_float3(0.0f, 0.0f, 0.0f);
@@ -181,45 +201,78 @@ ccl_device_inline void path_radiance_init(PathRadiance *L, int use_light_pass)
L->indirect_subsurface = make_float3(0.0f, 0.0f, 0.0f);
L->indirect_scatter = make_float3(0.0f, 0.0f, 0.0f);
- L->path_diffuse = make_float3(0.0f, 0.0f, 0.0f);
- L->path_glossy = make_float3(0.0f, 0.0f, 0.0f);
- L->path_transmission = make_float3(0.0f, 0.0f, 0.0f);
- L->path_subsurface = make_float3(0.0f, 0.0f, 0.0f);
- L->path_scatter = make_float3(0.0f, 0.0f, 0.0f);
-
+ L->transparent = 0.0f;
L->emission = make_float3(0.0f, 0.0f, 0.0f);
L->background = make_float3(0.0f, 0.0f, 0.0f);
L->ao = make_float3(0.0f, 0.0f, 0.0f);
L->shadow = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
L->mist = 0.0f;
+
+ L->state.diffuse = make_float3(0.0f, 0.0f, 0.0f);
+ L->state.glossy = make_float3(0.0f, 0.0f, 0.0f);
+ L->state.transmission = make_float3(0.0f, 0.0f, 0.0f);
+ L->state.subsurface = make_float3(0.0f, 0.0f, 0.0f);
+ L->state.scatter = make_float3(0.0f, 0.0f, 0.0f);
+ L->state.direct = make_float3(0.0f, 0.0f, 0.0f);
}
else
#endif
{
+ L->transparent = 0.0f;
L->emission = make_float3(0.0f, 0.0f, 0.0f);
}
+
+#ifdef __SHADOW_TRICKS__
+ L->path_total = make_float3(0.0f, 0.0f, 0.0f);
+ L->path_total_shaded = make_float3(0.0f, 0.0f, 0.0f);
+ L->shadow_background_color = make_float3(0.0f, 0.0f, 0.0f);
+ L->shadow_throughput = 0.0f;
+ L->shadow_transparency = 1.0f;
+ L->has_shadow_catcher = 0;
+#endif
+
+#ifdef __DENOISING_FEATURES__
+ L->denoising_normal = make_float3(0.0f, 0.0f, 0.0f);
+ L->denoising_albedo = make_float3(0.0f, 0.0f, 0.0f);
+ L->denoising_depth = 0.0f;
+#endif
+
+#ifdef __KERNEL_DEBUG__
+ L->debug_data.num_bvh_traversed_nodes = 0;
+ L->debug_data.num_bvh_traversed_instances = 0;
+ L->debug_data.num_bvh_intersections = 0;
+ L->debug_data.num_ray_bounces = 0;
+#endif
}
-ccl_device_inline void path_radiance_bsdf_bounce(PathRadiance *L, ccl_addr_space float3 *throughput,
- BsdfEval *bsdf_eval, float bsdf_pdf, int bounce, int bsdf_label)
+ccl_device_inline void path_radiance_bsdf_bounce(
+ KernelGlobals *kg,
+ PathRadianceState *L_state,
+ ccl_addr_space float3 *throughput,
+ BsdfEval *bsdf_eval,
+ float bsdf_pdf, int bounce, int bsdf_label)
{
float inverse_pdf = 1.0f/bsdf_pdf;
#ifdef __PASSES__
- if(L->use_light_pass) {
+ if(kernel_data.film.use_light_pass) {
if(bounce == 0 && !(bsdf_label & LABEL_TRANSPARENT)) {
/* first on directly visible surface */
float3 value = *throughput*inverse_pdf;
- L->path_diffuse = bsdf_eval->diffuse*value;
- L->path_glossy = bsdf_eval->glossy*value;
- L->path_transmission = bsdf_eval->transmission*value;
- L->path_subsurface = bsdf_eval->subsurface*value;
- L->path_scatter = bsdf_eval->scatter*value;
-
- *throughput = L->path_diffuse + L->path_glossy + L->path_transmission + L->path_subsurface + L->path_scatter;
+ L_state->diffuse = bsdf_eval->diffuse*value;
+ L_state->glossy = bsdf_eval->glossy*value;
+ L_state->transmission = bsdf_eval->transmission*value;
+ L_state->subsurface = bsdf_eval->subsurface*value;
+ L_state->scatter = bsdf_eval->scatter*value;
+
+ *throughput = L_state->diffuse +
+ L_state->glossy +
+ L_state->transmission +
+ L_state->subsurface +
+ L_state->scatter;
- L->direct_throughput = *throughput;
+ L_state->direct = *throughput;
}
else {
/* transparent bounce before first hit, or indirectly visible through BSDF */
@@ -234,13 +287,22 @@ ccl_device_inline void path_radiance_bsdf_bounce(PathRadiance *L, ccl_addr_space
}
}
-ccl_device_inline void path_radiance_accum_emission(PathRadiance *L, float3 throughput, float3 value, int bounce)
+ccl_device_inline void path_radiance_accum_emission(PathRadiance *L,
+ ccl_addr_space PathState *state,
+ float3 throughput,
+ float3 value)
{
+#ifdef __SHADOW_TRICKS__
+ if(state->flag & PATH_RAY_SHADOW_CATCHER) {
+ return;
+ }
+#endif
+
#ifdef __PASSES__
if(L->use_light_pass) {
- if(bounce == 0)
+ if(state->bounce == 0)
L->emission += throughput*value;
- else if(bounce == 1)
+ else if(state->bounce == 1)
L->direct_emission += throughput*value;
else
L->indirect += throughput*value;
@@ -252,11 +314,28 @@ ccl_device_inline void path_radiance_accum_emission(PathRadiance *L, float3 thro
}
}
-ccl_device_inline void path_radiance_accum_ao(PathRadiance *L, float3 throughput, float3 alpha, float3 bsdf, float3 ao, int bounce)
+ccl_device_inline void path_radiance_accum_ao(PathRadiance *L,
+ ccl_addr_space PathState *state,
+ float3 throughput,
+ float3 alpha,
+ float3 bsdf,
+ float3 ao)
{
+#ifdef __SHADOW_TRICKS__
+ if(state->flag & PATH_RAY_STORE_SHADOW_INFO) {
+ float3 light = throughput * bsdf;
+ L->path_total += light;
+ L->path_total_shaded += ao * light;
+
+ if(state->flag & PATH_RAY_SHADOW_CATCHER) {
+ return;
+ }
+ }
+#endif
+
#ifdef __PASSES__
if(L->use_light_pass) {
- if(bounce == 0) {
+ if(state->bounce == 0) {
/* directly visible lighting */
L->direct_diffuse += throughput*bsdf*ao;
L->ao += alpha*throughput*ao;
@@ -273,11 +352,47 @@ ccl_device_inline void path_radiance_accum_ao(PathRadiance *L, float3 throughput
}
}
-ccl_device_inline void path_radiance_accum_light(PathRadiance *L, float3 throughput, BsdfEval *bsdf_eval, float3 shadow, float shadow_fac, int bounce, bool is_lamp)
+ccl_device_inline void path_radiance_accum_total_ao(
+ PathRadiance *L,
+ ccl_addr_space PathState *state,
+ float3 throughput,
+ float3 bsdf)
+{
+#ifdef __SHADOW_TRICKS__
+ if(state->flag & PATH_RAY_STORE_SHADOW_INFO) {
+ L->path_total += throughput * bsdf;
+ }
+#else
+ (void) L;
+ (void) state;
+ (void) throughput;
+ (void) bsdf;
+#endif
+}
+
+ccl_device_inline void path_radiance_accum_light(PathRadiance *L,
+ ccl_addr_space PathState *state,
+ float3 throughput,
+ BsdfEval *bsdf_eval,
+ float3 shadow,
+ float shadow_fac,
+ bool is_lamp)
{
+#ifdef __SHADOW_TRICKS__
+ if(state->flag & PATH_RAY_STORE_SHADOW_INFO) {
+ float3 light = throughput * bsdf_eval->sum_no_mis;
+ L->path_total += light;
+ L->path_total_shaded += shadow * light;
+
+ if(state->flag & PATH_RAY_SHADOW_CATCHER) {
+ return;
+ }
+ }
+#endif
+
#ifdef __PASSES__
if(L->use_light_pass) {
- if(bounce == 0) {
+ if(state->bounce == 0) {
/* directly visible lighting */
L->direct_diffuse += throughput*bsdf_eval->diffuse*shadow;
L->direct_glossy += throughput*bsdf_eval->glossy*shadow;
@@ -303,13 +418,47 @@ ccl_device_inline void path_radiance_accum_light(PathRadiance *L, float3 through
}
}
-ccl_device_inline void path_radiance_accum_background(PathRadiance *L, float3 throughput, float3 value, int bounce)
+ccl_device_inline void path_radiance_accum_total_light(
+ PathRadiance *L,
+ ccl_addr_space PathState *state,
+ float3 throughput,
+ const BsdfEval *bsdf_eval)
{
+#ifdef __SHADOW_TRICKS__
+ if(state->flag & PATH_RAY_STORE_SHADOW_INFO) {
+ L->path_total += throughput * bsdf_eval->sum_no_mis;
+ }
+#else
+ (void) L;
+ (void) state;
+ (void) throughput;
+ (void) bsdf_eval;
+#endif
+}
+
+ccl_device_inline void path_radiance_accum_background(
+ PathRadiance *L,
+ ccl_addr_space PathState *state,
+ float3 throughput,
+ float3 value)
+{
+
+#ifdef __SHADOW_TRICKS__
+ if(state->flag & PATH_RAY_STORE_SHADOW_INFO) {
+ L->path_total += throughput * value;
+ L->path_total_shaded += throughput * value * L->shadow_transparency;
+
+ if(state->flag & PATH_RAY_SHADOW_CATCHER) {
+ return;
+ }
+ }
+#endif
+
#ifdef __PASSES__
if(L->use_light_pass) {
- if(bounce == 0)
+ if(state->bounce == 0)
L->background += throughput*value;
- else if(bounce == 1)
+ else if(state->bounce == 1)
L->direct_emission += throughput*value;
else
L->indirect += throughput*value;
@@ -319,7 +468,31 @@ ccl_device_inline void path_radiance_accum_background(PathRadiance *L, float3 th
{
L->emission += throughput*value;
}
+
+#ifdef __DENOISING_FEATURES__
+ L->denoising_albedo += state->denoising_feature_weight * value;
+#endif /* __DENOISING_FEATURES__ */
+}
+
+ccl_device_inline void path_radiance_accum_transparent(
+ PathRadiance *L,
+ ccl_addr_space PathState *state,
+ float3 throughput)
+{
+ L->transparent += average(throughput);
+}
+
+#ifdef __SHADOW_TRICKS__
+ccl_device_inline void path_radiance_accum_shadowcatcher(
+ PathRadiance *L,
+ float3 throughput,
+ float3 background)
+{
+ L->shadow_throughput += average(throughput);
+ L->shadow_background_color += throughput * background;
+ L->has_shadow_catcher = 1;
}
+#endif
ccl_device_inline void path_radiance_sum_indirect(PathRadiance *L)
{
@@ -328,19 +501,19 @@ ccl_device_inline void path_radiance_sum_indirect(PathRadiance *L)
* only a single throughput further along the path, here we recover just
* the indirect path that is not influenced by any particular BSDF type */
if(L->use_light_pass) {
- L->direct_emission = safe_divide_color(L->direct_emission, L->direct_throughput);
- L->direct_diffuse += L->path_diffuse*L->direct_emission;
- L->direct_glossy += L->path_glossy*L->direct_emission;
- L->direct_transmission += L->path_transmission*L->direct_emission;
- L->direct_subsurface += L->path_subsurface*L->direct_emission;
- L->direct_scatter += L->path_scatter*L->direct_emission;
-
- L->indirect = safe_divide_color(L->indirect, L->direct_throughput);
- L->indirect_diffuse += L->path_diffuse*L->indirect;
- L->indirect_glossy += L->path_glossy*L->indirect;
- L->indirect_transmission += L->path_transmission*L->indirect;
- L->indirect_subsurface += L->path_subsurface*L->indirect;
- L->indirect_scatter += L->path_scatter*L->indirect;
+ L->direct_emission = safe_divide_color(L->direct_emission, L->state.direct);
+ L->direct_diffuse += L->state.diffuse*L->direct_emission;
+ L->direct_glossy += L->state.glossy*L->direct_emission;
+ L->direct_transmission += L->state.transmission*L->direct_emission;
+ L->direct_subsurface += L->state.subsurface*L->direct_emission;
+ L->direct_scatter += L->state.scatter*L->direct_emission;
+
+ L->indirect = safe_divide_color(L->indirect, L->state.direct);
+ L->indirect_diffuse += L->state.diffuse*L->indirect;
+ L->indirect_glossy += L->state.glossy*L->indirect;
+ L->indirect_transmission += L->state.transmission*L->indirect;
+ L->indirect_subsurface += L->state.subsurface*L->indirect;
+ L->indirect_scatter += L->state.scatter*L->indirect;
}
#endif
}
@@ -349,11 +522,11 @@ ccl_device_inline void path_radiance_reset_indirect(PathRadiance *L)
{
#ifdef __PASSES__
if(L->use_light_pass) {
- L->path_diffuse = make_float3(0.0f, 0.0f, 0.0f);
- L->path_glossy = make_float3(0.0f, 0.0f, 0.0f);
- L->path_transmission = make_float3(0.0f, 0.0f, 0.0f);
- L->path_subsurface = make_float3(0.0f, 0.0f, 0.0f);
- L->path_scatter = make_float3(0.0f, 0.0f, 0.0f);
+ L->state.diffuse = make_float3(0.0f, 0.0f, 0.0f);
+ L->state.glossy = make_float3(0.0f, 0.0f, 0.0f);
+ L->state.transmission = make_float3(0.0f, 0.0f, 0.0f);
+ L->state.subsurface = make_float3(0.0f, 0.0f, 0.0f);
+ L->state.scatter = make_float3(0.0f, 0.0f, 0.0f);
L->direct_emission = make_float3(0.0f, 0.0f, 0.0f);
L->indirect = make_float3(0.0f, 0.0f, 0.0f);
@@ -366,11 +539,7 @@ ccl_device_inline void path_radiance_copy_indirect(PathRadiance *L,
{
#ifdef __PASSES__
if(L->use_light_pass) {
- L->path_diffuse = L_src->path_diffuse;
- L->path_glossy = L_src->path_glossy;
- L->path_transmission = L_src->path_transmission;
- L->path_subsurface = L_src->path_subsurface;
- L->path_scatter = L_src->path_scatter;
+ L->state = L_src->state;
L->direct_emission = L_src->direct_emission;
L->indirect = L_src->indirect;
@@ -378,7 +547,40 @@ ccl_device_inline void path_radiance_copy_indirect(PathRadiance *L,
#endif
}
-ccl_device_inline float3 path_radiance_clamp_and_sum(KernelGlobals *kg, PathRadiance *L)
+#ifdef __SHADOW_TRICKS__
+ccl_device_inline void path_radiance_sum_shadowcatcher(KernelGlobals *kg,
+ PathRadiance *L,
+ float3 *L_sum,
+ float *alpha)
+{
+ /* Calculate current shadow of the path. */
+ float path_total = average(L->path_total);
+ float shadow;
+
+ if(UNLIKELY(!isfinite_safe(path_total))) {
+ kernel_assert(!"Non-finite total radiance along the path");
+ shadow = 0.0f;
+ }
+ else if(path_total == 0.0f) {
+ shadow = L->shadow_transparency;
+ }
+ else {
+ float path_total_shaded = average(L->path_total_shaded);
+ shadow = path_total_shaded / path_total;
+ }
+
+ /* Calculate final light sum and transparency for shadow catcher object. */
+ if(kernel_data.background.transparent) {
+ *alpha -= L->shadow_throughput * shadow;
+ }
+ else {
+ L->shadow_background_color *= shadow;
+ *L_sum += L->shadow_background_color;
+ }
+}
+#endif
+
+ccl_device_inline float3 path_radiance_clamp_and_sum(KernelGlobals *kg, PathRadiance *L, float *alpha)
{
float3 L_sum;
/* Light Passes are used */
@@ -399,7 +601,7 @@ ccl_device_inline float3 path_radiance_clamp_and_sum(KernelGlobals *kg, PathRadi
float sum = fabsf((L_sum).x) + fabsf((L_sum).y) + fabsf((L_sum).z);
/* Reject invalid value */
- if(!isfinite(sum)) {
+ if(!isfinite_safe(sum)) {
kernel_assert(!"Non-finite sum in path_radiance_clamp_and_sum!");
L_sum = make_float3(0.0f, 0.0f, 0.0f);
@@ -455,8 +657,6 @@ ccl_device_inline float3 path_radiance_clamp_and_sum(KernelGlobals *kg, PathRadi
L_sum = L_direct + L_indirect;
}
#endif
-
- return L_sum;
}
/* No Light Passes */
@@ -464,42 +664,105 @@ ccl_device_inline float3 path_radiance_clamp_and_sum(KernelGlobals *kg, PathRadi
#endif
{
L_sum = L->emission;
+
+ /* Reject invalid value */
+ float sum = fabsf((L_sum).x) + fabsf((L_sum).y) + fabsf((L_sum).z);
+ if(!isfinite_safe(sum)) {
+ kernel_assert(!"Non-finite final sum in path_radiance_clamp_and_sum!");
+ L_sum = make_float3(0.0f, 0.0f, 0.0f);
+ }
}
- /* Reject invalid value */
- float sum = fabsf((L_sum).x) + fabsf((L_sum).y) + fabsf((L_sum).z);
- if(!isfinite(sum)) {
- kernel_assert(!"Non-finite final sum in path_radiance_clamp_and_sum!");
- L_sum = make_float3(0.0f, 0.0f, 0.0f);
+ /* Compute alpha. */
+ *alpha = 1.0f - L->transparent;
+
+ /* Add shadow catcher contributions. */
+#ifdef __SHADOW_TRICKS__
+ if(L->has_shadow_catcher) {
+ path_radiance_sum_shadowcatcher(kg, L, &L_sum, alpha);
}
+#endif /* __SHADOW_TRICKS__ */
return L_sum;
}
-ccl_device_inline void path_radiance_accum_sample(PathRadiance *L, PathRadiance *L_sample, int num_samples)
+ccl_device_inline void path_radiance_split_denoising(KernelGlobals *kg, PathRadiance *L, float3 *noisy, float3 *clean)
+{
+#ifdef __PASSES__
+ kernel_assert(L->use_light_pass);
+
+ *clean = L->emission + L->background;
+ *noisy = L->direct_scatter + L->indirect_scatter;
+
+# define ADD_COMPONENT(flag, component) \
+ if(kernel_data.film.denoising_flags & flag) \
+ *clean += component; \
+ else \
+ *noisy += component;
+
+ ADD_COMPONENT(DENOISING_CLEAN_DIFFUSE_DIR, L->direct_diffuse);
+ ADD_COMPONENT(DENOISING_CLEAN_DIFFUSE_IND, L->indirect_diffuse);
+ ADD_COMPONENT(DENOISING_CLEAN_GLOSSY_DIR, L->direct_glossy);
+ ADD_COMPONENT(DENOISING_CLEAN_GLOSSY_IND, L->indirect_glossy);
+ ADD_COMPONENT(DENOISING_CLEAN_TRANSMISSION_DIR, L->direct_transmission);
+ ADD_COMPONENT(DENOISING_CLEAN_TRANSMISSION_IND, L->indirect_transmission);
+ ADD_COMPONENT(DENOISING_CLEAN_SUBSURFACE_DIR, L->direct_subsurface);
+ ADD_COMPONENT(DENOISING_CLEAN_SUBSURFACE_IND, L->indirect_subsurface);
+# undef ADD_COMPONENT
+#else
+ *noisy = L->emission;
+ *clean = make_float3(0.0f, 0.0f, 0.0f);
+#endif
+
+#ifdef __SHADOW_TRICKS__
+ if(L->has_shadow_catcher) {
+ *noisy += L->shadow_background_color;
+ }
+#endif
+
+ *noisy = ensure_finite3(*noisy);
+ *clean = ensure_finite3(*clean);
+}
+
+ccl_device_inline void path_radiance_accum_sample(PathRadiance *L, PathRadiance *L_sample)
{
- float fac = 1.0f/num_samples;
+#ifdef __SPLIT_KERNEL__
+# define safe_float3_add(f, v) \
+ do { \
+ ccl_global float *p = (ccl_global float*)(&(f)); \
+ atomic_add_and_fetch_float(p+0, (v).x); \
+ atomic_add_and_fetch_float(p+1, (v).y); \
+ atomic_add_and_fetch_float(p+2, (v).z); \
+ } while(0)
+# define safe_float_add(f, v) \
+ atomic_add_and_fetch_float(&(f), (v))
+#else
+# define safe_float3_add(f, v) (f) += (v)
+# define safe_float_add(f, v) (f) += (v)
+#endif /* __SPLIT_KERNEL__ */
#ifdef __PASSES__
- L->direct_diffuse += L_sample->direct_diffuse*fac;
- L->direct_glossy += L_sample->direct_glossy*fac;
- L->direct_transmission += L_sample->direct_transmission*fac;
- L->direct_subsurface += L_sample->direct_subsurface*fac;
- L->direct_scatter += L_sample->direct_scatter*fac;
-
- L->indirect_diffuse += L_sample->indirect_diffuse*fac;
- L->indirect_glossy += L_sample->indirect_glossy*fac;
- L->indirect_transmission += L_sample->indirect_transmission*fac;
- L->indirect_subsurface += L_sample->indirect_subsurface*fac;
- L->indirect_scatter += L_sample->indirect_scatter*fac;
-
- L->background += L_sample->background*fac;
- L->ao += L_sample->ao*fac;
- L->shadow += L_sample->shadow*fac;
- L->mist += L_sample->mist*fac;
-#endif
- L->emission += L_sample->emission * fac;
+ safe_float3_add(L->direct_diffuse, L_sample->direct_diffuse);
+ safe_float3_add(L->direct_glossy, L_sample->direct_glossy);
+ safe_float3_add(L->direct_transmission, L_sample->direct_transmission);
+ safe_float3_add(L->direct_subsurface, L_sample->direct_subsurface);
+ safe_float3_add(L->direct_scatter, L_sample->direct_scatter);
+
+ safe_float3_add(L->indirect_diffuse, L_sample->indirect_diffuse);
+ safe_float3_add(L->indirect_glossy, L_sample->indirect_glossy);
+ safe_float3_add(L->indirect_transmission, L_sample->indirect_transmission);
+ safe_float3_add(L->indirect_subsurface, L_sample->indirect_subsurface);
+ safe_float3_add(L->indirect_scatter, L_sample->indirect_scatter);
+
+ safe_float3_add(L->background, L_sample->background);
+ safe_float3_add(L->ao, L_sample->ao);
+ safe_float3_add(L->shadow, L_sample->shadow);
+ safe_float_add(L->mist, L_sample->mist);
+#endif /* __PASSES__ */
+ safe_float3_add(L->emission, L_sample->emission);
+
+#undef safe_float_add
+#undef safe_float3_add
}
CCL_NAMESPACE_END
-
diff --git a/intern/cycles/kernel/kernel_bake.h b/intern/cycles/kernel/kernel_bake.h
index c32ac6ccf41..84d8d84d486 100644
--- a/intern/cycles/kernel/kernel_bake.h
+++ b/intern/cycles/kernel/kernel_bake.h
@@ -21,7 +21,7 @@ CCL_NAMESPACE_BEGIN
ccl_device_inline void compute_light_pass(KernelGlobals *kg,
ShaderData *sd,
PathRadiance *L,
- RNG rng,
+ uint rng_hash,
int pass_filter,
int sample)
{
@@ -48,13 +48,13 @@ ccl_device_inline void compute_light_pass(KernelGlobals *kg,
path_radiance_init(&L_sample, kernel_data.film.use_light_pass);
/* init path state */
- path_state_init(kg, &emission_sd, &state, &rng, sample, NULL);
+ path_state_init(kg, &emission_sd, &state, rng_hash, sample, NULL);
/* evaluate surface shader */
- float rbsdf = path_state_rng_1D(kg, &rng, &state, PRNG_BSDF);
- shader_eval_surface(kg, sd, &rng, &state, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
+ shader_eval_surface(kg, sd, &state, state.flag);
- /* TODO, disable the closures we won't need */
+ /* TODO, disable more closures we don't need besides transparent */
+ shader_bsdf_disable_transparency(kg, sd);
#ifdef __BRANCHED_PATH__
if(!kernel_data.integrator.branched) {
@@ -63,13 +63,13 @@ ccl_device_inline void compute_light_pass(KernelGlobals *kg,
/* sample ambient occlusion */
if(pass_filter & BAKE_FILTER_AO) {
- kernel_path_ao(kg, sd, &emission_sd, &L_sample, &state, &rng, throughput, shader_bsdf_alpha(kg, sd));
+ kernel_path_ao(kg, sd, &emission_sd, &L_sample, &state, throughput, shader_bsdf_alpha(kg, sd));
}
/* sample emission */
if((pass_filter & BAKE_FILTER_EMISSION) && (sd->flag & SD_EMISSION)) {
float3 emission = indirect_primitive_emission(kg, sd, 0.0f, state.flag, state.ray_pdf);
- path_radiance_accum_emission(&L_sample, throughput, emission, state.bounce);
+ path_radiance_accum_emission(&L_sample, &state, throughput, emission);
}
bool is_sss_sample = false;
@@ -85,7 +85,6 @@ ccl_device_inline void compute_light_pass(KernelGlobals *kg,
&emission_sd,
&L_sample,
&state,
- &rng,
&ray,
&throughput,
&ss_indirect))
@@ -100,13 +99,10 @@ ccl_device_inline void compute_light_pass(KernelGlobals *kg,
kernel_path_indirect(kg,
&indirect_sd,
&emission_sd,
- &rng,
&ray,
throughput,
- state.num_samples,
&state,
&L_sample);
- kernel_path_subsurface_accum_indirect(&ss_indirect, &L_sample);
}
is_sss_sample = true;
}
@@ -115,14 +111,14 @@ ccl_device_inline void compute_light_pass(KernelGlobals *kg,
/* sample light and BSDF */
if(!is_sss_sample && (pass_filter & (BAKE_FILTER_DIRECT | BAKE_FILTER_INDIRECT))) {
- kernel_path_surface_connect_light(kg, &rng, sd, &emission_sd, throughput, &state, &L_sample);
+ kernel_path_surface_connect_light(kg, sd, &emission_sd, throughput, &state, &L_sample);
- if(kernel_path_surface_bounce(kg, &rng, sd, &throughput, &state, &L_sample, &ray)) {
+ if(kernel_path_surface_bounce(kg, sd, &throughput, &state, &L_sample.state, &ray)) {
#ifdef __LAMP_MIS__
state.ray_t = 0.0f;
#endif
/* compute indirect light */
- kernel_path_indirect(kg, &indirect_sd, &emission_sd, &rng, &ray, throughput, 1, &state, &L_sample);
+ kernel_path_indirect(kg, &indirect_sd, &emission_sd, &ray, throughput, &state, &L_sample);
/* sum and reset indirect light pass variables for the next samples */
path_radiance_sum_indirect(&L_sample);
@@ -136,13 +132,13 @@ ccl_device_inline void compute_light_pass(KernelGlobals *kg,
/* sample ambient occlusion */
if(pass_filter & BAKE_FILTER_AO) {
- kernel_branched_path_ao(kg, sd, &emission_sd, &L_sample, &state, &rng, throughput);
+ kernel_branched_path_ao(kg, sd, &emission_sd, &L_sample, &state, throughput);
}
/* sample emission */
if((pass_filter & BAKE_FILTER_EMISSION) && (sd->flag & SD_EMISSION)) {
float3 emission = indirect_primitive_emission(kg, sd, 0.0f, state.flag, state.ray_pdf);
- path_radiance_accum_emission(&L_sample, throughput, emission, state.bounce);
+ path_radiance_accum_emission(&L_sample, &state, throughput, emission);
}
#ifdef __SUBSURFACE__
@@ -150,7 +146,7 @@ ccl_device_inline void compute_light_pass(KernelGlobals *kg,
if((pass_filter & BAKE_FILTER_SUBSURFACE) && (sd->flag & SD_BSSRDF)) {
/* when mixing BSSRDF and BSDF closures we should skip BSDF lighting if scattering was successful */
kernel_branched_path_subsurface_scatter(kg, sd, &indirect_sd,
- &emission_sd, &L_sample, &state, &rng, &ray, throughput);
+ &emission_sd, &L_sample, &state, &ray, throughput);
}
#endif
@@ -160,20 +156,20 @@ ccl_device_inline void compute_light_pass(KernelGlobals *kg,
/* direct light */
if(kernel_data.integrator.use_direct_light) {
int all = kernel_data.integrator.sample_all_lights_direct;
- kernel_branched_path_surface_connect_light(kg, &rng,
+ kernel_branched_path_surface_connect_light(kg,
sd, &emission_sd, &state, throughput, 1.0f, &L_sample, all);
}
#endif
/* indirect light */
- kernel_branched_path_surface_indirect_light(kg, &rng,
+ kernel_branched_path_surface_indirect_light(kg,
sd, &indirect_sd, &emission_sd, throughput, 1.0f, &state, &L_sample);
}
}
#endif
/* accumulate into master L */
- path_radiance_accum_sample(L, &L_sample, 1);
+ path_radiance_accum_sample(L, &L_sample);
}
ccl_device bool is_aa_pass(ShaderEvalType type)
@@ -224,7 +220,6 @@ ccl_device_inline float3 kernel_bake_shader_bsdf(KernelGlobals *kg,
ccl_device float3 kernel_bake_evaluate_direct_indirect(KernelGlobals *kg,
ShaderData *sd,
- RNG *rng,
PathState *state,
float3 direct,
float3 indirect,
@@ -244,12 +239,12 @@ ccl_device float3 kernel_bake_evaluate_direct_indirect(KernelGlobals *kg,
}
else {
/* surface color of the pass only */
- shader_eval_surface(kg, sd, rng, state, 0.0f, 0, SHADER_CONTEXT_MAIN);
+ shader_eval_surface(kg, sd, state, 0);
return kernel_bake_shader_bsdf(kg, sd, type);
}
}
else {
- shader_eval_surface(kg, sd, rng, state, 0.0f, 0, SHADER_CONTEXT_MAIN);
+ shader_eval_surface(kg, sd, state, 0);
color = kernel_bake_shader_bsdf(kg, sd, type);
}
@@ -291,14 +286,14 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
int num_samples = kernel_data.integrator.aa_samples;
/* random number generator */
- RNG rng = cmj_hash(offset + i, kernel_data.integrator.seed);
+ uint rng_hash = cmj_hash(offset + i, kernel_data.integrator.seed);
float filter_x, filter_y;
if(sample == 0) {
filter_x = filter_y = 0.5f;
}
else {
- path_rng_2D(kg, &rng, sample, num_samples, PRNG_FILTER_U, &filter_x, &filter_y);
+ path_rng_2D(kg, rng_hash, sample, num_samples, PRNG_FILTER_U, &filter_x, &filter_y);
}
/* subpixel u/v offset */
@@ -320,7 +315,7 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
P, Ng, Ng,
shader, object, prim,
u, v, 1.0f, 0.5f,
- !(kernel_tex_fetch(__object_flag, object) & SD_TRANSFORM_APPLIED),
+ !(kernel_tex_fetch(__object_flag, object) & SD_OBJECT_TRANSFORM_APPLIED),
LAMP_NONE);
sd.I = sd.N;
@@ -334,18 +329,20 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
/* light passes if we need more than color */
if(pass_filter & ~BAKE_FILTER_COLOR)
- compute_light_pass(kg, &sd, &L, rng, pass_filter, sample);
+ compute_light_pass(kg, &sd, &L, rng_hash, pass_filter, sample);
switch(type) {
/* data passes */
case SHADER_EVAL_NORMAL:
{
+ float3 N = sd.N;
if((sd.flag & SD_HAS_BUMP)) {
- shader_eval_surface(kg, &sd, &rng, &state, 0.f, 0, SHADER_CONTEXT_MAIN);
+ shader_eval_surface(kg, &sd, &state, 0);
+ N = shader_bsdf_average_normal(kg, &sd);
}
- /* compression: normal = (2 * color) - 1 */
- out = sd.N * 0.5f + make_float3(0.5f, 0.5f, 0.5f);
+ /* encoding: normal = (2 * color) - 1 */
+ out = N * 0.5f + make_float3(0.5f, 0.5f, 0.5f);
break;
}
case SHADER_EVAL_UV:
@@ -355,7 +352,7 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
}
case SHADER_EVAL_EMISSION:
{
- shader_eval_surface(kg, &sd, &rng, &state, 0.f, 0, SHADER_CONTEXT_EMISSION);
+ shader_eval_surface(kg, &sd, &state, 0);
out = shader_emissive_eval(kg, &sd);
break;
}
@@ -370,7 +367,8 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
case SHADER_EVAL_COMBINED:
{
if((pass_filter & BAKE_FILTER_COMBINED) == BAKE_FILTER_COMBINED) {
- out = path_radiance_clamp_and_sum(kg, &L);
+ float alpha;
+ out = path_radiance_clamp_and_sum(kg, &L, &alpha);
break;
}
@@ -408,7 +406,6 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
{
out = kernel_bake_evaluate_direct_indirect(kg,
&sd,
- &rng,
&state,
L.direct_diffuse,
L.indirect_diffuse,
@@ -420,7 +417,6 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
{
out = kernel_bake_evaluate_direct_indirect(kg,
&sd,
- &rng,
&state,
L.direct_glossy,
L.indirect_glossy,
@@ -432,7 +428,6 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
{
out = kernel_bake_evaluate_direct_indirect(kg,
&sd,
- &rng,
&state,
L.direct_transmission,
L.indirect_transmission,
@@ -445,7 +440,6 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
#ifdef __SUBSURFACE__
out = kernel_bake_evaluate_direct_indirect(kg,
&sd,
- &rng,
&state,
L.direct_subsurface,
L.indirect_subsurface,
@@ -479,7 +473,7 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
/* evaluate */
int flag = 0; /* we can't know which type of BSDF this is for */
- out = shader_eval_background(kg, &sd, &state, flag, SHADER_CONTEXT_MAIN);
+ out = shader_eval_background(kg, &sd, &state, flag);
break;
}
default:
@@ -499,78 +493,69 @@ ccl_device void kernel_bake_evaluate(KernelGlobals *kg, ccl_global uint4 *input,
#endif /* __BAKING__ */
-ccl_device void kernel_shader_evaluate(KernelGlobals *kg,
- ccl_global uint4 *input,
- ccl_global float4 *output,
- ccl_global float *output_luma,
- ShaderEvalType type,
- int i,
- int sample)
+ccl_device void kernel_displace_evaluate(KernelGlobals *kg,
+ ccl_global uint4 *input,
+ ccl_global float4 *output,
+ int i)
{
ShaderData sd;
PathState state = {0};
uint4 in = input[i];
- float3 out;
- if(type == SHADER_EVAL_DISPLACE) {
- /* setup shader data */
- int object = in.x;
- int prim = in.y;
- float u = __uint_as_float(in.z);
- float v = __uint_as_float(in.w);
+ /* setup shader data */
+ int object = in.x;
+ int prim = in.y;
+ float u = __uint_as_float(in.z);
+ float v = __uint_as_float(in.w);
- shader_setup_from_displace(kg, &sd, object, prim, u, v);
+ shader_setup_from_displace(kg, &sd, object, prim, u, v);
- /* evaluate */
- float3 P = sd.P;
- shader_eval_displacement(kg, &sd, &state, SHADER_CONTEXT_MAIN);
- out = sd.P - P;
+ /* evaluate */
+ float3 P = sd.P;
+ shader_eval_displacement(kg, &sd, &state);
+ float3 D = sd.P - P;
- object_inverse_dir_transform(kg, &sd, &out);
- }
- else { // SHADER_EVAL_BACKGROUND
- /* setup ray */
- Ray ray;
- float u = __uint_as_float(in.x);
- float v = __uint_as_float(in.y);
-
- ray.P = make_float3(0.0f, 0.0f, 0.0f);
- ray.D = equirectangular_to_direction(u, v);
- ray.t = 0.0f;
+ object_inverse_dir_transform(kg, &sd, &D);
+
+ /* write output */
+ output[i] += make_float4(D.x, D.y, D.z, 0.0f);
+}
+
+ccl_device void kernel_background_evaluate(KernelGlobals *kg,
+ ccl_global uint4 *input,
+ ccl_global float4 *output,
+ int i)
+{
+ ShaderData sd;
+ PathState state = {0};
+ uint4 in = input[i];
+
+ /* setup ray */
+ Ray ray;
+ float u = __uint_as_float(in.x);
+ float v = __uint_as_float(in.y);
+
+ ray.P = make_float3(0.0f, 0.0f, 0.0f);
+ ray.D = equirectangular_to_direction(u, v);
+ ray.t = 0.0f;
#ifdef __CAMERA_MOTION__
- ray.time = 0.5f;
+ ray.time = 0.5f;
#endif
#ifdef __RAY_DIFFERENTIALS__
- ray.dD = differential3_zero();
- ray.dP = differential3_zero();
+ ray.dD = differential3_zero();
+ ray.dP = differential3_zero();
#endif
- /* setup shader data */
- shader_setup_from_background(kg, &sd, &ray);
+ /* setup shader data */
+ shader_setup_from_background(kg, &sd, &ray);
+
+ /* evaluate */
+ int flag = 0; /* we can't know which type of BSDF this is for */
+ float3 color = shader_eval_background(kg, &sd, &state, flag);
- /* evaluate */
- int flag = 0; /* we can't know which type of BSDF this is for */
- out = shader_eval_background(kg, &sd, &state, flag, SHADER_CONTEXT_MAIN);
- }
-
/* write output */
- if(sample == 0) {
- if(output != NULL) {
- output[i] = make_float4(out.x, out.y, out.z, 0.0f);
- }
- if(output_luma != NULL) {
- output_luma[i] = average(out);
- }
- }
- else {
- if(output != NULL) {
- output[i] += make_float4(out.x, out.y, out.z, 0.0f);
- }
- if(output_luma != NULL) {
- output_luma[i] += average(out);
- }
- }
+ output[i] += make_float4(color.x, color.y, color.z, 0.0f);
}
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/kernel_camera.h b/intern/cycles/kernel/kernel_camera.h
index dedac6b1465..0df5217d97a 100644
--- a/intern/cycles/kernel/kernel_camera.h
+++ b/intern/cycles/kernel/kernel_camera.h
@@ -457,7 +457,7 @@ ccl_device_inline float3 camera_world_to_ndc(KernelGlobals *kg, ShaderData *sd,
{
if(kernel_data.cam.type != CAMERA_PANORAMA) {
/* perspective / ortho */
- if(ccl_fetch(sd, object) == PRIM_NONE && kernel_data.cam.type == CAMERA_PERSPECTIVE)
+ if(sd->object == PRIM_NONE && kernel_data.cam.type == CAMERA_PERSPECTIVE)
P += camera_position(kg);
Transform tfm = kernel_data.cam.worldtondc;
@@ -467,7 +467,7 @@ ccl_device_inline float3 camera_world_to_ndc(KernelGlobals *kg, ShaderData *sd,
/* panorama */
Transform tfm = kernel_data.cam.worldtocamera;
- if(ccl_fetch(sd, object) != OBJECT_NONE)
+ if(sd->object != OBJECT_NONE)
P = normalize(transform_point(&tfm, P));
else
P = normalize(transform_direction(&tfm, P));
diff --git a/intern/cycles/kernel/kernel_compat_cpu.h b/intern/cycles/kernel/kernel_compat_cpu.h
index dfcfcba2a40..4b43209e4aa 100644
--- a/intern/cycles/kernel/kernel_compat_cpu.h
+++ b/intern/cycles/kernel/kernel_compat_cpu.h
@@ -35,15 +35,24 @@
# define __NODES_FEATURES__ NODE_FEATURE_ALL
#endif
-#include "util_debug.h"
-#include "util_math.h"
-#include "util_simd.h"
-#include "util_half.h"
-#include "util_types.h"
-#include "util_texture.h"
+#include "util/util_debug.h"
+#include "util/util_math.h"
+#include "util/util_simd.h"
+#include "util/util_half.h"
+#include "util/util_types.h"
+#include "util/util_texture.h"
#define ccl_addr_space
+#define ccl_local_id(d) 0
+#define ccl_global_id(d) (kg->global_id[d])
+
+#define ccl_local_size(d) 1
+#define ccl_global_size(d) (kg->global_size[d])
+
+#define ccl_group_id(d) ccl_global_id(d)
+#define ccl_num_groups(d) ccl_global_size(d)
+
/* On x86_64, versions of glibc < 2.16 have an issue where expf is
* much slower than the double version. This was fixed in glibc 2.16.
*/
@@ -65,7 +74,7 @@ CCL_NAMESPACE_BEGIN
* pointer lookup. */
template<typename T> struct texture {
- ccl_always_inline T fetch(int index)
+ ccl_always_inline const T& fetch(int index)
{
kernel_assert(index >= 0 && index < width);
return data[index];
@@ -78,9 +87,9 @@ template<typename T> struct texture {
ccl_always_inline avxf fetch_avxf(const int index)
{
kernel_assert(index >= 0 && (index+1) < width);
- ssef *ssefData = (ssef*)data;
- ssef *ssefNodeData = &ssefData[index];
- return _mm256_loadu_ps((float *)ssefNodeData);
+ ssef *ssef_data = (ssef*)data;
+ ssef *ssef_node_data = &ssef_data[index];
+ return _mm256_loadu_ps((float *)ssef_node_data);
}
#endif
@@ -103,420 +112,6 @@ template<typename T> struct texture {
int width;
};
-template<typename T> struct texture_image {
-#define SET_CUBIC_SPLINE_WEIGHTS(u, t) \
- { \
- u[0] = (((-1.0f/6.0f)* t + 0.5f) * t - 0.5f) * t + (1.0f/6.0f); \
- u[1] = (( 0.5f * t - 1.0f) * t ) * t + (2.0f/3.0f); \
- u[2] = (( -0.5f * t + 0.5f) * t + 0.5f) * t + (1.0f/6.0f); \
- u[3] = (1.0f / 6.0f) * t * t * t; \
- } (void)0
-
- ccl_always_inline float4 read(float4 r)
- {
- return r;
- }
-
- ccl_always_inline float4 read(uchar4 r)
- {
- float f = 1.0f/255.0f;
- return make_float4(r.x*f, r.y*f, r.z*f, r.w*f);
- }
-
- ccl_always_inline float4 read(uchar r)
- {
- float f = r*(1.0f/255.0f);
- return make_float4(f, f, f, 1.0f);
- }
-
- ccl_always_inline float4 read(float r)
- {
- /* TODO(dingto): Optimize this, so interpolation
- * happens on float instead of float4 */
- return make_float4(r, r, r, 1.0f);
- }
-
- ccl_always_inline float4 read(half4 r)
- {
- return half4_to_float4(r);
- }
-
- ccl_always_inline float4 read(half r)
- {
- float f = half_to_float(r);
- return make_float4(f, f, f, 1.0f);
- }
-
- ccl_always_inline int wrap_periodic(int x, int width)
- {
- x %= width;
- if(x < 0)
- x += width;
- return x;
- }
-
- ccl_always_inline int wrap_clamp(int x, int width)
- {
- return clamp(x, 0, width-1);
- }
-
- ccl_always_inline float frac(float x, int *ix)
- {
- int i = float_to_int(x) - ((x < 0.0f)? 1: 0);
- *ix = i;
- return x - (float)i;
- }
-
- ccl_always_inline float4 interp(float x, float y)
- {
- if(UNLIKELY(!data))
- return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
-
- int ix, iy, nix, niy;
-
- if(interpolation == INTERPOLATION_CLOSEST) {
- frac(x*(float)width, &ix);
- frac(y*(float)height, &iy);
- switch(extension) {
- case EXTENSION_REPEAT:
- ix = wrap_periodic(ix, width);
- iy = wrap_periodic(iy, height);
- break;
- case EXTENSION_CLIP:
- if(x < 0.0f || y < 0.0f || x > 1.0f || y > 1.0f) {
- return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
- }
- /* Fall through. */
- case EXTENSION_EXTEND:
- ix = wrap_clamp(ix, width);
- iy = wrap_clamp(iy, height);
- break;
- default:
- kernel_assert(0);
- return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
- }
- return read(data[ix + iy*width]);
- }
- else if(interpolation == INTERPOLATION_LINEAR) {
- float tx = frac(x*(float)width - 0.5f, &ix);
- float ty = frac(y*(float)height - 0.5f, &iy);
-
- switch(extension) {
- case EXTENSION_REPEAT:
- ix = wrap_periodic(ix, width);
- iy = wrap_periodic(iy, height);
-
- nix = wrap_periodic(ix+1, width);
- niy = wrap_periodic(iy+1, height);
- break;
- case EXTENSION_CLIP:
- if(x < 0.0f || y < 0.0f || x > 1.0f || y > 1.0f) {
- return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
- }
- /* Fall through. */
- case EXTENSION_EXTEND:
- nix = wrap_clamp(ix+1, width);
- niy = wrap_clamp(iy+1, height);
-
- ix = wrap_clamp(ix, width);
- iy = wrap_clamp(iy, height);
- break;
- default:
- kernel_assert(0);
- return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
- }
-
- float4 r = (1.0f - ty)*(1.0f - tx)*read(data[ix + iy*width]);
- r += (1.0f - ty)*tx*read(data[nix + iy*width]);
- r += ty*(1.0f - tx)*read(data[ix + niy*width]);
- r += ty*tx*read(data[nix + niy*width]);
-
- return r;
- }
- else {
- /* Bicubic b-spline interpolation. */
- float tx = frac(x*(float)width - 0.5f, &ix);
- float ty = frac(y*(float)height - 0.5f, &iy);
- int pix, piy, nnix, nniy;
- switch(extension) {
- case EXTENSION_REPEAT:
- ix = wrap_periodic(ix, width);
- iy = wrap_periodic(iy, height);
-
- pix = wrap_periodic(ix-1, width);
- piy = wrap_periodic(iy-1, height);
-
- nix = wrap_periodic(ix+1, width);
- niy = wrap_periodic(iy+1, height);
-
- nnix = wrap_periodic(ix+2, width);
- nniy = wrap_periodic(iy+2, height);
- break;
- case EXTENSION_CLIP:
- if(x < 0.0f || y < 0.0f || x > 1.0f || y > 1.0f) {
- return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
- }
- /* Fall through. */
- case EXTENSION_EXTEND:
- pix = wrap_clamp(ix-1, width);
- piy = wrap_clamp(iy-1, height);
-
- nix = wrap_clamp(ix+1, width);
- niy = wrap_clamp(iy+1, height);
-
- nnix = wrap_clamp(ix+2, width);
- nniy = wrap_clamp(iy+2, height);
-
- ix = wrap_clamp(ix, width);
- iy = wrap_clamp(iy, height);
- break;
- default:
- kernel_assert(0);
- return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
- }
-
- const int xc[4] = {pix, ix, nix, nnix};
- const int yc[4] = {width * piy,
- width * iy,
- width * niy,
- width * nniy};
- float u[4], v[4];
- /* Some helper macro to keep code reasonable size,
- * let compiler to inline all the matrix multiplications.
- */
-#define DATA(x, y) (read(data[xc[x] + yc[y]]))
-#define TERM(col) \
- (v[col] * (u[0] * DATA(0, col) + \
- u[1] * DATA(1, col) + \
- u[2] * DATA(2, col) + \
- u[3] * DATA(3, col)))
-
- SET_CUBIC_SPLINE_WEIGHTS(u, tx);
- SET_CUBIC_SPLINE_WEIGHTS(v, ty);
-
- /* Actual interpolation. */
- return TERM(0) + TERM(1) + TERM(2) + TERM(3);
-
-#undef TERM
-#undef DATA
- }
- }
-
- ccl_always_inline float4 interp_3d(float x, float y, float z)
- {
- return interp_3d_ex(x, y, z, interpolation);
- }
-
- ccl_always_inline float4 interp_3d_ex(float x, float y, float z,
- int interpolation = INTERPOLATION_LINEAR)
- {
- if(UNLIKELY(!data))
- return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
-
- int ix, iy, iz, nix, niy, niz;
-
- if(interpolation == INTERPOLATION_CLOSEST) {
- frac(x*(float)width, &ix);
- frac(y*(float)height, &iy);
- frac(z*(float)depth, &iz);
-
- switch(extension) {
- case EXTENSION_REPEAT:
- ix = wrap_periodic(ix, width);
- iy = wrap_periodic(iy, height);
- iz = wrap_periodic(iz, depth);
- break;
- case EXTENSION_CLIP:
- if(x < 0.0f || y < 0.0f || z < 0.0f ||
- x > 1.0f || y > 1.0f || z > 1.0f)
- {
- return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
- }
- /* Fall through. */
- case EXTENSION_EXTEND:
- ix = wrap_clamp(ix, width);
- iy = wrap_clamp(iy, height);
- iz = wrap_clamp(iz, depth);
- break;
- default:
- kernel_assert(0);
- return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
- }
-
- return read(data[ix + iy*width + iz*width*height]);
- }
- else if(interpolation == INTERPOLATION_LINEAR) {
- float tx = frac(x*(float)width - 0.5f, &ix);
- float ty = frac(y*(float)height - 0.5f, &iy);
- float tz = frac(z*(float)depth - 0.5f, &iz);
-
- switch(extension) {
- case EXTENSION_REPEAT:
- ix = wrap_periodic(ix, width);
- iy = wrap_periodic(iy, height);
- iz = wrap_periodic(iz, depth);
-
- nix = wrap_periodic(ix+1, width);
- niy = wrap_periodic(iy+1, height);
- niz = wrap_periodic(iz+1, depth);
- break;
- case EXTENSION_CLIP:
- if(x < 0.0f || y < 0.0f || z < 0.0f ||
- x > 1.0f || y > 1.0f || z > 1.0f)
- {
- return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
- }
- /* Fall through. */
- case EXTENSION_EXTEND:
- nix = wrap_clamp(ix+1, width);
- niy = wrap_clamp(iy+1, height);
- niz = wrap_clamp(iz+1, depth);
-
- ix = wrap_clamp(ix, width);
- iy = wrap_clamp(iy, height);
- iz = wrap_clamp(iz, depth);
- break;
- default:
- kernel_assert(0);
- return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
- }
-
- float4 r;
-
- r = (1.0f - tz)*(1.0f - ty)*(1.0f - tx)*read(data[ix + iy*width + iz*width*height]);
- r += (1.0f - tz)*(1.0f - ty)*tx*read(data[nix + iy*width + iz*width*height]);
- r += (1.0f - tz)*ty*(1.0f - tx)*read(data[ix + niy*width + iz*width*height]);
- r += (1.0f - tz)*ty*tx*read(data[nix + niy*width + iz*width*height]);
-
- r += tz*(1.0f - ty)*(1.0f - tx)*read(data[ix + iy*width + niz*width*height]);
- r += tz*(1.0f - ty)*tx*read(data[nix + iy*width + niz*width*height]);
- r += tz*ty*(1.0f - tx)*read(data[ix + niy*width + niz*width*height]);
- r += tz*ty*tx*read(data[nix + niy*width + niz*width*height]);
-
- return r;
- }
- else {
- /* Tricubic b-spline interpolation. */
- const float tx = frac(x*(float)width - 0.5f, &ix);
- const float ty = frac(y*(float)height - 0.5f, &iy);
- const float tz = frac(z*(float)depth - 0.5f, &iz);
- int pix, piy, piz, nnix, nniy, nniz;
-
- switch(extension) {
- case EXTENSION_REPEAT:
- ix = wrap_periodic(ix, width);
- iy = wrap_periodic(iy, height);
- iz = wrap_periodic(iz, depth);
-
- pix = wrap_periodic(ix-1, width);
- piy = wrap_periodic(iy-1, height);
- piz = wrap_periodic(iz-1, depth);
-
- nix = wrap_periodic(ix+1, width);
- niy = wrap_periodic(iy+1, height);
- niz = wrap_periodic(iz+1, depth);
-
- nnix = wrap_periodic(ix+2, width);
- nniy = wrap_periodic(iy+2, height);
- nniz = wrap_periodic(iz+2, depth);
- break;
- case EXTENSION_CLIP:
- if(x < 0.0f || y < 0.0f || z < 0.0f ||
- x > 1.0f || y > 1.0f || z > 1.0f)
- {
- return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
- }
- /* Fall through. */
- case EXTENSION_EXTEND:
- pix = wrap_clamp(ix-1, width);
- piy = wrap_clamp(iy-1, height);
- piz = wrap_clamp(iz-1, depth);
-
- nix = wrap_clamp(ix+1, width);
- niy = wrap_clamp(iy+1, height);
- niz = wrap_clamp(iz+1, depth);
-
- nnix = wrap_clamp(ix+2, width);
- nniy = wrap_clamp(iy+2, height);
- nniz = wrap_clamp(iz+2, depth);
-
- ix = wrap_clamp(ix, width);
- iy = wrap_clamp(iy, height);
- iz = wrap_clamp(iz, depth);
- break;
- default:
- kernel_assert(0);
- return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
- }
-
- const int xc[4] = {pix, ix, nix, nnix};
- const int yc[4] = {width * piy,
- width * iy,
- width * niy,
- width * nniy};
- const int zc[4] = {width * height * piz,
- width * height * iz,
- width * height * niz,
- width * height * nniz};
- float u[4], v[4], w[4];
-
- /* Some helper macro to keep code reasonable size,
- * let compiler to inline all the matrix multiplications.
- */
-#define DATA(x, y, z) (read(data[xc[x] + yc[y] + zc[z]]))
-#define COL_TERM(col, row) \
- (v[col] * (u[0] * DATA(0, col, row) + \
- u[1] * DATA(1, col, row) + \
- u[2] * DATA(2, col, row) + \
- u[3] * DATA(3, col, row)))
-#define ROW_TERM(row) \
- (w[row] * (COL_TERM(0, row) + \
- COL_TERM(1, row) + \
- COL_TERM(2, row) + \
- COL_TERM(3, row)))
-
- SET_CUBIC_SPLINE_WEIGHTS(u, tx);
- SET_CUBIC_SPLINE_WEIGHTS(v, ty);
- SET_CUBIC_SPLINE_WEIGHTS(w, tz);
-
- /* Actual interpolation. */
- return ROW_TERM(0) + ROW_TERM(1) + ROW_TERM(2) + ROW_TERM(3);
-
-#undef COL_TERM
-#undef ROW_TERM
-#undef DATA
- }
- }
-
- ccl_always_inline void dimensions_set(int width_, int height_, int depth_)
- {
- width = width_;
- height = height_;
- depth = depth_;
- }
-
- T *data;
- int interpolation;
- ExtensionType extension;
- int width, height, depth;
-#undef SET_CUBIC_SPLINE_WEIGHTS
-};
-
-typedef texture<float4> texture_float4;
-typedef texture<float2> texture_float2;
-typedef texture<float> texture_float;
-typedef texture<uint> texture_uint;
-typedef texture<int> texture_int;
-typedef texture<uint4> texture_uint4;
-typedef texture<uchar4> texture_uchar4;
-typedef texture<uchar> texture_uchar;
-typedef texture_image<float> texture_image_float;
-typedef texture_image<uchar> texture_image_uchar;
-typedef texture_image<half> texture_image_half;
-typedef texture_image<float4> texture_image_float4;
-typedef texture_image<uchar4> texture_image_uchar4;
-typedef texture_image<half4> texture_image_half4;
-
/* Macros to handle different memory storage on different devices */
#define kernel_tex_fetch(tex, index) (kg->tex.fetch(index))
@@ -524,9 +119,6 @@ typedef texture_image<half4> texture_image_half4;
#define kernel_tex_fetch_ssef(tex, index) (kg->tex.fetch_ssef(index))
#define kernel_tex_fetch_ssei(tex, index) (kg->tex.fetch_ssei(index))
#define kernel_tex_lookup(tex, t, offset, size) (kg->tex.lookup(t, offset, size))
-#define kernel_tex_image_interp(tex,x,y) kernel_tex_image_interp_impl(kg,tex,x,y)
-#define kernel_tex_image_interp_3d(tex, x, y, z) kernel_tex_image_interp_3d_impl(kg,tex,x,y,z)
-#define kernel_tex_image_interp_3d_ex(tex, x, y, z, interpolation) kernel_tex_image_interp_3d_ex_impl(kg,tex, x, y, z, interpolation)
#define kernel_tex_voxel_float(tex, x, y, z, sampling) (vdb_volume_sample_scalar(kg->vdb, kg->vdb_tdata, tex, x, y, z, sampling))
#define kernel_tex_voxel_float3(tex, x, y, z, sampling) (vdb_volume_sample_vector(kg->vdb, kg->vdb_tdata, tex, x, y, z, sampling))
diff --git a/intern/cycles/kernel/kernel_compat_cuda.h b/intern/cycles/kernel/kernel_compat_cuda.h
index e0c7b17c6a0..fa512f80e41 100644
--- a/intern/cycles/kernel/kernel_compat_cuda.h
+++ b/intern/cycles/kernel/kernel_compat_cuda.h
@@ -33,71 +33,109 @@
#include <cuda.h>
#include <cuda_fp16.h>
#include <float.h>
+#include <stdint.h>
/* Qualifier wrappers for different names on different devices */
#define ccl_device __device__ __inline__
+#if __CUDA_ARCH__ < 300
+# define ccl_device_inline __device__ __inline__
# define ccl_device_forceinline __device__ __forceinline__
-#if (__KERNEL_CUDA_VERSION__ == 80) && (__CUDA_ARCH__ < 500)
+#elif __CUDA_ARCH__ < 500
# define ccl_device_inline __device__ __forceinline__
+# define ccl_device_forceinline __device__ __forceinline__
#else
# define ccl_device_inline __device__ __inline__
+# define ccl_device_forceinline __device__ __forceinline__
#endif
#define ccl_device_noinline __device__ __noinline__
#define ccl_global
-#define ccl_constant
+#define ccl_static_constant __constant__
+#define ccl_constant const
+#define ccl_local __shared__
+#define ccl_local_param
+#define ccl_private
#define ccl_may_alias
#define ccl_addr_space
#define ccl_restrict __restrict__
+/* TODO(sergey): In theory we might use references with CUDA, however
+ * performance impact yet to be investigated.
+ */
+#define ccl_ref
#define ccl_align(n) __align__(n)
+#define ATTR_FALLTHROUGH
+
+#define CCL_MAX_LOCAL_SIZE (CUDA_THREADS_BLOCK_WIDTH*CUDA_THREADS_BLOCK_WIDTH)
+
+
/* No assert supported for CUDA */
#define kernel_assert(cond)
/* Types */
-#include "util_half.h"
-#include "util_types.h"
+#include "util/util_half.h"
+#include "util/util_types.h"
+
+/* Work item functions */
+
+ccl_device_inline uint ccl_local_id(uint d)
+{
+ switch(d) {
+ case 0: return threadIdx.x;
+ case 1: return threadIdx.y;
+ case 2: return threadIdx.z;
+ default: return 0;
+ }
+}
+
+#define ccl_global_id(d) (ccl_group_id(d) * ccl_local_size(d) + ccl_local_id(d))
+
+ccl_device_inline uint ccl_local_size(uint d)
+{
+ switch(d) {
+ case 0: return blockDim.x;
+ case 1: return blockDim.y;
+ case 2: return blockDim.z;
+ default: return 0;
+ }
+}
+
+#define ccl_global_size(d) (ccl_num_groups(d) * ccl_local_size(d))
+
+ccl_device_inline uint ccl_group_id(uint d)
+{
+ switch(d) {
+ case 0: return blockIdx.x;
+ case 1: return blockIdx.y;
+ case 2: return blockIdx.z;
+ default: return 0;
+ }
+}
+
+ccl_device_inline uint ccl_num_groups(uint d)
+{
+ switch(d) {
+ case 0: return gridDim.x;
+ case 1: return gridDim.y;
+ case 2: return gridDim.z;
+ default: return 0;
+ }
+}
/* Textures */
-typedef texture<float4, 1> texture_float4;
-typedef texture<float2, 1> texture_float2;
-typedef texture<float, 1> texture_float;
-typedef texture<uint, 1> texture_uint;
-typedef texture<int, 1> texture_int;
-typedef texture<uint4, 1> texture_uint4;
-typedef texture<uchar, 1> texture_uchar;
-typedef texture<uchar4, 1> texture_uchar4;
+/* Use arrays for regular data. This is a little slower than textures on Fermi,
+ * but allows for cleaner code and we will stop supporting Fermi soon. */
+#define kernel_tex_fetch(t, index) t[(index)]
+
+/* On Kepler (6xx) and above, we use Bindless Textures for images.
+ * On Fermi cards (4xx and 5xx), we have to use regular textures. */
+#if __CUDA_ARCH__ < 300
typedef texture<float4, 2> texture_image_float4;
typedef texture<float4, 3> texture_image3d_float4;
typedef texture<uchar4, 2, cudaReadModeNormalizedFloat> texture_image_uchar4;
-
-/* Macros to handle different memory storage on different devices */
-
-/* On Fermi cards (4xx and 5xx), we use regular textures for both data and images.
- * On Kepler (6xx) and above, we use Bindless Textures for images and arrays for data.
- *
- * Arrays are necessary in order to use the full VRAM on newer cards, and it's slightly faster.
- * Using Arrays on Fermi turned out to be slower.*/
-
-/* Fermi */
-#if __CUDA_ARCH__ < 300
-# define __KERNEL_CUDA_TEX_STORAGE__
-# define kernel_tex_fetch(t, index) tex1Dfetch(t, index)
-
-# define kernel_tex_image_interp(t, x, y) tex2D(t, x, y)
-# define kernel_tex_image_interp_3d(t, x, y, z) tex3D(t, x, y, z)
-
-/* Kepler */
-#else
-# define kernel_tex_fetch(t, index) t[(index)]
-
-# define kernel_tex_image_interp_float4(t, x, y) tex2D<float4>(t, x, y)
-# define kernel_tex_image_interp_float(t, x, y) tex2D<float>(t, x, y)
-# define kernel_tex_image_interp_3d_float4(t, x, y, z) tex3D<float4>(t, x, y, z)
-# define kernel_tex_image_interp_3d_float(t, x, y, z) tex3D<float>(t, x, y, z)
#endif
#define kernel_data __data
diff --git a/intern/cycles/kernel/kernel_compat_opencl.h b/intern/cycles/kernel/kernel_compat_opencl.h
index f076e3a7d37..b02e3bc576d 100644
--- a/intern/cycles/kernel/kernel_compat_opencl.h
+++ b/intern/cycles/kernel/kernel_compat_opencl.h
@@ -36,11 +36,14 @@
#define ccl_device_forceinline ccl_device
#define ccl_device_noinline ccl_device ccl_noinline
#define ccl_may_alias
+#define ccl_static_constant static __constant
#define ccl_constant __constant
#define ccl_global __global
#define ccl_local __local
+#define ccl_local_param __local
#define ccl_private __private
#define ccl_restrict restrict
+#define ccl_ref
#define ccl_align(n) __attribute__((aligned(n)))
#ifdef __SPLIT_KERNEL__
@@ -49,6 +52,17 @@
# define ccl_addr_space
#endif
+#define ATTR_FALLTHROUGH
+
+#define ccl_local_id(d) get_local_id(d)
+#define ccl_global_id(d) get_global_id(d)
+
+#define ccl_local_size(d) get_local_size(d)
+#define ccl_global_size(d) get_global_size(d)
+
+#define ccl_group_id(d) get_group_id(d)
+#define ccl_num_groups(d) get_num_groups(d)
+
/* Selective nodes compilation. */
#ifndef __NODES_MAX_GROUP__
# define __NODES_MAX_GROUP__ NODE_GROUP_LEVEL_MAX
@@ -117,6 +131,7 @@
# define expf(x) native_exp(((float)(x)))
# define sqrtf(x) native_sqrt(((float)(x)))
# define logf(x) native_log(((float)(x)))
+# define rcp(x) native_recip(x)
#else
# define sinf(x) sin(((float)(x)))
# define cosf(x) cos(((float)(x)))
@@ -124,17 +139,18 @@
# define expf(x) exp(((float)(x)))
# define sqrtf(x) sqrt(((float)(x)))
# define logf(x) log(((float)(x)))
+# define rcp(x) recip(x))
#endif
/* data lookup defines */
#define kernel_data (*kg->data)
-#define kernel_tex_fetch(t, index) kg->t[index]
+#define kernel_tex_fetch(tex, index) ((const ccl_global tex##_t*)(kg->buffers[kg->tex.cl_buffer] + kg->tex.data))[(index)]
/* define NULL */
#define NULL 0
-#include "util_half.h"
-#include "util_types.h"
+#include "util/util_half.h"
+#include "util/util_types.h"
#endif /* __KERNEL_COMPAT_OPENCL_H__ */
diff --git a/intern/cycles/kernel/kernel_debug.h b/intern/cycles/kernel/kernel_debug.h
deleted file mode 100644
index 24d6458567e..00000000000
--- a/intern/cycles/kernel/kernel_debug.h
+++ /dev/null
@@ -1,50 +0,0 @@
-/*
- * Copyright 2011-2014 Blender Foundation
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-CCL_NAMESPACE_BEGIN
-
-ccl_device_inline void debug_data_init(DebugData *debug_data)
-{
- debug_data->num_bvh_traversal_steps = 0;
- debug_data->num_bvh_traversed_instances = 0;
- debug_data->num_ray_bounces = 0;
-}
-
-ccl_device_inline void kernel_write_debug_passes(KernelGlobals *kg,
- ccl_global float *buffer,
- ccl_addr_space PathState *state,
- DebugData *debug_data,
- int sample)
-{
- int flag = kernel_data.film.pass_flag;
- if(flag & PASS_BVH_TRAVERSAL_STEPS) {
- kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_traversal_steps,
- sample,
- debug_data->num_bvh_traversal_steps);
- }
- if(flag & PASS_BVH_TRAVERSED_INSTANCES) {
- kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_traversed_instances,
- sample,
- debug_data->num_bvh_traversed_instances);
- }
- if(flag & PASS_RAY_BOUNCES) {
- kernel_write_pass_float(buffer + kernel_data.film.pass_ray_bounces,
- sample,
- debug_data->num_ray_bounces);
- }
-}
-
-CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/kernel_emission.h b/intern/cycles/kernel/kernel_emission.h
index 8c7c651a053..45b8c6311e1 100644
--- a/intern/cycles/kernel/kernel_emission.h
+++ b/intern/cycles/kernel/kernel_emission.h
@@ -37,16 +37,14 @@ ccl_device_noinline float3 direct_emissive_eval(KernelGlobals *kg,
ray.D = ls->D;
ray.P = ls->P;
ray.t = 1.0f;
-# ifdef __OBJECT_MOTION__
ray.time = time;
-# endif
ray.dP = differential3_zero();
ray.dD = dI;
shader_setup_from_background(kg, emission_sd, &ray);
path_state_modify_bounce(state, true);
- eval = shader_eval_background(kg, emission_sd, state, 0, SHADER_CONTEXT_EMISSION);
+ eval = shader_eval_background(kg, emission_sd, state, 0);
path_state_modify_bounce(state, false);
}
else
@@ -67,16 +65,16 @@ ccl_device_noinline float3 direct_emissive_eval(KernelGlobals *kg,
ls->shader, ls->object, ls->prim,
ls->u, ls->v, t, time, false, ls->lamp);
- ls->Ng = ccl_fetch(emission_sd, Ng);
+ ls->Ng = emission_sd->Ng;
/* no path flag, we're evaluating this for all closures. that's weak but
* we'd have to do multiple evaluations otherwise */
path_state_modify_bounce(state, true);
- shader_eval_surface(kg, emission_sd, NULL, state, 0.0f, 0, SHADER_CONTEXT_EMISSION);
+ shader_eval_surface(kg, emission_sd, state, 0);
path_state_modify_bounce(state, false);
/* evaluate emissive closure */
- if(ccl_fetch(emission_sd, flag) & SD_EMISSION)
+ if(emission_sd->flag & SD_EMISSION)
eval = shader_emissive_eval(kg, emission_sd);
else
eval = make_float3(0.0f, 0.0f, 0.0f);
@@ -112,7 +110,7 @@ ccl_device_noinline bool direct_emission(KernelGlobals *kg,
-ls->D,
dD,
ls->t,
- ccl_fetch(sd, time));
+ sd->time);
if(is_zero(light_eval))
return false;
@@ -120,7 +118,7 @@ ccl_device_noinline bool direct_emission(KernelGlobals *kg,
/* evaluate BSDF at shading point */
#ifdef __VOLUME__
- if(ccl_fetch(sd, prim) != PRIM_NONE)
+ if(sd->prim != PRIM_NONE)
shader_bsdf_eval(kg, sd, ls->D, eval, ls->pdf, ls->shader & SHADER_USE_MIS);
else {
float bsdf_pdf;
@@ -156,8 +154,13 @@ ccl_device_noinline bool direct_emission(KernelGlobals *kg,
if(bsdf_eval_is_zero(eval))
return false;
- if(kernel_data.integrator.light_inv_rr_threshold > 0.0f) {
- float probability = max3(bsdf_eval_sum(eval)) * kernel_data.integrator.light_inv_rr_threshold;
+ if(kernel_data.integrator.light_inv_rr_threshold > 0.0f
+#ifdef __SHADOW_TRICKS__
+ && (state->flag & PATH_RAY_SHADOW_CATCHER) == 0
+#endif
+ )
+ {
+ float probability = max3(fabs(bsdf_eval_sum(eval))) * kernel_data.integrator.light_inv_rr_threshold;
if(probability < 1.0f) {
if(rand_terminate >= probability) {
return false;
@@ -168,8 +171,8 @@ ccl_device_noinline bool direct_emission(KernelGlobals *kg,
if(ls->shader & SHADER_CAST_SHADOW) {
/* setup ray */
- bool transmit = (dot(ccl_fetch(sd, Ng), ls->D) < 0.0f);
- ray->P = ray_offset(ccl_fetch(sd, P), (transmit)? -ccl_fetch(sd, Ng): ccl_fetch(sd, Ng));
+ bool transmit = (dot(sd->Ng, ls->D) < 0.0f);
+ ray->P = ray_offset(sd->P, (transmit)? -sd->Ng: sd->Ng);
if(ls->t == FLT_MAX) {
/* distant light */
@@ -182,7 +185,7 @@ ccl_device_noinline bool direct_emission(KernelGlobals *kg,
ray->D = normalize_len(ray->D, &ray->t);
}
- ray->dP = ccl_fetch(sd, dP);
+ ray->dP = sd->dP;
ray->dD = differential3_zero();
}
else {
@@ -204,14 +207,14 @@ ccl_device_noinline float3 indirect_primitive_emission(KernelGlobals *kg, Shader
float3 L = shader_emissive_eval(kg, sd);
#ifdef __HAIR__
- if(!(path_flag & PATH_RAY_MIS_SKIP) && (ccl_fetch(sd, flag) & SD_USE_MIS) && (ccl_fetch(sd, type) & PRIMITIVE_ALL_TRIANGLE))
+ if(!(path_flag & PATH_RAY_MIS_SKIP) && (sd->flag & SD_USE_MIS) && (sd->type & PRIMITIVE_ALL_TRIANGLE))
#else
- if(!(path_flag & PATH_RAY_MIS_SKIP) && (ccl_fetch(sd, flag) & SD_USE_MIS))
+ if(!(path_flag & PATH_RAY_MIS_SKIP) && (sd->flag & SD_USE_MIS))
#endif
{
/* multiple importance sampling, get triangle light pdf,
* and compute weight with respect to BSDF pdf */
- float pdf = triangle_light_pdf(kg, ccl_fetch(sd, Ng), ccl_fetch(sd, I), t);
+ float pdf = triangle_light_pdf(kg, sd, t);
float mis_weight = power_heuristic(bsdf_pdf, pdf);
return L*mis_weight;
@@ -314,7 +317,7 @@ ccl_device_noinline float3 indirect_background(KernelGlobals *kg,
# endif
path_state_modify_bounce(state, true);
- float3 L = shader_eval_background(kg, emission_sd, state, state->flag, SHADER_CONTEXT_EMISSION);
+ float3 L = shader_eval_background(kg, emission_sd, state, state->flag);
path_state_modify_bounce(state, false);
#ifdef __BACKGROUND_MIS__
diff --git a/intern/cycles/kernel/kernel_globals.h b/intern/cycles/kernel/kernel_globals.h
index 74357bd96fc..7e2f67bbd63 100644
--- a/intern/cycles/kernel/kernel_globals.h
+++ b/intern/cycles/kernel/kernel_globals.h
@@ -16,6 +16,17 @@
/* Constant Globals */
+#ifndef __KERNEL_GLOBALS_H__
+#define __KERNEL_GLOBALS_H__
+
+#ifdef __KERNEL_CPU__
+# include "util/util_vector.h"
+#endif
+
+#ifdef __KERNEL_OPENCL__
+# include "util/util_atomic.h"
+#endif
+
CCL_NAMESPACE_BEGIN
/* On the CPU, we pass along the struct KernelGlobals to nearly everywhere in
@@ -42,16 +53,9 @@ struct VolumeStep;
# define MAX_VOLUME 1024
typedef struct KernelGlobals {
- texture_image_uchar4 texture_byte4_images[TEX_NUM_BYTE4_CPU];
- texture_image_float4 texture_float4_images[TEX_NUM_FLOAT4_CPU];
- texture_image_half4 texture_half4_images[TEX_NUM_HALF4_CPU];
- texture_image_float texture_float_images[TEX_NUM_FLOAT_CPU];
- texture_image_uchar texture_byte_images[TEX_NUM_BYTE_CPU];
- texture_image_half texture_half_images[TEX_NUM_HALF_CPU];
-
-# define KERNEL_TEX(type, ttype, name) ttype name;
+# define KERNEL_TEX(type, name) texture<type> name;
# define KERNEL_IMAGE_TEX(type, ttype, name)
-# include "kernel_textures.h"
+# include "kernel/kernel_textures.h"
KernelData __data;
@@ -72,7 +76,15 @@ typedef struct KernelGlobals {
VolumeStep *decoupled_volume_steps[2];
int decoupled_volume_steps_index;
+ /* split kernel */
+ SplitData split_data;
+ SplitParams split_param_data;
+
+ int2 global_size;
+ int2 global_id;
+
# ifdef WITH_OPENVDB
+ /* OpenVDB */
OpenVDBGlobals *vdb;
OpenVDBThreadData *vdb_tdata;
# endif
@@ -88,15 +100,14 @@ typedef struct KernelGlobals {
#ifdef __KERNEL_CUDA__
__constant__ KernelData __data;
-typedef struct KernelGlobals {} KernelGlobals;
+typedef struct KernelGlobals {
+ /* NOTE: Keep the size in sync with SHADOW_STACK_MAX_HITS. */
+ Intersection hits_stack[64];
+} KernelGlobals;
-# ifdef __KERNEL_CUDA_TEX_STORAGE__
-# define KERNEL_TEX(type, ttype, name) ttype name;
-# else
-# define KERNEL_TEX(type, ttype, name) const __constant__ __device__ type *name;
-# endif
+# define KERNEL_TEX(type, name) const __constant__ __device__ type *name;
# define KERNEL_IMAGE_TEX(type, ttype, name) ttype name;
-# include "kernel_textures.h"
+# include "kernel/kernel_textures.h"
#endif /* __KERNEL_CUDA__ */
@@ -104,19 +115,75 @@ typedef struct KernelGlobals {} KernelGlobals;
#ifdef __KERNEL_OPENCL__
+# define KERNEL_TEX(type, name) \
+typedef type name##_t;
+# include "kernel/kernel_textures.h"
+
typedef ccl_addr_space struct KernelGlobals {
ccl_constant KernelData *data;
+ ccl_global char *buffers[8];
-# define KERNEL_TEX(type, ttype, name) \
- ccl_global type *name;
-# include "kernel_textures.h"
+# define KERNEL_TEX(type, name) \
+ TextureInfo name;
+# include "kernel/kernel_textures.h"
# ifdef __SPLIT_KERNEL__
- ShaderData *sd_input;
- Intersection *isect_shadow;
+ SplitData split_data;
+ SplitParams split_param_data;
# endif
} KernelGlobals;
+#define KERNEL_BUFFER_PARAMS \
+ ccl_global char *buffer0, \
+ ccl_global char *buffer1, \
+ ccl_global char *buffer2, \
+ ccl_global char *buffer3, \
+ ccl_global char *buffer4, \
+ ccl_global char *buffer5, \
+ ccl_global char *buffer6, \
+ ccl_global char *buffer7
+
+#define KERNEL_BUFFER_ARGS buffer0, buffer1, buffer2, buffer3, buffer4, buffer5, buffer6, buffer7
+
+ccl_device_inline void kernel_set_buffer_pointers(KernelGlobals *kg, KERNEL_BUFFER_PARAMS)
+{
+#ifdef __SPLIT_KERNEL__
+ if(ccl_local_id(0) + ccl_local_id(1) == 0)
+#endif
+ {
+ kg->buffers[0] = buffer0;
+ kg->buffers[1] = buffer1;
+ kg->buffers[2] = buffer2;
+ kg->buffers[3] = buffer3;
+ kg->buffers[4] = buffer4;
+ kg->buffers[5] = buffer5;
+ kg->buffers[6] = buffer6;
+ kg->buffers[7] = buffer7;
+ }
+
+# ifdef __SPLIT_KERNEL__
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+# endif
+}
+
+ccl_device_inline void kernel_set_buffer_info(KernelGlobals *kg)
+{
+# ifdef __SPLIT_KERNEL__
+ if(ccl_local_id(0) + ccl_local_id(1) == 0)
+# endif
+ {
+ ccl_global TextureInfo *info = (ccl_global TextureInfo*)kg->buffers[0];
+
+# define KERNEL_TEX(type, name) \
+ kg->name = *(info++);
+# include "kernel/kernel_textures.h"
+ }
+
+# ifdef __SPLIT_KERNEL__
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+# endif
+}
+
#endif /* __KERNEL_OPENCL__ */
/* Interpolated lookup table access */
@@ -155,3 +222,4 @@ ccl_device float lookup_table_read_2D(KernelGlobals *kg, float x, float y, int o
CCL_NAMESPACE_END
+#endif /* __KERNEL_GLOBALS_H__ */
diff --git a/intern/cycles/kernel/kernel_image_opencl.h b/intern/cycles/kernel/kernel_image_opencl.h
deleted file mode 100644
index 0352c58037d..00000000000
--- a/intern/cycles/kernel/kernel_image_opencl.h
+++ /dev/null
@@ -1,231 +0,0 @@
-/*
- * Copyright 2016 Blender Foundation
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-
-/* For OpenCL all images are packed in a single array, and we do manual lookup
- * and interpolation. */
-
-ccl_device_inline float4 svm_image_texture_read(KernelGlobals *kg, int id, int offset)
-{
- /* Float4 */
- if(id < TEX_START_BYTE4_OPENCL) {
- return kernel_tex_fetch(__tex_image_float4_packed, offset);
- }
- /* Byte4 */
- else if(id < TEX_START_FLOAT_OPENCL) {
- uchar4 r = kernel_tex_fetch(__tex_image_byte4_packed, offset);
- float f = 1.0f/255.0f;
- return make_float4(r.x*f, r.y*f, r.z*f, r.w*f);
- }
- /* Float */
- else if(id < TEX_START_BYTE_OPENCL) {
- float f = kernel_tex_fetch(__tex_image_float_packed, offset);
- return make_float4(f, f, f, 1.0f);
- }
- /* Byte */
- else {
- uchar r = kernel_tex_fetch(__tex_image_byte_packed, offset);
- float f = r * (1.0f/255.0f);
- return make_float4(f, f, f, 1.0f);
- }
-}
-
-ccl_device_inline int svm_image_texture_wrap_periodic(int x, int width)
-{
- x %= width;
- if(x < 0)
- x += width;
- return x;
-}
-
-ccl_device_inline int svm_image_texture_wrap_clamp(int x, int width)
-{
- return clamp(x, 0, width-1);
-}
-
-ccl_device_inline float svm_image_texture_frac(float x, int *ix)
-{
- int i = float_to_int(x) - ((x < 0.0f)? 1: 0);
- *ix = i;
- return x - (float)i;
-}
-
-ccl_device float4 kernel_tex_image_interp(KernelGlobals *kg, int id, float x, float y)
-{
- uint4 info = kernel_tex_fetch(__tex_image_packed_info, id*2);
- uint width = info.x;
- uint height = info.y;
- uint offset = info.z;
-
- /* Image Options */
- uint interpolation = (info.w & (1 << 0)) ? INTERPOLATION_CLOSEST : INTERPOLATION_LINEAR;
- uint extension;
- if(info.w & (1 << 1))
- extension = EXTENSION_REPEAT;
- else if(info.w & (1 << 2))
- extension = EXTENSION_EXTEND;
- else
- extension = EXTENSION_CLIP;
-
- float4 r;
- int ix, iy, nix, niy;
- if(interpolation == INTERPOLATION_CLOSEST) {
- svm_image_texture_frac(x*width, &ix);
- svm_image_texture_frac(y*height, &iy);
-
- if(extension == EXTENSION_REPEAT) {
- ix = svm_image_texture_wrap_periodic(ix, width);
- iy = svm_image_texture_wrap_periodic(iy, height);
- }
- else {
- if(extension == EXTENSION_CLIP) {
- if(x < 0.0f || y < 0.0f || x > 1.0f || y > 1.0f) {
- return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
- }
- }
- /* Fall through. */
- /* EXTENSION_EXTEND */
- ix = svm_image_texture_wrap_clamp(ix, width);
- iy = svm_image_texture_wrap_clamp(iy, height);
- }
-
- r = svm_image_texture_read(kg, id, offset + ix + iy*width);
- }
- else { /* INTERPOLATION_LINEAR */
- float tx = svm_image_texture_frac(x*width - 0.5f, &ix);
- float ty = svm_image_texture_frac(y*height - 0.5f, &iy);
-
- if(extension == EXTENSION_REPEAT) {
- ix = svm_image_texture_wrap_periodic(ix, width);
- iy = svm_image_texture_wrap_periodic(iy, height);
-
- nix = svm_image_texture_wrap_periodic(ix+1, width);
- niy = svm_image_texture_wrap_periodic(iy+1, height);
- }
- else {
- if(extension == EXTENSION_CLIP) {
- if(x < 0.0f || y < 0.0f || x > 1.0f || y > 1.0f) {
- return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
- }
- }
- nix = svm_image_texture_wrap_clamp(ix+1, width);
- niy = svm_image_texture_wrap_clamp(iy+1, height);
- ix = svm_image_texture_wrap_clamp(ix, width);
- iy = svm_image_texture_wrap_clamp(iy, height);
- }
-
- r = (1.0f - ty)*(1.0f - tx)*svm_image_texture_read(kg, id, offset + ix + iy*width);
- r += (1.0f - ty)*tx*svm_image_texture_read(kg, id, offset + nix + iy*width);
- r += ty*(1.0f - tx)*svm_image_texture_read(kg, id, offset + ix + niy*width);
- r += ty*tx*svm_image_texture_read(kg, id, offset + nix + niy*width);
- }
-
- return r;
-}
-
-
-ccl_device float4 kernel_tex_image_interp_3d(KernelGlobals *kg, int id, float x, float y, float z)
-{
- uint4 info = kernel_tex_fetch(__tex_image_packed_info, id*2);
- uint width = info.x;
- uint height = info.y;
- uint offset = info.z;
- uint depth = kernel_tex_fetch(__tex_image_packed_info, id*2+1).x;
-
- /* Image Options */
- uint interpolation = (info.w & (1 << 0)) ? INTERPOLATION_CLOSEST : INTERPOLATION_LINEAR;
- uint extension;
- if(info.w & (1 << 1))
- extension = EXTENSION_REPEAT;
- else if(info.w & (1 << 2))
- extension = EXTENSION_EXTEND;
- else
- extension = EXTENSION_CLIP;
-
- float4 r;
- int ix, iy, iz, nix, niy, niz;
- if(interpolation == INTERPOLATION_CLOSEST) {
- svm_image_texture_frac(x*width, &ix);
- svm_image_texture_frac(y*height, &iy);
- svm_image_texture_frac(z*depth, &iz);
-
- if(extension == EXTENSION_REPEAT) {
- ix = svm_image_texture_wrap_periodic(ix, width);
- iy = svm_image_texture_wrap_periodic(iy, height);
- iz = svm_image_texture_wrap_periodic(iz, depth);
- }
- else {
- if(extension == EXTENSION_CLIP) {
- if(x < 0.0f || y < 0.0f || z < 0.0f ||
- x > 1.0f || y > 1.0f || z > 1.0f)
- {
- return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
- }
- }
- /* Fall through. */
- /* EXTENSION_EXTEND */
- ix = svm_image_texture_wrap_clamp(ix, width);
- iy = svm_image_texture_wrap_clamp(iy, height);
- iz = svm_image_texture_wrap_clamp(iz, depth);
- }
- r = svm_image_texture_read(kg, id, offset + ix + iy*width + iz*width*height);
- }
- else { /* INTERPOLATION_LINEAR */
- float tx = svm_image_texture_frac(x*(float)width - 0.5f, &ix);
- float ty = svm_image_texture_frac(y*(float)height - 0.5f, &iy);
- float tz = svm_image_texture_frac(z*(float)depth - 0.5f, &iz);
-
- if(extension == EXTENSION_REPEAT) {
- ix = svm_image_texture_wrap_periodic(ix, width);
- iy = svm_image_texture_wrap_periodic(iy, height);
- iz = svm_image_texture_wrap_periodic(iz, depth);
-
- nix = svm_image_texture_wrap_periodic(ix+1, width);
- niy = svm_image_texture_wrap_periodic(iy+1, height);
- niz = svm_image_texture_wrap_periodic(iz+1, depth);
- }
- else {
- if(extension == EXTENSION_CLIP)
- if(x < 0.0f || y < 0.0f || z < 0.0f ||
- x > 1.0f || y > 1.0f || z > 1.0f)
- {
- return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
- }
- /* Fall through. */
- /* EXTENSION_EXTEND */
- nix = svm_image_texture_wrap_clamp(ix+1, width);
- niy = svm_image_texture_wrap_clamp(iy+1, height);
- niz = svm_image_texture_wrap_clamp(iz+1, depth);
-
- ix = svm_image_texture_wrap_clamp(ix, width);
- iy = svm_image_texture_wrap_clamp(iy, height);
- iz = svm_image_texture_wrap_clamp(iz, depth);
- }
-
- r = (1.0f - tz)*(1.0f - ty)*(1.0f - tx)*svm_image_texture_read(kg, id, offset + ix + iy*width + iz*width*height);
- r += (1.0f - tz)*(1.0f - ty)*tx*svm_image_texture_read(kg, id, offset + nix + iy*width + iz*width*height);
- r += (1.0f - tz)*ty*(1.0f - tx)*svm_image_texture_read(kg, id, offset + ix + niy*width + iz*width*height);
- r += (1.0f - tz)*ty*tx*svm_image_texture_read(kg, id, offset + nix + niy*width + iz*width*height);
-
- r += tz*(1.0f - ty)*(1.0f - tx)*svm_image_texture_read(kg, id, offset + ix + iy*width + niz*width*height);
- r += tz*(1.0f - ty)*tx*svm_image_texture_read(kg, id, offset + nix + iy*width + niz*width*height);
- r += tz*ty*(1.0f - tx)*svm_image_texture_read(kg, id, offset + ix + niy*width + niz*width*height);
- r += tz*ty*tx*svm_image_texture_read(kg, id, offset + nix + niy*width + niz*width*height);
-
- }
-
- return r;
-}
diff --git a/intern/cycles/kernel/kernel_jitter.h b/intern/cycles/kernel/kernel_jitter.h
index aec7bc33acd..f5855757d3f 100644
--- a/intern/cycles/kernel/kernel_jitter.h
+++ b/intern/cycles/kernel/kernel_jitter.h
@@ -149,6 +149,15 @@ ccl_device_inline uint cmj_hash(uint i, uint p)
return i;
}
+ccl_device_inline uint cmj_hash_simple(uint i, uint p)
+{
+ i = (i ^ 61) ^ p;
+ i += i << 3;
+ i ^= i >> 4;
+ i *= 0x27d4eb2d;
+ return i;
+}
+
ccl_device_inline float cmj_randfloat(uint i, uint p)
{
return cmj_hash(i, p) * (1.0f / 4294967808.0f);
@@ -166,15 +175,26 @@ ccl_device float cmj_sample_1D(int s, int N, int p)
return (x + jx)*invN;
}
-ccl_device void cmj_sample_2D(int s, int N, int p, float *fx, float *fy)
+/* TODO(sergey): Do some extra tests and consider moving to util_math.h. */
+ccl_device_inline int cmj_isqrt(int value)
{
- kernel_assert(s < N);
-
#if defined(__KERNEL_CUDA__)
- int m = float_to_int(__fsqrt_ru(N));
+ return float_to_int(__fsqrt_ru(value));
+#elif defined(__KERNEL_GPU__)
+ return float_to_int(sqrtf(value));
#else
- int m = float_to_int(sqrtf(N));
+ /* This is a work around for fast-math on CPU which might replace sqrtf()
+ * with am approximated version.
+ */
+ return float_to_int(sqrtf(value) + 1e-6f);
#endif
+}
+
+ccl_device void cmj_sample_2D(int s, int N, int p, float *fx, float *fy)
+{
+ kernel_assert(s < N);
+
+ int m = cmj_isqrt(N);
int n = (N - 1)/m + 1;
float invN = 1.0f/N;
float invm = 1.0f/m;
diff --git a/intern/cycles/kernel/kernel_light.h b/intern/cycles/kernel/kernel_light.h
index d4cc36d1495..c806deee8e7 100644
--- a/intern/cycles/kernel/kernel_light.h
+++ b/intern/cycles/kernel/kernel_light.h
@@ -102,7 +102,7 @@ ccl_device_inline float area_light_sample(float3 P,
float cu = 1.0f / sqrtf(fu * fu + b0sq) * (fu > 0.0f ? 1.0f : -1.0f);
cu = clamp(cu, -1.0f, 1.0f);
/* Compute xu. */
- float xu = -(cu * z0) / sqrtf(1.0f - cu * cu);
+ float xu = -(cu * z0) / max(sqrtf(1.0f - cu * cu), 1e-7f);
xu = clamp(xu, x0, x1);
/* Compute yv. */
float z0sq = z0 * z0;
@@ -396,11 +396,13 @@ ccl_device_inline float3 background_light_sample(KernelGlobals *kg,
+ (1.0f - portal_sampling_pdf) * cdf_pdf);
}
return D;
- } else {
+ }
+ else {
/* Sample map, but with nonzero portal_sampling_pdf for MIS. */
randu = (randu - portal_sampling_pdf) / (1.0f - portal_sampling_pdf);
}
- } else {
+ }
+ else {
/* We can't sample a portal.
* Check if we can sample the map instead.
*/
@@ -763,78 +765,280 @@ ccl_device bool lamp_light_eval(KernelGlobals *kg, int lamp, float3 P, float3 D,
/* Triangle Light */
-ccl_device void object_transform_light_sample(KernelGlobals *kg, LightSample *ls, int object, float time)
+/* returns true if the triangle is has motion blur or an instancing transform applied */
+ccl_device_inline bool triangle_world_space_vertices(KernelGlobals *kg, int object, int prim, float time, float3 V[3])
{
+ bool has_motion = false;
+ const int object_flag = kernel_tex_fetch(__object_flag, object);
+
+ if(object_flag & SD_OBJECT_HAS_VERTEX_MOTION && time >= 0.0f) {
+ motion_triangle_vertices(kg, object, prim, time, V);
+ has_motion = true;
+ }
+ else {
+ triangle_vertices(kg, prim, V);
+ }
+
#ifdef __INSTANCING__
- /* instance transform */
- if(!(kernel_tex_fetch(__object_flag, object) & SD_TRANSFORM_APPLIED)) {
+ if(!(object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
# ifdef __OBJECT_MOTION__
- Transform itfm;
- Transform tfm = object_fetch_transform_motion_test(kg, object, time, &itfm);
+ Transform tfm = object_fetch_transform_motion_test(kg, object, time, NULL);
# else
Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
# endif
-
- ls->P = transform_point(&tfm, ls->P);
- ls->Ng = normalize(transform_direction(&tfm, ls->Ng));
+ V[0] = transform_point(&tfm, V[0]);
+ V[1] = transform_point(&tfm, V[1]);
+ V[2] = transform_point(&tfm, V[2]);
+ has_motion = true;
}
#endif
+ return has_motion;
}
-ccl_device void triangle_light_sample(KernelGlobals *kg, int prim, int object,
- float randu, float randv, float time, LightSample *ls)
+ccl_device_inline float triangle_light_pdf_area(KernelGlobals *kg, const float3 Ng, const float3 I, float t)
{
- float u, v;
+ float pdf = kernel_data.integrator.pdf_triangles;
+ float cos_pi = fabsf(dot(Ng, I));
- /* compute random point in triangle */
- randu = sqrtf(randu);
+ if(cos_pi == 0.0f)
+ return 0.0f;
+
+ return t*t*pdf/cos_pi;
+}
- u = 1.0f - randu;
- v = randv*randu;
+ccl_device_forceinline float triangle_light_pdf(KernelGlobals *kg, ShaderData *sd, float t)
+{
+ /* A naive heuristic to decide between costly solid angle sampling
+ * and simple area sampling, comparing the distance to the triangle plane
+ * to the length of the edges of the triangle. */
+
+ float3 V[3];
+ bool has_motion = triangle_world_space_vertices(kg, sd->object, sd->prim, sd->time, V);
+
+ const float3 e0 = V[1] - V[0];
+ const float3 e1 = V[2] - V[0];
+ const float3 e2 = V[2] - V[1];
+ const float longest_edge_squared = max(len_squared(e0), max(len_squared(e1), len_squared(e2)));
+ const float3 N = cross(e0, e1);
+ const float distance_to_plane = fabsf(dot(N, sd->I * t))/dot(N, N);
+
+ if(longest_edge_squared > distance_to_plane*distance_to_plane) {
+ /* sd contains the point on the light source
+ * calculate Px, the point that we're shading */
+ const float3 Px = sd->P + sd->I * t;
+ const float3 v0_p = V[0] - Px;
+ const float3 v1_p = V[1] - Px;
+ const float3 v2_p = V[2] - Px;
+
+ const float3 u01 = safe_normalize(cross(v0_p, v1_p));
+ const float3 u02 = safe_normalize(cross(v0_p, v2_p));
+ const float3 u12 = safe_normalize(cross(v1_p, v2_p));
+
+ const float alpha = fast_acosf(dot(u02, u01));
+ const float beta = fast_acosf(-dot(u01, u12));
+ const float gamma = fast_acosf(dot(u02, u12));
+ const float solid_angle = alpha + beta + gamma - M_PI_F;
+
+ /* pdf_triangles is calculated over triangle area, but we're not sampling over its area */
+ if(UNLIKELY(solid_angle == 0.0f)) {
+ return 0.0f;
+ }
+ else {
+ float area = 1.0f;
+ if(has_motion) {
+ /* get the center frame vertices, this is what the PDF was calculated from */
+ triangle_world_space_vertices(kg, sd->object, sd->prim, -1.0f, V);
+ area = triangle_area(V[0], V[1], V[2]);
+ }
+ else {
+ area = 0.5f * len(N);
+ }
+ const float pdf = area * kernel_data.integrator.pdf_triangles;
+ return pdf / solid_angle;
+ }
+ }
+ else {
+ float pdf = triangle_light_pdf_area(kg, sd->Ng, sd->I, t);
+ if(has_motion) {
+ const float area = 0.5f * len(N);
+ if(UNLIKELY(area == 0.0f)) {
+ return 0.0f;
+ }
+ /* scale the PDF.
+ * area = the area the sample was taken from
+ * area_pre = the are from which pdf_triangles was calculated from */
+ triangle_world_space_vertices(kg, sd->object, sd->prim, -1.0f, V);
+ const float area_pre = triangle_area(V[0], V[1], V[2]);
+ pdf = pdf * area_pre / area;
+ }
+ return pdf;
+ }
+}
- /* triangle, so get position, normal, shader */
- triangle_point_normal(kg, object, prim, u, v, &ls->P, &ls->Ng, &ls->shader);
+ccl_device_forceinline void triangle_light_sample(KernelGlobals *kg, int prim, int object,
+ float randu, float randv, float time, LightSample *ls, const float3 P)
+{
+ /* A naive heuristic to decide between costly solid angle sampling
+ * and simple area sampling, comparing the distance to the triangle plane
+ * to the length of the edges of the triangle. */
+
+ float3 V[3];
+ bool has_motion = triangle_world_space_vertices(kg, object, prim, time, V);
+
+ const float3 e0 = V[1] - V[0];
+ const float3 e1 = V[2] - V[0];
+ const float3 e2 = V[2] - V[1];
+ const float longest_edge_squared = max(len_squared(e0), max(len_squared(e1), len_squared(e2)));
+ const float3 N0 = cross(e0, e1);
+ float Nl = 0.0f;
+ ls->Ng = safe_normalize_len(N0, &Nl);
+ float area = 0.5f * Nl;
+
+ /* flip normal if necessary */
+ const int object_flag = kernel_tex_fetch(__object_flag, object);
+ if(object_flag & SD_OBJECT_NEGATIVE_SCALE_APPLIED) {
+ ls->Ng = -ls->Ng;
+ }
+ ls->eval_fac = 1.0f;
+ ls->shader = kernel_tex_fetch(__tri_shader, prim);
ls->object = object;
ls->prim = prim;
ls->lamp = LAMP_NONE;
ls->shader |= SHADER_USE_MIS;
- ls->t = 0.0f;
- ls->u = u;
- ls->v = v;
ls->type = LIGHT_TRIANGLE;
- ls->eval_fac = 1.0f;
- object_transform_light_sample(kg, ls, object, time);
-}
+ float distance_to_plane = fabsf(dot(N0, V[0] - P)/dot(N0, N0));
+
+ if(longest_edge_squared > distance_to_plane*distance_to_plane) {
+ /* see James Arvo, "Stratified Sampling of Spherical Triangles"
+ * http://www.graphics.cornell.edu/pubs/1995/Arv95c.pdf */
+
+ /* project the triangle to the unit sphere
+ * and calculate its edges and angles */
+ const float3 v0_p = V[0] - P;
+ const float3 v1_p = V[1] - P;
+ const float3 v2_p = V[2] - P;
+
+ const float3 u01 = safe_normalize(cross(v0_p, v1_p));
+ const float3 u02 = safe_normalize(cross(v0_p, v2_p));
+ const float3 u12 = safe_normalize(cross(v1_p, v2_p));
+
+ const float3 A = safe_normalize(v0_p);
+ const float3 B = safe_normalize(v1_p);
+ const float3 C = safe_normalize(v2_p);
+
+ const float cos_alpha = dot(u02, u01);
+ const float cos_beta = -dot(u01, u12);
+ const float cos_gamma = dot(u02, u12);
+
+ /* calculate dihedral angles */
+ const float alpha = fast_acosf(cos_alpha);
+ const float beta = fast_acosf(cos_beta);
+ const float gamma = fast_acosf(cos_gamma);
+ /* the area of the unit spherical triangle = solid angle */
+ const float solid_angle = alpha + beta + gamma - M_PI_F;
+
+ /* precompute a few things
+ * these could be re-used to take several samples
+ * as they are independent of randu/randv */
+ const float cos_c = dot(A, B);
+ const float sin_alpha = fast_sinf(alpha);
+ const float product = sin_alpha * cos_c;
+
+ /* Select a random sub-area of the spherical triangle
+ * and calculate the third vertex C_ of that new triangle */
+ const float phi = randu * solid_angle - alpha;
+ float s, t;
+ fast_sincosf(phi, &s, &t);
+ const float u = t - cos_alpha;
+ const float v = s + product;
+
+ const float3 U = safe_normalize(C - dot(C, A) * A);
+
+ float q = 1.0f;
+ const float det = ((v * s + u * t) * sin_alpha);
+ if(det != 0.0f) {
+ q = ((v * t - u * s) * cos_alpha - v) / det;
+ }
+ const float temp = max(1.0f - q*q, 0.0f);
-ccl_device float triangle_light_pdf(KernelGlobals *kg,
- const float3 Ng, const float3 I, float t)
-{
- float pdf = kernel_data.integrator.pdf_triangles;
- float cos_pi = fabsf(dot(Ng, I));
+ const float3 C_ = safe_normalize(q * A + sqrtf(temp) * U);
- if(cos_pi == 0.0f)
- return 0.0f;
-
- return t*t*pdf/cos_pi;
+ /* Finally, select a random point along the edge of the new triangle
+ * That point on the spherical triangle is the sampled ray direction */
+ const float z = 1.0f - randv * (1.0f - dot(C_, B));
+ ls->D = z * B + safe_sqrtf(1.0f - z*z) * safe_normalize(C_ - dot(C_, B) * B);
+
+ /* calculate intersection with the planar triangle */
+ if(!ray_triangle_intersect(P, ls->D, FLT_MAX,
+#if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
+ (ssef*)V,
+#else
+ V[0], V[1], V[2],
+#endif
+ &ls->u, &ls->v, &ls->t)) {
+ ls->pdf = 0.0f;
+ return;
+ }
+
+ ls->P = P + ls->D * ls->t;
+
+ /* pdf_triangles is calculated over triangle area, but we're sampling over solid angle */
+ if(UNLIKELY(solid_angle == 0.0f)) {
+ ls->pdf = 0.0f;
+ return;
+ }
+ else {
+ if(has_motion) {
+ /* get the center frame vertices, this is what the PDF was calculated from */
+ triangle_world_space_vertices(kg, object, prim, -1.0f, V);
+ area = triangle_area(V[0], V[1], V[2]);
+ }
+ const float pdf = area * kernel_data.integrator.pdf_triangles;
+ ls->pdf = pdf / solid_angle;
+ }
+ }
+ else {
+ /* compute random point in triangle */
+ randu = sqrtf(randu);
+
+ const float u = 1.0f - randu;
+ const float v = randv*randu;
+ const float t = 1.0f - u - v;
+ ls->P = u * V[0] + v * V[1] + t * V[2];
+ /* compute incoming direction, distance and pdf */
+ ls->D = normalize_len(ls->P - P, &ls->t);
+ ls->pdf = triangle_light_pdf_area(kg, ls->Ng, -ls->D, ls->t);
+ if(has_motion && area != 0.0f) {
+ /* scale the PDF.
+ * area = the area the sample was taken from
+ * area_pre = the are from which pdf_triangles was calculated from */
+ triangle_world_space_vertices(kg, object, prim, -1.0f, V);
+ const float area_pre = triangle_area(V[0], V[1], V[2]);
+ ls->pdf = ls->pdf * area_pre / area;
+ }
+ ls->u = u;
+ ls->v = v;
+ }
}
/* Light Distribution */
-ccl_device int light_distribution_sample(KernelGlobals *kg, float randt)
+ccl_device int light_distribution_sample(KernelGlobals *kg, float *randu)
{
- /* this is basically std::upper_bound as used by pbrt, to find a point light or
+ /* This is basically std::upper_bound as used by pbrt, to find a point light or
* triangle to emit from, proportional to area. a good improvement would be to
* also sample proportional to power, though it's not so well defined with
- * OSL shaders. */
+ * arbitrary shaders. */
int first = 0;
int len = kernel_data.integrator.num_distribution + 1;
+ float r = *randu;
while(len > 0) {
int half_len = len >> 1;
int middle = first + half_len;
- if(randt < kernel_tex_fetch(__light_distribution, middle).x) {
+ if(r < kernel_tex_fetch(__light_distribution, middle).x) {
len = half_len;
}
else {
@@ -843,9 +1047,17 @@ ccl_device int light_distribution_sample(KernelGlobals *kg, float randt)
}
}
- /* clamping should not be needed but float rounding errors seem to
- * make this fail on rare occasions */
- return clamp(first-1, 0, kernel_data.integrator.num_distribution-1);
+ /* Clamping should not be needed but float rounding errors seem to
+ * make this fail on rare occasions. */
+ int index = clamp(first-1, 0, kernel_data.integrator.num_distribution-1);
+
+ /* Rescale to reuse random number. this helps the 2D samples within
+ * each area light be stratified as well. */
+ float distr_min = kernel_tex_fetch(__light_distribution, index).x;
+ float distr_max = kernel_tex_fetch(__light_distribution, index+1).x;
+ *randu = (r - distr_min)/(distr_max - distr_min);
+
+ return index;
}
/* Generic Light */
@@ -857,7 +1069,6 @@ ccl_device bool light_select_reached_max_bounces(KernelGlobals *kg, int index, i
}
ccl_device_noinline bool light_sample(KernelGlobals *kg,
- float randt,
float randu,
float randv,
float time,
@@ -866,7 +1077,7 @@ ccl_device_noinline bool light_sample(KernelGlobals *kg,
LightSample *ls)
{
/* sample index */
- int index = light_distribution_sample(kg, randt);
+ int index = light_distribution_sample(kg, &randu);
/* fetch light data */
float4 l = kernel_tex_fetch(__light_distribution, index);
@@ -876,10 +1087,7 @@ ccl_device_noinline bool light_sample(KernelGlobals *kg,
int object = __float_as_int(l.w);
int shader_flag = __float_as_int(l.z);
- triangle_light_sample(kg, prim, object, randu, randv, time, ls);
- /* compute incoming direction, distance and pdf */
- ls->D = normalize_len(ls->P - P, &ls->t);
- ls->pdf = triangle_light_pdf(kg, ls->Ng, -ls->D, ls->t);
+ triangle_light_sample(kg, prim, object, randu, randv, time, ls, P);
ls->shader |= shader_flag;
return (ls->pdf > 0.0f);
}
diff --git a/intern/cycles/kernel/kernel_math.h b/intern/cycles/kernel/kernel_math.h
index 9bee5603474..bd0e23b7705 100644
--- a/intern/cycles/kernel/kernel_math.h
+++ b/intern/cycles/kernel/kernel_math.h
@@ -17,11 +17,11 @@
#ifndef __KERNEL_MATH_H__
#define __KERNEL_MATH_H__
-#include "util_color.h"
-#include "util_math.h"
-#include "util_math_fast.h"
-#include "util_texture.h"
-#include "util_transform.h"
+#include "util/util_color.h"
+#include "util/util_math.h"
+#include "util/util_math_fast.h"
+#include "util/util_math_intersect.h"
+#include "util/util_texture.h"
+#include "util/util_transform.h"
#endif /* __KERNEL_MATH_H__ */
-
diff --git a/intern/cycles/kernel/kernel_montecarlo.h b/intern/cycles/kernel/kernel_montecarlo.h
index af7b727c1ba..9995490505f 100644
--- a/intern/cycles/kernel/kernel_montecarlo.h
+++ b/intern/cycles/kernel/kernel_montecarlo.h
@@ -67,8 +67,8 @@ ccl_device_inline void sample_cos_hemisphere(const float3 N,
/* sample direction uniformly distributed in hemisphere */
ccl_device_inline void sample_uniform_hemisphere(const float3 N,
- float randu, float randv,
- float3 *omega_in, float *pdf)
+ float randu, float randv,
+ float3 *omega_in, float *pdf)
{
float z = randu;
float r = sqrtf(max(0.0f, 1.0f - z*z));
@@ -84,8 +84,8 @@ ccl_device_inline void sample_uniform_hemisphere(const float3 N,
/* sample direction uniformly distributed in cone */
ccl_device_inline void sample_uniform_cone(const float3 N, float angle,
- float randu, float randv,
- float3 *omega_in, float *pdf)
+ float randu, float randv,
+ float3 *omega_in, float *pdf)
{
float z = cosf(angle*randu);
float r = sqrtf(max(0.0f, 1.0f - z*z));
@@ -187,4 +187,3 @@ ccl_device float2 regular_polygon_sample(float corners, float rotation, float u,
CCL_NAMESPACE_END
#endif /* __KERNEL_MONTECARLO_CL__ */
-
diff --git a/intern/cycles/kernel/kernel_passes.h b/intern/cycles/kernel/kernel_passes.h
index 7aec47e4957..b31356905f2 100644
--- a/intern/cycles/kernel/kernel_passes.h
+++ b/intern/cycles/kernel/kernel_passes.h
@@ -16,19 +16,23 @@
CCL_NAMESPACE_BEGIN
-ccl_device_inline void kernel_write_pass_float(ccl_global float *buffer, int sample, float value)
+#if defined(__SPLIT_KERNEL__) || defined(__KERNEL_CUDA__)
+#define __ATOMIC_PASS_WRITE__
+#endif
+
+ccl_device_inline void kernel_write_pass_float(ccl_global float *buffer, float value)
{
ccl_global float *buf = buffer;
-#if defined(__SPLIT_KERNEL__) && defined(__WORK_STEALING__)
+#ifdef __ATOMIC_PASS_WRITE__
atomic_add_and_fetch_float(buf, value);
#else
- *buf = (sample == 0)? value: *buf + value;
-#endif // __SPLIT_KERNEL__ && __WORK_STEALING__
+ *buf += value;
+#endif
}
-ccl_device_inline void kernel_write_pass_float3(ccl_global float *buffer, int sample, float3 value)
+ccl_device_inline void kernel_write_pass_float3(ccl_global float *buffer, float3 value)
{
-#if defined(__SPLIT_KERNEL__) && defined(__WORK_STEALING__)
+#ifdef __ATOMIC_PASS_WRITE__
ccl_global float *buf_x = buffer + 0;
ccl_global float *buf_y = buffer + 1;
ccl_global float *buf_z = buffer + 2;
@@ -38,13 +42,13 @@ ccl_device_inline void kernel_write_pass_float3(ccl_global float *buffer, int sa
atomic_add_and_fetch_float(buf_z, value.z);
#else
ccl_global float3 *buf = (ccl_global float3*)buffer;
- *buf = (sample == 0)? value: *buf + value;
-#endif // __SPLIT_KERNEL__ && __WORK_STEALING__
+ *buf += value;
+#endif
}
-ccl_device_inline void kernel_write_pass_float4(ccl_global float *buffer, int sample, float4 value)
+ccl_device_inline void kernel_write_pass_float4(ccl_global float *buffer, float4 value)
{
-#if defined(__SPLIT_KERNEL__) && defined(__WORK_STEALING__)
+#ifdef __ATOMIC_PASS_WRITE__
ccl_global float *buf_x = buffer + 0;
ccl_global float *buf_y = buffer + 1;
ccl_global float *buf_z = buffer + 2;
@@ -56,12 +60,137 @@ ccl_device_inline void kernel_write_pass_float4(ccl_global float *buffer, int sa
atomic_add_and_fetch_float(buf_w, value.w);
#else
ccl_global float4 *buf = (ccl_global float4*)buffer;
- *buf = (sample == 0)? value: *buf + value;
-#endif // __SPLIT_KERNEL__ && __WORK_STEALING__
+ *buf += value;
+#endif
+}
+
+#ifdef __DENOISING_FEATURES__
+ccl_device_inline void kernel_write_pass_float_variance(ccl_global float *buffer, float value)
+{
+ kernel_write_pass_float(buffer, value);
+
+ /* The online one-pass variance update that's used for the megakernel can't easily be implemented
+ * with atomics, so for the split kernel the E[x^2] - 1/N * (E[x])^2 fallback is used. */
+ kernel_write_pass_float(buffer+1, value*value);
}
+# ifdef __ATOMIC_PASS_WRITE__
+# define kernel_write_pass_float3_unaligned kernel_write_pass_float3
+# else
+ccl_device_inline void kernel_write_pass_float3_unaligned(ccl_global float *buffer, float3 value)
+{
+ buffer[0] += value.x;
+ buffer[1] += value.y;
+ buffer[2] += value.z;
+}
+# endif
+
+ccl_device_inline void kernel_write_pass_float3_variance(ccl_global float *buffer, float3 value)
+{
+ kernel_write_pass_float3_unaligned(buffer, value);
+ kernel_write_pass_float3_unaligned(buffer+3, value*value);
+}
+
+ccl_device_inline void kernel_write_denoising_shadow(KernelGlobals *kg, ccl_global float *buffer,
+ int sample, float path_total, float path_total_shaded)
+{
+ if(kernel_data.film.pass_denoising_data == 0)
+ return;
+
+ buffer += (sample & 1)? DENOISING_PASS_SHADOW_B : DENOISING_PASS_SHADOW_A;
+
+ path_total = ensure_finite(path_total);
+ path_total_shaded = ensure_finite(path_total_shaded);
+
+ kernel_write_pass_float(buffer, path_total);
+ kernel_write_pass_float(buffer+1, path_total_shaded);
+
+ float value = path_total_shaded / max(path_total, 1e-7f);
+ kernel_write_pass_float(buffer+2, value*value);
+}
+#endif /* __DENOISING_FEATURES__ */
+
+ccl_device_inline void kernel_update_denoising_features(KernelGlobals *kg,
+ ShaderData *sd,
+ ccl_addr_space PathState *state,
+ PathRadiance *L)
+{
+#ifdef __DENOISING_FEATURES__
+ if(state->denoising_feature_weight == 0.0f) {
+ return;
+ }
+
+ L->denoising_depth += ensure_finite(state->denoising_feature_weight * sd->ray_length);
+
+ /* Skip implicitly transparent surfaces. */
+ if(sd->flag & SD_HAS_ONLY_VOLUME) {
+ return;
+ }
+
+ float3 normal = make_float3(0.0f, 0.0f, 0.0f);
+ float3 albedo = make_float3(0.0f, 0.0f, 0.0f);
+ float sum_weight = 0.0f, sum_nonspecular_weight = 0.0f;
+
+ for(int i = 0; i < sd->num_closure; i++) {
+ ShaderClosure *sc = &sd->closure[i];
+
+ if(!CLOSURE_IS_BSDF_OR_BSSRDF(sc->type))
+ continue;
+
+ /* All closures contribute to the normal feature, but only diffuse-like ones to the albedo. */
+ normal += sc->N * sc->sample_weight;
+ sum_weight += sc->sample_weight;
+ if(!bsdf_is_specular_like(sc)) {
+ albedo += sc->weight;
+ sum_nonspecular_weight += sc->sample_weight;
+ }
+ }
+
+ /* Wait for next bounce if 75% or more sample weight belongs to specular-like closures. */
+ if((sum_weight == 0.0f) || (sum_nonspecular_weight*4.0f > sum_weight)) {
+ if(sum_weight != 0.0f) {
+ normal /= sum_weight;
+ }
+ L->denoising_normal += ensure_finite3(state->denoising_feature_weight * normal);
+ L->denoising_albedo += ensure_finite3(state->denoising_feature_weight * albedo);
+
+ state->denoising_feature_weight = 0.0f;
+ }
+#else
+ (void) kg;
+ (void) sd;
+ (void) state;
+ (void) L;
+#endif /* __DENOISING_FEATURES__ */
+}
+
+#ifdef __KERNEL_DEBUG__
+ccl_device_inline void kernel_write_debug_passes(KernelGlobals *kg,
+ ccl_global float *buffer,
+ PathRadiance *L)
+{
+ int flag = kernel_data.film.pass_flag;
+ if(flag & PASS_BVH_TRAVERSED_NODES) {
+ kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_traversed_nodes,
+ L->debug_data.num_bvh_traversed_nodes);
+ }
+ if(flag & PASS_BVH_TRAVERSED_INSTANCES) {
+ kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_traversed_instances,
+ L->debug_data.num_bvh_traversed_instances);
+ }
+ if(flag & PASS_BVH_INTERSECTIONS) {
+ kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_intersections,
+ L->debug_data.num_bvh_intersections);
+ }
+ if(flag & PASS_RAY_BOUNCES) {
+ kernel_write_pass_float(buffer + kernel_data.film.pass_ray_bounces,
+ L->debug_data.num_ray_bounces);
+ }
+}
+#endif /* __KERNEL_DEBUG__ */
+
ccl_device_inline void kernel_write_data_passes(KernelGlobals *kg, ccl_global float *buffer, PathRadiance *L,
- ShaderData *sd, int sample, ccl_addr_space PathState *state, float3 throughput)
+ ShaderData *sd, ccl_addr_space PathState *state, float3 throughput)
{
#ifdef __PASSES__
int path_flag = state->flag;
@@ -75,38 +204,37 @@ ccl_device_inline void kernel_write_data_passes(KernelGlobals *kg, ccl_global fl
return;
if(!(path_flag & PATH_RAY_SINGLE_PASS_DONE)) {
- if(!(ccl_fetch(sd, flag) & SD_TRANSPARENT) ||
+ if(!(sd->flag & SD_TRANSPARENT) ||
kernel_data.film.pass_alpha_threshold == 0.0f ||
average(shader_bsdf_alpha(kg, sd)) >= kernel_data.film.pass_alpha_threshold)
{
-
- if(sample == 0) {
+ if(state->sample == 0) {
if(flag & PASS_DEPTH) {
- float depth = camera_distance(kg, ccl_fetch(sd, P));
- kernel_write_pass_float(buffer + kernel_data.film.pass_depth, sample, depth);
+ float depth = camera_distance(kg, sd->P);
+ kernel_write_pass_float(buffer + kernel_data.film.pass_depth, depth);
}
if(flag & PASS_OBJECT_ID) {
- float id = object_pass_id(kg, ccl_fetch(sd, object));
- kernel_write_pass_float(buffer + kernel_data.film.pass_object_id, sample, id);
+ float id = object_pass_id(kg, sd->object);
+ kernel_write_pass_float(buffer + kernel_data.film.pass_object_id, id);
}
if(flag & PASS_MATERIAL_ID) {
float id = shader_pass_id(kg, sd);
- kernel_write_pass_float(buffer + kernel_data.film.pass_material_id, sample, id);
+ kernel_write_pass_float(buffer + kernel_data.film.pass_material_id, id);
}
}
if(flag & PASS_NORMAL) {
- float3 normal = ccl_fetch(sd, N);
- kernel_write_pass_float3(buffer + kernel_data.film.pass_normal, sample, normal);
+ float3 normal = shader_bsdf_average_normal(kg, sd);
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_normal, normal);
}
if(flag & PASS_UV) {
float3 uv = primitive_uv(kg, sd);
- kernel_write_pass_float3(buffer + kernel_data.film.pass_uv, sample, uv);
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_uv, uv);
}
if(flag & PASS_MOTION) {
float4 speed = primitive_motion_vector(kg, sd);
- kernel_write_pass_float4(buffer + kernel_data.film.pass_motion, sample, speed);
- kernel_write_pass_float(buffer + kernel_data.film.pass_motion_weight, sample, 1.0f);
+ kernel_write_pass_float4(buffer + kernel_data.film.pass_motion, speed);
+ kernel_write_pass_float(buffer + kernel_data.film.pass_motion_weight, 1.0f);
}
state->flag |= PATH_RAY_SINGLE_PASS_DONE;
@@ -127,7 +255,7 @@ ccl_device_inline void kernel_write_data_passes(KernelGlobals *kg, ccl_global fl
float mist_start = kernel_data.film.mist_start;
float mist_inv_depth = kernel_data.film.mist_inv_depth;
- float depth = camera_distance(kg, ccl_fetch(sd, P));
+ float depth = camera_distance(kg, sd->P);
float mist = saturate((depth - mist_start)*mist_inv_depth);
/* falloff */
@@ -149,7 +277,7 @@ ccl_device_inline void kernel_write_data_passes(KernelGlobals *kg, ccl_global fl
#endif
}
-ccl_device_inline void kernel_write_light_passes(KernelGlobals *kg, ccl_global float *buffer, PathRadiance *L, int sample)
+ccl_device_inline void kernel_write_light_passes(KernelGlobals *kg, ccl_global float *buffer, PathRadiance *L)
{
#ifdef __PASSES__
int flag = kernel_data.film.pass_flag;
@@ -158,44 +286,103 @@ ccl_device_inline void kernel_write_light_passes(KernelGlobals *kg, ccl_global f
return;
if(flag & PASS_DIFFUSE_INDIRECT)
- kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_indirect, sample, L->indirect_diffuse);
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_indirect, L->indirect_diffuse);
if(flag & PASS_GLOSSY_INDIRECT)
- kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_indirect, sample, L->indirect_glossy);
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_indirect, L->indirect_glossy);
if(flag & PASS_TRANSMISSION_INDIRECT)
- kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_indirect, sample, L->indirect_transmission);
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_indirect, L->indirect_transmission);
if(flag & PASS_SUBSURFACE_INDIRECT)
- kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_indirect, sample, L->indirect_subsurface);
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_indirect, L->indirect_subsurface);
if(flag & PASS_DIFFUSE_DIRECT)
- kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_direct, sample, L->direct_diffuse);
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_direct, L->direct_diffuse);
if(flag & PASS_GLOSSY_DIRECT)
- kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_direct, sample, L->direct_glossy);
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_direct, L->direct_glossy);
if(flag & PASS_TRANSMISSION_DIRECT)
- kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_direct, sample, L->direct_transmission);
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_direct, L->direct_transmission);
if(flag & PASS_SUBSURFACE_DIRECT)
- kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_direct, sample, L->direct_subsurface);
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_direct, L->direct_subsurface);
if(flag & PASS_EMISSION)
- kernel_write_pass_float3(buffer + kernel_data.film.pass_emission, sample, L->emission);
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_emission, L->emission);
if(flag & PASS_BACKGROUND)
- kernel_write_pass_float3(buffer + kernel_data.film.pass_background, sample, L->background);
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_background, L->background);
if(flag & PASS_AO)
- kernel_write_pass_float3(buffer + kernel_data.film.pass_ao, sample, L->ao);
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_ao, L->ao);
if(flag & PASS_DIFFUSE_COLOR)
- kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_color, sample, L->color_diffuse);
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_color, L->color_diffuse);
if(flag & PASS_GLOSSY_COLOR)
- kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_color, sample, L->color_glossy);
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_color, L->color_glossy);
if(flag & PASS_TRANSMISSION_COLOR)
- kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_color, sample, L->color_transmission);
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_color, L->color_transmission);
if(flag & PASS_SUBSURFACE_COLOR)
- kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_color, sample, L->color_subsurface);
+ kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_color, L->color_subsurface);
if(flag & PASS_SHADOW) {
float4 shadow = L->shadow;
shadow.w = kernel_data.film.pass_shadow_scale;
- kernel_write_pass_float4(buffer + kernel_data.film.pass_shadow, sample, shadow);
+ kernel_write_pass_float4(buffer + kernel_data.film.pass_shadow, shadow);
}
if(flag & PASS_MIST)
- kernel_write_pass_float(buffer + kernel_data.film.pass_mist, sample, 1.0f - L->mist);
+ kernel_write_pass_float(buffer + kernel_data.film.pass_mist, 1.0f - L->mist);
+#endif
+}
+
+ccl_device_inline void kernel_write_result(KernelGlobals *kg,
+ ccl_global float *buffer,
+ int sample,
+ PathRadiance *L)
+{
+ float alpha;
+ float3 L_sum = path_radiance_clamp_and_sum(kg, L, &alpha);
+
+ kernel_write_pass_float4(buffer, make_float4(L_sum.x, L_sum.y, L_sum.z, alpha));
+
+ kernel_write_light_passes(kg, buffer, L);
+
+#ifdef __DENOISING_FEATURES__
+ if(kernel_data.film.pass_denoising_data) {
+# ifdef __SHADOW_TRICKS__
+ kernel_write_denoising_shadow(kg,
+ buffer + kernel_data.film.pass_denoising_data,
+ sample,
+ average(L->path_total),
+ average(L->path_total_shaded));
+# else
+ kernel_write_denoising_shadow(kg,
+ buffer + kernel_data.film.pass_denoising_data,
+ sample,
+ 0.0f, 0.0f);
+# endif
+ if(kernel_data.film.pass_denoising_clean) {
+ float3 noisy, clean;
+ path_radiance_split_denoising(kg, L, &noisy, &clean);
+ kernel_write_pass_float3_variance(
+ buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_COLOR,
+ noisy);
+ kernel_write_pass_float3_unaligned(
+ buffer + kernel_data.film.pass_denoising_clean,
+ clean);
+ }
+ else {
+ kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_COLOR,
+ ensure_finite3(L_sum));
+ }
+
+ kernel_write_pass_float3_variance(
+ buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_NORMAL,
+ L->denoising_normal);
+ kernel_write_pass_float3_variance(
+ buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_ALBEDO,
+ L->denoising_albedo);
+ kernel_write_pass_float_variance(
+ buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_DEPTH,
+ L->denoising_depth);
+ }
+#endif /* __DENOISING_FEATURES__ */
+
+
+#ifdef __KERNEL_DEBUG__
+ kernel_write_debug_passes(kg, buffer, L);
#endif
}
diff --git a/intern/cycles/kernel/kernel_path.h b/intern/cycles/kernel/kernel_path.h
index 6d89a89ed5b..652777a77a0 100644
--- a/intern/cycles/kernel/kernel_path.h
+++ b/intern/cycles/kernel/kernel_path.h
@@ -15,57 +15,344 @@
*/
#ifdef __OSL__
-# include "osl_shader.h"
+# include "kernel/osl/osl_shader.h"
#endif
-#include "kernel_random.h"
-#include "kernel_projection.h"
-#include "kernel_montecarlo.h"
-#include "kernel_differential.h"
-#include "kernel_camera.h"
+#include "kernel/kernel_random.h"
+#include "kernel/kernel_projection.h"
+#include "kernel/kernel_montecarlo.h"
+#include "kernel/kernel_differential.h"
+#include "kernel/kernel_camera.h"
-#include "geom/geom.h"
-#include "bvh/bvh.h"
+#include "kernel/geom/geom.h"
+#include "kernel/bvh/bvh.h"
-#include "kernel_accumulate.h"
-#include "kernel_shader.h"
-#include "kernel_light.h"
-#include "kernel_passes.h"
+#include "kernel/kernel_accumulate.h"
+#include "kernel/kernel_shader.h"
+#include "kernel/kernel_light.h"
+#include "kernel/kernel_passes.h"
#ifdef __SUBSURFACE__
-# include "kernel_subsurface.h"
+# include "kernel/kernel_subsurface.h"
#endif
#ifdef __VOLUME__
-# include "kernel_volume.h"
+# include "kernel/kernel_volume.h"
#endif
-#include "kernel_path_state.h"
-#include "kernel_shadow.h"
-#include "kernel_emission.h"
-#include "kernel_path_common.h"
-#include "kernel_path_surface.h"
-#include "kernel_path_volume.h"
+#include "kernel/kernel_path_state.h"
+#include "kernel/kernel_shadow.h"
+#include "kernel/kernel_emission.h"
+#include "kernel/kernel_path_common.h"
+#include "kernel/kernel_path_surface.h"
+#include "kernel/kernel_path_volume.h"
+#include "kernel/kernel_path_subsurface.h"
+
+CCL_NAMESPACE_BEGIN
+
+ccl_device_forceinline bool kernel_path_scene_intersect(
+ KernelGlobals *kg,
+ ccl_addr_space PathState *state,
+ Ray *ray,
+ Intersection *isect,
+ PathRadiance *L)
+{
+ uint visibility = path_state_ray_visibility(kg, state);
+
+#ifdef __HAIR__
+ float difl = 0.0f, extmax = 0.0f;
+ uint lcg_state = 0;
+
+ if(kernel_data.bvh.have_curves) {
+ if((kernel_data.cam.resolution == 1) && (state->flag & PATH_RAY_CAMERA)) {
+ float3 pixdiff = ray->dD.dx + ray->dD.dy;
+ /*pixdiff = pixdiff - dot(pixdiff, ray.D)*ray.D;*/
+ difl = kernel_data.curve.minimum_width * len(pixdiff) * 0.5f;
+ }
+
+ extmax = kernel_data.curve.maximum_width;
+ lcg_state = lcg_state_init_addrspace(state, 0x51633e2d);
+ }
+
+ if(path_state_ao_bounce(kg, state)) {
+ visibility = PATH_RAY_SHADOW;
+ ray->t = kernel_data.background.ao_distance;
+ }
+
+ bool hit = scene_intersect(kg, *ray, visibility, isect, &lcg_state, difl, extmax);
+#else
+ bool hit = scene_intersect(kg, *ray, visibility, isect, NULL, 0.0f, 0.0f);
+#endif /* __HAIR__ */
#ifdef __KERNEL_DEBUG__
-# include "kernel_debug.h"
-#endif
+ if(state->flag & PATH_RAY_CAMERA) {
+ L->debug_data.num_bvh_traversed_nodes += isect->num_traversed_nodes;
+ L->debug_data.num_bvh_traversed_instances += isect->num_traversed_instances;
+ L->debug_data.num_bvh_intersections += isect->num_intersections;
+ }
+ L->debug_data.num_ray_bounces++;
+#endif /* __KERNEL_DEBUG__ */
-CCL_NAMESPACE_BEGIN
+ return hit;
+}
+
+ccl_device_forceinline void kernel_path_lamp_emission(
+ KernelGlobals *kg,
+ ccl_addr_space PathState *state,
+ Ray *ray,
+ float3 throughput,
+ ccl_addr_space Intersection *isect,
+ ShaderData *emission_sd,
+ PathRadiance *L)
+{
+#ifdef __LAMP_MIS__
+ if(kernel_data.integrator.use_lamp_mis && !(state->flag & PATH_RAY_CAMERA)) {
+ /* ray starting from previous non-transparent bounce */
+ Ray light_ray;
+
+ light_ray.P = ray->P - state->ray_t*ray->D;
+ state->ray_t += isect->t;
+ light_ray.D = ray->D;
+ light_ray.t = state->ray_t;
+ light_ray.time = ray->time;
+ light_ray.dD = ray->dD;
+ light_ray.dP = ray->dP;
+
+ /* intersect with lamp */
+ float3 emission;
+
+ if(indirect_lamp_emission(kg, emission_sd, state, &light_ray, &emission))
+ path_radiance_accum_emission(L, state, throughput, emission);
+ }
+#endif /* __LAMP_MIS__ */
+}
+
+ccl_device_forceinline void kernel_path_background(
+ KernelGlobals *kg,
+ ccl_addr_space PathState *state,
+ ccl_addr_space Ray *ray,
+ float3 throughput,
+ ShaderData *emission_sd,
+ PathRadiance *L)
+{
+ /* eval background shader if nothing hit */
+ if(kernel_data.background.transparent && (state->flag & PATH_RAY_CAMERA)) {
+ L->transparent += average(throughput);
+
+#ifdef __PASSES__
+ if(!(kernel_data.film.pass_flag & PASS_BACKGROUND))
+#endif /* __PASSES__ */
+ return;
+ }
+
+#ifdef __BACKGROUND__
+ /* sample background shader */
+ float3 L_background = indirect_background(kg, emission_sd, state, ray);
+ path_radiance_accum_background(L, state, throughput, L_background);
+#endif /* __BACKGROUND__ */
+}
+
+#ifndef __SPLIT_KERNEL__
+
+#ifdef __VOLUME__
+ccl_device_forceinline VolumeIntegrateResult kernel_path_volume(
+ KernelGlobals *kg,
+ ShaderData *sd,
+ PathState *state,
+ Ray *ray,
+ float3 *throughput,
+ ccl_addr_space Intersection *isect,
+ bool hit,
+ ShaderData *emission_sd,
+ PathRadiance *L)
+{
+ /* Sanitize volume stack. */
+ if(!hit) {
+ kernel_volume_clean_stack(kg, state->volume_stack);
+ }
+
+ if(state->volume_stack[0].shader == SHADER_NONE) {
+ return VOLUME_PATH_ATTENUATED;
+ }
+
+ /* volume attenuation, emission, scatter */
+ Ray volume_ray = *ray;
+ volume_ray.t = (hit)? isect->t: FLT_MAX;
+
+ bool heterogeneous = volume_stack_is_heterogeneous(kg, state->volume_stack);
+
+# ifdef __VOLUME_DECOUPLED__
+ int sampling_method = volume_stack_sampling_method(kg, state->volume_stack);
+ bool direct = (state->flag & PATH_RAY_CAMERA) != 0;
+ bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, direct, sampling_method);
+
+ if(decoupled) {
+ /* cache steps along volume for repeated sampling */
+ VolumeSegment volume_segment;
+
+ shader_setup_from_volume(kg, sd, &volume_ray);
+ kernel_volume_decoupled_record(kg, state,
+ &volume_ray, sd, &volume_segment, heterogeneous);
+
+ volume_segment.sampling_method = sampling_method;
+
+ /* emission */
+ if(volume_segment.closure_flag & SD_EMISSION)
+ path_radiance_accum_emission(L, state, *throughput, volume_segment.accum_emission);
+
+ /* scattering */
+ VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED;
+
+ if(volume_segment.closure_flag & SD_SCATTER) {
+ int all = kernel_data.integrator.sample_all_lights_indirect;
+
+ /* direct light sampling */
+ kernel_branched_path_volume_connect_light(kg, sd,
+ emission_sd, *throughput, state, L, all,
+ &volume_ray, &volume_segment);
+
+ /* indirect sample. if we use distance sampling and take just
+ * one sample for direct and indirect light, we could share
+ * this computation, but makes code a bit complex */
+ float rphase = path_state_rng_1D(kg, state, PRNG_PHASE_CHANNEL);
+ float rscatter = path_state_rng_1D(kg, state, PRNG_SCATTER_DISTANCE);
+
+ result = kernel_volume_decoupled_scatter(kg,
+ state, &volume_ray, sd, throughput,
+ rphase, rscatter, &volume_segment, NULL, true);
+ }
+
+ /* free cached steps */
+ kernel_volume_decoupled_free(kg, &volume_segment);
+
+ if(result == VOLUME_PATH_SCATTERED) {
+ if(kernel_path_volume_bounce(kg, sd, throughput, state, &L->state, ray))
+ return VOLUME_PATH_SCATTERED;
+ else
+ return VOLUME_PATH_MISSED;
+ }
+ else {
+ *throughput *= volume_segment.accum_transmittance;
+ }
+ }
+ else
+# endif /* __VOLUME_DECOUPLED__ */
+ {
+ /* integrate along volume segment with distance sampling */
+ VolumeIntegrateResult result = kernel_volume_integrate(
+ kg, state, sd, &volume_ray, L, throughput, heterogeneous);
+
+# ifdef __VOLUME_SCATTER__
+ if(result == VOLUME_PATH_SCATTERED) {
+ /* direct lighting */
+ kernel_path_volume_connect_light(kg, sd, emission_sd, *throughput, state, L);
+
+ /* indirect light bounce */
+ if(kernel_path_volume_bounce(kg, sd, throughput, state, &L->state, ray))
+ return VOLUME_PATH_SCATTERED;
+ else
+ return VOLUME_PATH_MISSED;
+ }
+# endif /* __VOLUME_SCATTER__ */
+ }
+
+ return VOLUME_PATH_ATTENUATED;
+}
+#endif /* __VOLUME__ */
+
+#endif /* __SPLIT_KERNEL__ */
+
+ccl_device_forceinline bool kernel_path_shader_apply(
+ KernelGlobals *kg,
+ ShaderData *sd,
+ ccl_addr_space PathState *state,
+ ccl_addr_space Ray *ray,
+ float3 throughput,
+ ShaderData *emission_sd,
+ PathRadiance *L,
+ ccl_global float *buffer)
+{
+#ifdef __SHADOW_TRICKS__
+ if((sd->object_flag & SD_OBJECT_SHADOW_CATCHER)) {
+ if(state->flag & PATH_RAY_CAMERA) {
+ state->flag |= (PATH_RAY_SHADOW_CATCHER |
+ PATH_RAY_STORE_SHADOW_INFO);
+
+ float3 bg = make_float3(0.0f, 0.0f, 0.0f);
+ if(!kernel_data.background.transparent) {
+ bg = indirect_background(kg, emission_sd, state, ray);
+ }
+ path_radiance_accum_shadowcatcher(L, throughput, bg);
+ }
+ }
+ else if(state->flag & PATH_RAY_SHADOW_CATCHER) {
+ /* Only update transparency after shadow catcher bounce. */
+ L->shadow_transparency *=
+ average(shader_bsdf_transparency(kg, sd));
+ }
+#endif /* __SHADOW_TRICKS__ */
+
+ /* holdout */
+#ifdef __HOLDOUT__
+ if(((sd->flag & SD_HOLDOUT) ||
+ (sd->object_flag & SD_OBJECT_HOLDOUT_MASK)) &&
+ (state->flag & PATH_RAY_CAMERA))
+ {
+ if(kernel_data.background.transparent) {
+ float3 holdout_weight;
+ if(sd->object_flag & SD_OBJECT_HOLDOUT_MASK) {
+ holdout_weight = make_float3(1.0f, 1.0f, 1.0f);
+ }
+ else {
+ holdout_weight = shader_holdout_eval(kg, sd);
+ }
+ /* any throughput is ok, should all be identical here */
+ L->transparent += average(holdout_weight*throughput);
+ }
+
+ if(sd->object_flag & SD_OBJECT_HOLDOUT_MASK) {
+ return false;
+ }
+ }
+#endif /* __HOLDOUT__ */
+
+ /* holdout mask objects do not write data passes */
+ kernel_write_data_passes(kg, buffer, L, sd, state, throughput);
+
+ /* blurring of bsdf after bounces, for rays that have a small likelihood
+ * of following this particular path (diffuse, rough glossy) */
+ if(kernel_data.integrator.filter_glossy != FLT_MAX) {
+ float blur_pdf = kernel_data.integrator.filter_glossy*state->min_ray_pdf;
+
+ if(blur_pdf < 1.0f) {
+ float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
+ shader_bsdf_blur(kg, sd, blur_roughness);
+ }
+ }
+
+#ifdef __EMISSION__
+ /* emission */
+ if(sd->flag & SD_EMISSION) {
+ float3 emission = indirect_primitive_emission(kg, sd, sd->ray_length, state->flag, state->ray_pdf);
+ path_radiance_accum_emission(L, state, throughput, emission);
+ }
+#endif /* __EMISSION__ */
+
+ return true;
+}
ccl_device_noinline void kernel_path_ao(KernelGlobals *kg,
ShaderData *sd,
ShaderData *emission_sd,
PathRadiance *L,
- PathState *state,
- RNG *rng,
+ ccl_addr_space PathState *state,
float3 throughput,
float3 ao_alpha)
{
/* todo: solve correlation */
float bsdf_u, bsdf_v;
- path_state_rng_2D(kg, rng, state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
+ path_state_rng_2D(kg, state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
float ao_factor = kernel_data.background.ao_factor;
float3 ao_N;
@@ -75,267 +362,107 @@ ccl_device_noinline void kernel_path_ao(KernelGlobals *kg,
sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);
- if(dot(ccl_fetch(sd, Ng), ao_D) > 0.0f && ao_pdf != 0.0f) {
+ if(dot(sd->Ng, ao_D) > 0.0f && ao_pdf != 0.0f) {
Ray light_ray;
float3 ao_shadow;
- light_ray.P = ray_offset(ccl_fetch(sd, P), ccl_fetch(sd, Ng));
+ light_ray.P = ray_offset(sd->P, sd->Ng);
light_ray.D = ao_D;
light_ray.t = kernel_data.background.ao_distance;
-#ifdef __OBJECT_MOTION__
- light_ray.time = ccl_fetch(sd, time);
-#endif /* __OBJECT_MOTION__ */
- light_ray.dP = ccl_fetch(sd, dP);
+ light_ray.time = sd->time;
+ light_ray.dP = sd->dP;
light_ray.dD = differential3_zero();
- if(!shadow_blocked(kg, emission_sd, state, &light_ray, &ao_shadow)) {
- path_radiance_accum_ao(L, throughput, ao_alpha, ao_bsdf, ao_shadow, state->bounce);
+ if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &ao_shadow)) {
+ path_radiance_accum_ao(L, state, throughput, ao_alpha, ao_bsdf, ao_shadow);
+ }
+ else {
+ path_radiance_accum_total_ao(L, state, throughput, ao_bsdf);
}
}
}
+#ifndef __SPLIT_KERNEL__
+
+#if defined(__BRANCHED_PATH__) || defined(__BAKING__)
+
ccl_device void kernel_path_indirect(KernelGlobals *kg,
ShaderData *sd,
ShaderData *emission_sd,
- RNG *rng,
Ray *ray,
float3 throughput,
- int num_samples,
PathState *state,
PathRadiance *L)
{
/* path iteration */
for(;;) {
- /* intersect scene */
+ /* Find intersection with objects in scene. */
Intersection isect;
- uint visibility = path_state_ray_visibility(kg, state);
- bool hit = scene_intersect(kg,
- *ray,
- visibility,
- &isect,
- NULL,
- 0.0f, 0.0f);
+ bool hit = kernel_path_scene_intersect(kg, state, ray, &isect, L);
-#ifdef __LAMP_MIS__
- if(kernel_data.integrator.use_lamp_mis && !(state->flag & PATH_RAY_CAMERA)) {
- /* ray starting from previous non-transparent bounce */
- Ray light_ray;
-
- light_ray.P = ray->P - state->ray_t*ray->D;
- state->ray_t += isect.t;
- light_ray.D = ray->D;
- light_ray.t = state->ray_t;
- light_ray.time = ray->time;
- light_ray.dD = ray->dD;
- light_ray.dP = ray->dP;
-
- /* intersect with lamp */
- float3 emission;
- if(indirect_lamp_emission(kg, emission_sd, state, &light_ray, &emission)) {
- path_radiance_accum_emission(L,
- throughput,
- emission,
- state->bounce);
- }
- }
-#endif /* __LAMP_MIS__ */
+ /* Find intersection with lamps and compute emission for MIS. */
+ kernel_path_lamp_emission(kg, state, ray, throughput, &isect, emission_sd, L);
#ifdef __VOLUME__
- /* volume attenuation, emission, scatter */
- if(state->volume_stack[0].shader != SHADER_NONE) {
- Ray volume_ray = *ray;
- volume_ray.t = (hit)? isect.t: FLT_MAX;
-
- bool heterogeneous =
- volume_stack_is_heterogeneous(kg,
- state->volume_stack);
-
-# ifdef __VOLUME_DECOUPLED__
- int sampling_method =
- volume_stack_sampling_method(kg,
- state->volume_stack);
- bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, false, sampling_method);
-
- if(decoupled) {
- /* cache steps along volume for repeated sampling */
- VolumeSegment volume_segment;
-
- shader_setup_from_volume(kg,
- sd,
- &volume_ray);
- kernel_volume_decoupled_record(kg,
- state,
- &volume_ray,
- sd,
- &volume_segment,
- heterogeneous);
-
- volume_segment.sampling_method = sampling_method;
-
- /* emission */
- if(volume_segment.closure_flag & SD_EMISSION) {
- path_radiance_accum_emission(L,
- throughput,
- volume_segment.accum_emission,
- state->bounce);
- }
-
- /* scattering */
- VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED;
-
- if(volume_segment.closure_flag & SD_SCATTER) {
- int all = kernel_data.integrator.sample_all_lights_indirect;
-
- /* direct light sampling */
- kernel_branched_path_volume_connect_light(kg,
- rng,
- sd,
- emission_sd,
- throughput,
- state,
- L,
- all,
- &volume_ray,
- &volume_segment);
-
- /* indirect sample. if we use distance sampling and take just
- * one sample for direct and indirect light, we could share
- * this computation, but makes code a bit complex */
- float rphase = path_state_rng_1D_for_decision(kg, rng, state, PRNG_PHASE);
- float rscatter = path_state_rng_1D_for_decision(kg, rng, state, PRNG_SCATTER_DISTANCE);
-
- result = kernel_volume_decoupled_scatter(kg,
- state,
- &volume_ray,
- sd,
- &throughput,
- rphase,
- rscatter,
- &volume_segment,
- NULL,
- true);
- }
-
- /* free cached steps */
- kernel_volume_decoupled_free(kg, &volume_segment);
-
- if(result == VOLUME_PATH_SCATTERED) {
- if(kernel_path_volume_bounce(kg,
- rng,
- sd,
- &throughput,
- state,
- L,
- ray))
- {
- continue;
- }
- else {
- break;
- }
- }
- else {
- throughput *= volume_segment.accum_transmittance;
- }
- }
- else
-# endif /* __VOLUME_DECOUPLED__ */
- {
- /* integrate along volume segment with distance sampling */
- VolumeIntegrateResult result = kernel_volume_integrate(
- kg, state, sd, &volume_ray, L, &throughput, rng, heterogeneous);
-
-# ifdef __VOLUME_SCATTER__
- if(result == VOLUME_PATH_SCATTERED) {
- /* direct lighting */
- kernel_path_volume_connect_light(kg,
- rng,
- sd,
- emission_sd,
- throughput,
- state,
- L);
-
- /* indirect light bounce */
- if(kernel_path_volume_bounce(kg,
- rng,
- sd,
- &throughput,
- state,
- L,
- ray))
- {
- continue;
- }
- else {
- break;
- }
- }
-# endif /* __VOLUME_SCATTER__ */
- }
+ /* Volume integration. */
+ VolumeIntegrateResult result = kernel_path_volume(kg,
+ sd,
+ state,
+ ray,
+ &throughput,
+ &isect,
+ hit,
+ emission_sd,
+ L);
+
+ if(result == VOLUME_PATH_SCATTERED) {
+ continue;
}
-#endif /* __VOLUME__ */
+ else if(result == VOLUME_PATH_MISSED) {
+ break;
+ }
+#endif /* __VOLUME__*/
+ /* Shade background. */
if(!hit) {
-#ifdef __BACKGROUND__
- /* sample background shader */
- float3 L_background = indirect_background(kg, emission_sd, state, ray);
- path_radiance_accum_background(L,
- throughput,
- L_background,
- state->bounce);
-#endif /* __BACKGROUND__ */
-
+ kernel_path_background(kg, state, ray, throughput, emission_sd, L);
+ break;
+ }
+ else if(path_state_ao_bounce(kg, state)) {
break;
}
- /* setup shading */
+ /* Setup and evaluate shader. */
shader_setup_from_ray(kg,
sd,
&isect,
ray);
- float rbsdf = path_state_rng_1D_for_decision(kg, rng, state, PRNG_BSDF);
- shader_eval_surface(kg, sd, rng, state, rbsdf, state->flag, SHADER_CONTEXT_INDIRECT);
-#ifdef __BRANCHED_PATH__
- shader_merge_closures(sd);
-#endif /* __BRANCHED_PATH__ */
-
- /* blurring of bsdf after bounces, for rays that have a small likelihood
- * of following this particular path (diffuse, rough glossy) */
- if(kernel_data.integrator.filter_glossy != FLT_MAX) {
- float blur_pdf = kernel_data.integrator.filter_glossy*state->min_ray_pdf;
-
- if(blur_pdf < 1.0f) {
- float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
- shader_bsdf_blur(kg, sd, blur_roughness);
- }
- }
-
-#ifdef __EMISSION__
- /* emission */
- if(sd->flag & SD_EMISSION) {
- float3 emission = indirect_primitive_emission(kg,
- sd,
- isect.t,
- state->flag,
- state->ray_pdf);
- path_radiance_accum_emission(L, throughput, emission, state->bounce);
+ shader_eval_surface(kg, sd, state, state->flag);
+ shader_prepare_closures(sd, state);
+
+ /* Apply shadow catcher, holdout, emission. */
+ if(!kernel_path_shader_apply(kg,
+ sd,
+ state,
+ ray,
+ throughput,
+ emission_sd,
+ L,
+ NULL))
+ {
+ break;
}
-#endif /* __EMISSION__ */
/* path termination. this is a strange place to put the termination, it's
* mainly due to the mixed in MIS that we use. gives too many unneeded
* shader evaluations, only need emission if we are going to terminate */
- float probability =
- path_state_terminate_probability(kg,
- state,
- throughput*num_samples);
+ float probability = path_state_continuation_probability(kg, state, throughput);
if(probability == 0.0f) {
break;
}
else if(probability != 1.0f) {
- float terminate = path_state_rng_1D_for_decision(kg, rng, state, PRNG_TERMINATE);
+ float terminate = path_state_rng_1D(kg, state, PRNG_TERMINATE);
if(terminate >= probability)
break;
@@ -343,10 +470,12 @@ ccl_device void kernel_path_indirect(KernelGlobals *kg,
throughput /= probability;
}
+ kernel_update_denoising_features(kg, sd, state, L);
+
#ifdef __AO__
/* ambient occlusion */
if(kernel_data.integrator.use_ambient_occlusion || (sd->flag & SD_AO)) {
- kernel_path_ao(kg, sd, emission_sd, L, state, rng, throughput, make_float3(0.0f, 0.0f, 0.0f));
+ kernel_path_ao(kg, sd, emission_sd, L, state, throughput, make_float3(0.0f, 0.0f, 0.0f));
}
#endif /* __AO__ */
@@ -354,22 +483,18 @@ ccl_device void kernel_path_indirect(KernelGlobals *kg,
/* bssrdf scatter to a different location on the same object, replacing
* the closures with a diffuse BSDF */
if(sd->flag & SD_BSSRDF) {
- float bssrdf_probability;
- ShaderClosure *sc = subsurface_scatter_pick_closure(kg, sd, &bssrdf_probability);
+ float bssrdf_u, bssrdf_v;
+ path_state_rng_2D(kg,
+ state,
+ PRNG_BSDF_U,
+ &bssrdf_u, &bssrdf_v);
- /* modify throughput for picking bssrdf or bsdf */
- throughput *= bssrdf_probability;
+ const ShaderClosure *sc = shader_bssrdf_pick(sd, &throughput, &bssrdf_u);
/* do bssrdf scatter step if we picked a bssrdf closure */
if(sc) {
- uint lcg_state = lcg_state_init(rng, state, 0x68bc21eb);
-
- float bssrdf_u, bssrdf_v;
- path_state_rng_2D(kg,
- rng,
- state,
- PRNG_BSDF_U,
- &bssrdf_u, &bssrdf_v);
+ uint lcg_state = lcg_state_init(state, 0x68bc21eb);
+
subsurface_scatter_step(kg,
sd,
state,
@@ -382,11 +507,11 @@ ccl_device void kernel_path_indirect(KernelGlobals *kg,
}
#endif /* __SUBSURFACE__ */
-#if defined(__EMISSION__) && defined(__BRANCHED_PATH__)
+#if defined(__EMISSION__)
if(kernel_data.integrator.use_direct_light) {
- int all = kernel_data.integrator.sample_all_lights_indirect;
+ int all = (kernel_data.integrator.sample_all_lights_indirect) ||
+ (state->flag & PATH_RAY_SHADOW_CATCHER);
kernel_branched_path_surface_connect_light(kg,
- rng,
sd,
emission_sd,
state,
@@ -395,205 +520,26 @@ ccl_device void kernel_path_indirect(KernelGlobals *kg,
L,
all);
}
-#endif /* defined(__EMISSION__) && defined(__BRANCHED_PATH__) */
+#endif /* defined(__EMISSION__) */
- if(!kernel_path_surface_bounce(kg, rng, sd, &throughput, state, L, ray))
+ if(!kernel_path_surface_bounce(kg, sd, &throughput, state, &L->state, ray))
break;
}
}
-#ifdef __SUBSURFACE__
-# ifndef __KERNEL_CUDA__
-ccl_device
-# else
-ccl_device_inline
-# endif
-bool kernel_path_subsurface_scatter(
- KernelGlobals *kg,
- ShaderData *sd,
- ShaderData *emission_sd,
- PathRadiance *L,
- PathState *state,
- RNG *rng,
- Ray *ray,
- float3 *throughput,
- SubsurfaceIndirectRays *ss_indirect)
-{
- float bssrdf_probability;
- ShaderClosure *sc = subsurface_scatter_pick_closure(kg, sd, &bssrdf_probability);
+#endif /* defined(__BRANCHED_PATH__) || defined(__BAKING__) */
- /* modify throughput for picking bssrdf or bsdf */
- *throughput *= bssrdf_probability;
-
- /* do bssrdf scatter step if we picked a bssrdf closure */
- if(sc) {
- /* We should never have two consecutive BSSRDF bounces,
- * the second one should be converted to a diffuse BSDF to
- * avoid this.
- */
- kernel_assert(!ss_indirect->tracing);
-
- uint lcg_state = lcg_state_init(rng, state, 0x68bc21eb);
-
- SubsurfaceIntersection ss_isect;
- float bssrdf_u, bssrdf_v;
- path_state_rng_2D(kg, rng, state, PRNG_BSDF_U, &bssrdf_u, &bssrdf_v);
- int num_hits = subsurface_scatter_multi_intersect(kg,
- &ss_isect,
- sd,
- sc,
- &lcg_state,
- bssrdf_u, bssrdf_v,
- false);
-# ifdef __VOLUME__
- ss_indirect->need_update_volume_stack =
- kernel_data.integrator.use_volumes &&
- ccl_fetch(sd, flag) & SD_OBJECT_INTERSECTS_VOLUME;
-# endif /* __VOLUME__ */
-
- /* compute lighting with the BSDF closure */
- for(int hit = 0; hit < num_hits; hit++) {
- /* NOTE: We reuse the existing ShaderData, we assume the path
- * integration loop stops when this function returns true.
- */
- subsurface_scatter_multi_setup(kg,
- &ss_isect,
- hit,
- sd,
- state,
- state->flag,
- sc,
- false);
-
- PathState *hit_state = &ss_indirect->state[ss_indirect->num_rays];
- Ray *hit_ray = &ss_indirect->rays[ss_indirect->num_rays];
- float3 *hit_tp = &ss_indirect->throughputs[ss_indirect->num_rays];
- PathRadiance *hit_L = &ss_indirect->L[ss_indirect->num_rays];
-
- *hit_state = *state;
- *hit_ray = *ray;
- *hit_tp = *throughput;
-
- hit_state->rng_offset += PRNG_BOUNCE_NUM;
-
- path_radiance_init(hit_L, kernel_data.film.use_light_pass);
- hit_L->direct_throughput = L->direct_throughput;
- path_radiance_copy_indirect(hit_L, L);
-
- kernel_path_surface_connect_light(kg, rng, sd, emission_sd, *hit_tp, state, hit_L);
-
- if(kernel_path_surface_bounce(kg,
- rng,
- sd,
- hit_tp,
- hit_state,
- hit_L,
- hit_ray))
- {
-# ifdef __LAMP_MIS__
- hit_state->ray_t = 0.0f;
-# endif /* __LAMP_MIS__ */
-
-# ifdef __VOLUME__
- if(ss_indirect->need_update_volume_stack) {
- Ray volume_ray = *ray;
- /* Setup ray from previous surface point to the new one. */
- volume_ray.D = normalize_len(hit_ray->P - volume_ray.P,
- &volume_ray.t);
-
- kernel_volume_stack_update_for_subsurface(
- kg,
- emission_sd,
- &volume_ray,
- hit_state->volume_stack);
- }
-# endif /* __VOLUME__ */
- path_radiance_reset_indirect(L);
- ss_indirect->num_rays++;
- }
- else {
- path_radiance_accum_sample(L, hit_L, 1);
- }
- }
- return true;
- }
- return false;
-}
-
-ccl_device_inline void kernel_path_subsurface_init_indirect(
- SubsurfaceIndirectRays *ss_indirect)
-{
- ss_indirect->tracing = false;
- ss_indirect->num_rays = 0;
-}
-
-ccl_device void kernel_path_subsurface_accum_indirect(
- SubsurfaceIndirectRays *ss_indirect,
- PathRadiance *L)
+ccl_device_forceinline void kernel_path_integrate(
+ KernelGlobals *kg,
+ PathState *state,
+ float3 throughput,
+ Ray *ray,
+ PathRadiance *L,
+ ccl_global float *buffer,
+ ShaderData *emission_sd)
{
- if(ss_indirect->tracing) {
- path_radiance_sum_indirect(L);
- path_radiance_accum_sample(&ss_indirect->direct_L, L, 1);
- if(ss_indirect->num_rays == 0) {
- *L = ss_indirect->direct_L;
- }
- }
-}
-
-ccl_device void kernel_path_subsurface_setup_indirect(
- KernelGlobals *kg,
- SubsurfaceIndirectRays *ss_indirect,
- PathState *state,
- Ray *ray,
- PathRadiance *L,
- float3 *throughput)
-{
- if(!ss_indirect->tracing) {
- ss_indirect->direct_L = *L;
- }
- ss_indirect->tracing = true;
-
- /* Setup state, ray and throughput for indirect SSS rays. */
- ss_indirect->num_rays--;
-
- Ray *indirect_ray = &ss_indirect->rays[ss_indirect->num_rays];
- PathRadiance *indirect_L = &ss_indirect->L[ss_indirect->num_rays];
-
- *state = ss_indirect->state[ss_indirect->num_rays];
- *ray = *indirect_ray;
- *L = *indirect_L;
- *throughput = ss_indirect->throughputs[ss_indirect->num_rays];
-
- state->rng_offset += ss_indirect->num_rays * PRNG_BOUNCE_NUM;
-}
-
-#endif /* __SUBSURFACE__ */
-
-ccl_device_inline float4 kernel_path_integrate(KernelGlobals *kg,
- RNG *rng,
- int sample,
- Ray ray,
- ccl_global float *buffer)
-{
- /* initialize */
- PathRadiance L;
- float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
- float L_transparent = 0.0f;
-
- path_radiance_init(&L, kernel_data.film.use_light_pass);
-
- /* shader data memory used for both volumes and surfaces, saves stack space */
+ /* Shader data memory used for both volumes and surfaces, saves stack space. */
ShaderData sd;
- /* shader data used by emission, shadows, volume stacks */
- ShaderData emission_sd;
-
- PathState state;
- path_state_init(kg, &emission_sd, &state, rng, sample, &ray);
-
-#ifdef __KERNEL_DEBUG__
- DebugData debug_data;
- debug_data_init(&debug_data);
-#endif /* __KERNEL_DEBUG__ */
#ifdef __SUBSURFACE__
SubsurfaceIndirectRays ss_indirect;
@@ -604,231 +550,82 @@ ccl_device_inline float4 kernel_path_integrate(KernelGlobals *kg,
/* path iteration */
for(;;) {
- /* intersect scene */
+ /* Find intersection with objects in scene. */
Intersection isect;
- uint visibility = path_state_ray_visibility(kg, &state);
-
-#ifdef __HAIR__
- float difl = 0.0f, extmax = 0.0f;
- uint lcg_state = 0;
-
- if(kernel_data.bvh.have_curves) {
- if((kernel_data.cam.resolution == 1) && (state.flag & PATH_RAY_CAMERA)) {
- float3 pixdiff = ray.dD.dx + ray.dD.dy;
- /*pixdiff = pixdiff - dot(pixdiff, ray.D)*ray.D;*/
- difl = kernel_data.curve.minimum_width * len(pixdiff) * 0.5f;
- }
-
- extmax = kernel_data.curve.maximum_width;
- lcg_state = lcg_state_init(rng, &state, 0x51633e2d);
- }
+ bool hit = kernel_path_scene_intersect(kg, state, ray, &isect, L);
- bool hit = scene_intersect(kg, ray, visibility, &isect, &lcg_state, difl, extmax);
-#else
- bool hit = scene_intersect(kg, ray, visibility, &isect, NULL, 0.0f, 0.0f);
-#endif /* __HAIR__ */
-
-#ifdef __KERNEL_DEBUG__
- if(state.flag & PATH_RAY_CAMERA) {
- debug_data.num_bvh_traversal_steps += isect.num_traversal_steps;
- debug_data.num_bvh_traversed_instances += isect.num_traversed_instances;
- }
- debug_data.num_ray_bounces++;
-#endif /* __KERNEL_DEBUG__ */
-
-#ifdef __LAMP_MIS__
- if(kernel_data.integrator.use_lamp_mis && !(state.flag & PATH_RAY_CAMERA)) {
- /* ray starting from previous non-transparent bounce */
- Ray light_ray;
-
- light_ray.P = ray.P - state.ray_t*ray.D;
- state.ray_t += isect.t;
- light_ray.D = ray.D;
- light_ray.t = state.ray_t;
- light_ray.time = ray.time;
- light_ray.dD = ray.dD;
- light_ray.dP = ray.dP;
-
- /* intersect with lamp */
- float3 emission;
-
- if(indirect_lamp_emission(kg, &emission_sd, &state, &light_ray, &emission))
- path_radiance_accum_emission(&L, throughput, emission, state.bounce);
- }
-#endif /* __LAMP_MIS__ */
+ /* Find intersection with lamps and compute emission for MIS. */
+ kernel_path_lamp_emission(kg, state, ray, throughput, &isect, emission_sd, L);
#ifdef __VOLUME__
- /* volume attenuation, emission, scatter */
- if(state.volume_stack[0].shader != SHADER_NONE) {
- Ray volume_ray = ray;
- volume_ray.t = (hit)? isect.t: FLT_MAX;
-
- bool heterogeneous = volume_stack_is_heterogeneous(kg, state.volume_stack);
-
-# ifdef __VOLUME_DECOUPLED__
- int sampling_method = volume_stack_sampling_method(kg, state.volume_stack);
- bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, true, sampling_method);
-
- if(decoupled) {
- /* cache steps along volume for repeated sampling */
- VolumeSegment volume_segment;
-
- shader_setup_from_volume(kg, &sd, &volume_ray);
- kernel_volume_decoupled_record(kg, &state,
- &volume_ray, &sd, &volume_segment, heterogeneous);
-
- volume_segment.sampling_method = sampling_method;
-
- /* emission */
- if(volume_segment.closure_flag & SD_EMISSION)
- path_radiance_accum_emission(&L, throughput, volume_segment.accum_emission, state.bounce);
-
- /* scattering */
- VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED;
-
- if(volume_segment.closure_flag & SD_SCATTER) {
- int all = false;
-
- /* direct light sampling */
- kernel_branched_path_volume_connect_light(kg, rng, &sd,
- &emission_sd, throughput, &state, &L, all,
- &volume_ray, &volume_segment);
-
- /* indirect sample. if we use distance sampling and take just
- * one sample for direct and indirect light, we could share
- * this computation, but makes code a bit complex */
- float rphase = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_PHASE);
- float rscatter = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_SCATTER_DISTANCE);
-
- result = kernel_volume_decoupled_scatter(kg,
- &state, &volume_ray, &sd, &throughput,
- rphase, rscatter, &volume_segment, NULL, true);
- }
-
- /* free cached steps */
- kernel_volume_decoupled_free(kg, &volume_segment);
-
- if(result == VOLUME_PATH_SCATTERED) {
- if(kernel_path_volume_bounce(kg, rng, &sd, &throughput, &state, &L, &ray))
- continue;
- else
- break;
- }
- else {
- throughput *= volume_segment.accum_transmittance;
- }
- }
- else
-# endif /* __VOLUME_DECOUPLED__ */
- {
- /* integrate along volume segment with distance sampling */
- VolumeIntegrateResult result = kernel_volume_integrate(
- kg, &state, &sd, &volume_ray, &L, &throughput, rng, heterogeneous);
-
-# ifdef __VOLUME_SCATTER__
- if(result == VOLUME_PATH_SCATTERED) {
- /* direct lighting */
- kernel_path_volume_connect_light(kg, rng, &sd, &emission_sd, throughput, &state, &L);
-
- /* indirect light bounce */
- if(kernel_path_volume_bounce(kg, rng, &sd, &throughput, &state, &L, &ray))
- continue;
- else
- break;
- }
-# endif /* __VOLUME_SCATTER__ */
- }
+ /* Volume integration. */
+ VolumeIntegrateResult result = kernel_path_volume(kg,
+ &sd,
+ state,
+ ray,
+ &throughput,
+ &isect,
+ hit,
+ emission_sd,
+ L);
+
+ if(result == VOLUME_PATH_SCATTERED) {
+ continue;
}
-#endif /* __VOLUME__ */
-
- if(!hit) {
- /* eval background shader if nothing hit */
- if(kernel_data.background.transparent && (state.flag & PATH_RAY_CAMERA)) {
- L_transparent += average(throughput);
-
-#ifdef __PASSES__
- if(!(kernel_data.film.pass_flag & PASS_BACKGROUND))
-#endif /* __PASSES__ */
- break;
- }
-
-#ifdef __BACKGROUND__
- /* sample background shader */
- float3 L_background = indirect_background(kg, &emission_sd, &state, &ray);
- path_radiance_accum_background(&L, throughput, L_background, state.bounce);
-#endif /* __BACKGROUND__ */
-
+ else if(result == VOLUME_PATH_MISSED) {
break;
}
+#endif /* __VOLUME__*/
- /* setup shading */
- shader_setup_from_ray(kg, &sd, &isect, &ray);
- float rbsdf = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_BSDF);
- shader_eval_surface(kg, &sd, rng, &state, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
-
- /* holdout */
-#ifdef __HOLDOUT__
- if((sd.flag & (SD_HOLDOUT|SD_HOLDOUT_MASK)) && (state.flag & PATH_RAY_CAMERA)) {
- if(kernel_data.background.transparent) {
- float3 holdout_weight;
-
- if(sd.flag & SD_HOLDOUT_MASK)
- holdout_weight = make_float3(1.0f, 1.0f, 1.0f);
- else
- holdout_weight = shader_holdout_eval(kg, &sd);
-
- /* any throughput is ok, should all be identical here */
- L_transparent += average(holdout_weight*throughput);
- }
-
- if(sd.flag & SD_HOLDOUT_MASK)
- break;
+ /* Shade background. */
+ if(!hit) {
+ kernel_path_background(kg, state, ray, throughput, emission_sd, L);
+ break;
}
-#endif /* __HOLDOUT__ */
-
- /* holdout mask objects do not write data passes */
- kernel_write_data_passes(kg, buffer, &L, &sd, sample, &state, throughput);
-
- /* blurring of bsdf after bounces, for rays that have a small likelihood
- * of following this particular path (diffuse, rough glossy) */
- if(kernel_data.integrator.filter_glossy != FLT_MAX) {
- float blur_pdf = kernel_data.integrator.filter_glossy*state.min_ray_pdf;
-
- if(blur_pdf < 1.0f) {
- float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
- shader_bsdf_blur(kg, &sd, blur_roughness);
- }
+ else if(path_state_ao_bounce(kg, state)) {
+ break;
}
-#ifdef __EMISSION__
- /* emission */
- if(sd.flag & SD_EMISSION) {
- /* todo: is isect.t wrong here for transparent surfaces? */
- float3 emission = indirect_primitive_emission(kg, &sd, isect.t, state.flag, state.ray_pdf);
- path_radiance_accum_emission(&L, throughput, emission, state.bounce);
+ /* Setup and evaluate shader. */
+ shader_setup_from_ray(kg, &sd, &isect, ray);
+ shader_eval_surface(kg, &sd, state, state->flag);
+ shader_prepare_closures(&sd, state);
+
+ /* Apply shadow catcher, holdout, emission. */
+ if(!kernel_path_shader_apply(kg,
+ &sd,
+ state,
+ ray,
+ throughput,
+ emission_sd,
+ L,
+ buffer))
+ {
+ break;
}
-#endif /* __EMISSION__ */
/* path termination. this is a strange place to put the termination, it's
* mainly due to the mixed in MIS that we use. gives too many unneeded
* shader evaluations, only need emission if we are going to terminate */
- float probability = path_state_terminate_probability(kg, &state, throughput);
+ float probability = path_state_continuation_probability(kg, state, throughput);
if(probability == 0.0f) {
break;
}
else if(probability != 1.0f) {
- float terminate = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_TERMINATE);
+ float terminate = path_state_rng_1D(kg, state, PRNG_TERMINATE);
if(terminate >= probability)
break;
throughput /= probability;
}
+ kernel_update_denoising_features(kg, &sd, state, L);
+
#ifdef __AO__
/* ambient occlusion */
if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) {
- kernel_path_ao(kg, &sd, &emission_sd, &L, &state, rng, throughput, shader_bsdf_alpha(kg, &sd));
+ kernel_path_ao(kg, &sd, emission_sd, L, state, throughput, shader_bsdf_alpha(kg, &sd));
}
#endif /* __AO__ */
@@ -838,11 +635,10 @@ ccl_device_inline float4 kernel_path_integrate(KernelGlobals *kg,
if(sd.flag & SD_BSSRDF) {
if(kernel_path_subsurface_scatter(kg,
&sd,
- &emission_sd,
- &L,
- &state,
- rng,
- &ray,
+ emission_sd,
+ L,
+ state,
+ ray,
&throughput,
&ss_indirect))
{
@@ -852,25 +648,23 @@ ccl_device_inline float4 kernel_path_integrate(KernelGlobals *kg,
#endif /* __SUBSURFACE__ */
/* direct lighting */
- kernel_path_surface_connect_light(kg, rng, &sd, &emission_sd, throughput, &state, &L);
+ kernel_path_surface_connect_light(kg, &sd, emission_sd, throughput, state, L);
/* compute direct lighting and next bounce */
- if(!kernel_path_surface_bounce(kg, rng, &sd, &throughput, &state, &L, &ray))
+ if(!kernel_path_surface_bounce(kg, &sd, &throughput, state, &L->state, ray))
break;
}
#ifdef __SUBSURFACE__
- kernel_path_subsurface_accum_indirect(&ss_indirect, &L);
-
/* Trace indirect subsurface rays by restarting the loop. this uses less
* stack memory than invoking kernel_path_indirect.
*/
if(ss_indirect.num_rays) {
kernel_path_subsurface_setup_indirect(kg,
&ss_indirect,
- &state,
- &ray,
- &L,
+ state,
+ ray,
+ L,
&throughput);
}
else {
@@ -878,48 +672,51 @@ ccl_device_inline float4 kernel_path_integrate(KernelGlobals *kg,
}
}
#endif /* __SUBSURFACE__ */
-
- float3 L_sum = path_radiance_clamp_and_sum(kg, &L);
-
- kernel_write_light_passes(kg, buffer, &L, sample);
-
-#ifdef __KERNEL_DEBUG__
- kernel_write_debug_passes(kg, buffer, &state, &debug_data, sample);
-#endif /* __KERNEL_DEBUG__ */
-
- return make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - L_transparent);
}
ccl_device void kernel_path_trace(KernelGlobals *kg,
- ccl_global float *buffer, ccl_global uint *rng_state,
+ ccl_global float *buffer,
int sample, int x, int y, int offset, int stride)
{
/* buffer offset */
int index = offset + x + y*stride;
int pass_stride = kernel_data.film.pass_stride;
- rng_state += index;
buffer += index*pass_stride;
- /* initialize random numbers and ray */
- RNG rng;
+ /* Initialize random numbers and sample ray. */
+ uint rng_hash;
Ray ray;
- kernel_path_trace_setup(kg, rng_state, sample, x, y, &rng, &ray);
+ kernel_path_trace_setup(kg, sample, x, y, &rng_hash, &ray);
- /* integrate */
- float4 L;
+ if(ray.t == 0.0f) {
+ return;
+ }
- if(ray.t != 0.0f)
- L = kernel_path_integrate(kg, &rng, sample, ray, buffer);
- else
- L = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ /* Initialize state. */
+ float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
- /* accumulate result in output buffer */
- kernel_write_pass_float4(buffer, sample, L);
+ PathRadiance L;
+ path_radiance_init(&L, kernel_data.film.use_light_pass);
- path_rng_end(kg, rng_state, rng);
+ ShaderData emission_sd;
+ PathState state;
+ path_state_init(kg, &emission_sd, &state, rng_hash, sample, &ray);
+
+ /* Integrate. */
+ kernel_path_integrate(kg,
+ &state,
+ throughput,
+ &ray,
+ &L,
+ buffer,
+ &emission_sd);
+
+ kernel_write_result(kg, buffer, sample, &L);
}
+#endif /* __SPLIT_KERNEL__ */
+
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/kernel_path_branched.h b/intern/cycles/kernel/kernel_path_branched.h
index c84727ace99..42df7e85b41 100644
--- a/intern/cycles/kernel/kernel_path_branched.h
+++ b/intern/cycles/kernel/kernel_path_branched.h
@@ -22,8 +22,7 @@ ccl_device_inline void kernel_branched_path_ao(KernelGlobals *kg,
ShaderData *sd,
ShaderData *emission_sd,
PathRadiance *L,
- PathState *state,
- RNG *rng,
+ ccl_addr_space PathState *state,
float3 throughput)
{
int num_samples = kernel_data.integrator.ao_samples;
@@ -35,46 +34,225 @@ ccl_device_inline void kernel_branched_path_ao(KernelGlobals *kg,
for(int j = 0; j < num_samples; j++) {
float bsdf_u, bsdf_v;
- path_branched_rng_2D(kg, rng, state, j, num_samples, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
+ path_branched_rng_2D(kg, state->rng_hash, state, j, num_samples, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
float3 ao_D;
float ao_pdf;
sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);
- if(dot(ccl_fetch(sd, Ng), ao_D) > 0.0f && ao_pdf != 0.0f) {
+ if(dot(sd->Ng, ao_D) > 0.0f && ao_pdf != 0.0f) {
Ray light_ray;
float3 ao_shadow;
- light_ray.P = ray_offset(ccl_fetch(sd, P), ccl_fetch(sd, Ng));
+ light_ray.P = ray_offset(sd->P, sd->Ng);
light_ray.D = ao_D;
light_ray.t = kernel_data.background.ao_distance;
-#ifdef __OBJECT_MOTION__
- light_ray.time = ccl_fetch(sd, time);
-#endif /* __OBJECT_MOTION__ */
- light_ray.dP = ccl_fetch(sd, dP);
+ light_ray.time = sd->time;
+ light_ray.dP = sd->dP;
light_ray.dD = differential3_zero();
- if(!shadow_blocked(kg, emission_sd, state, &light_ray, &ao_shadow))
- path_radiance_accum_ao(L, throughput*num_samples_inv, ao_alpha, ao_bsdf, ao_shadow, state->bounce);
+ if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &ao_shadow)) {
+ path_radiance_accum_ao(L, state, throughput*num_samples_inv, ao_alpha, ao_bsdf, ao_shadow);
+ }
+ else {
+ path_radiance_accum_total_ao(L, state, throughput*num_samples_inv, ao_bsdf);
+ }
}
}
}
+#ifndef __SPLIT_KERNEL__
+
+#ifdef __VOLUME__
+ccl_device_forceinline void kernel_branched_path_volume(
+ KernelGlobals *kg,
+ ShaderData *sd,
+ PathState *state,
+ Ray *ray,
+ float3 *throughput,
+ ccl_addr_space Intersection *isect,
+ bool hit,
+ ShaderData *indirect_sd,
+ ShaderData *emission_sd,
+ PathRadiance *L)
+{
+ /* Sanitize volume stack. */
+ if(!hit) {
+ kernel_volume_clean_stack(kg, state->volume_stack);
+ }
+
+ if(state->volume_stack[0].shader == SHADER_NONE) {
+ return;
+ }
+
+ /* volume attenuation, emission, scatter */
+ Ray volume_ray = *ray;
+ volume_ray.t = (hit)? isect->t: FLT_MAX;
+
+ bool heterogeneous = volume_stack_is_heterogeneous(kg, state->volume_stack);
+
+# ifdef __VOLUME_DECOUPLED__
+ /* decoupled ray marching only supported on CPU */
+ if(kernel_data.integrator.volume_decoupled) {
+ /* cache steps along volume for repeated sampling */
+ VolumeSegment volume_segment;
+
+ shader_setup_from_volume(kg, sd, &volume_ray);
+ kernel_volume_decoupled_record(kg, state,
+ &volume_ray, sd, &volume_segment, heterogeneous);
+
+ /* direct light sampling */
+ if(volume_segment.closure_flag & SD_SCATTER) {
+ volume_segment.sampling_method = volume_stack_sampling_method(kg, state->volume_stack);
+
+ int all = kernel_data.integrator.sample_all_lights_direct;
+
+ kernel_branched_path_volume_connect_light(kg, sd,
+ emission_sd, *throughput, state, L, all,
+ &volume_ray, &volume_segment);
+
+ /* indirect light sampling */
+ int num_samples = kernel_data.integrator.volume_samples;
+ float num_samples_inv = 1.0f/num_samples;
+
+ for(int j = 0; j < num_samples; j++) {
+ PathState ps = *state;
+ Ray pray = *ray;
+ float3 tp = *throughput;
+
+ /* branch RNG state */
+ path_state_branch(&ps, j, num_samples);
+
+ /* scatter sample. if we use distance sampling and take just one
+ * sample for direct and indirect light, we could share this
+ * computation, but makes code a bit complex */
+ float rphase = path_state_rng_1D(kg, &ps, PRNG_PHASE_CHANNEL);
+ float rscatter = path_state_rng_1D(kg, &ps, PRNG_SCATTER_DISTANCE);
+
+ VolumeIntegrateResult result = kernel_volume_decoupled_scatter(kg,
+ &ps, &pray, sd, &tp, rphase, rscatter, &volume_segment, NULL, false);
+
+ if(result == VOLUME_PATH_SCATTERED &&
+ kernel_path_volume_bounce(kg,
+ sd,
+ &tp,
+ &ps,
+ &L->state,
+ &pray))
+ {
+ kernel_path_indirect(kg,
+ indirect_sd,
+ emission_sd,
+ &pray,
+ tp*num_samples_inv,
+ &ps,
+ L);
+
+ /* for render passes, sum and reset indirect light pass variables
+ * for the next samples */
+ path_radiance_sum_indirect(L);
+ path_radiance_reset_indirect(L);
+ }
+ }
+ }
+
+ /* emission and transmittance */
+ if(volume_segment.closure_flag & SD_EMISSION)
+ path_radiance_accum_emission(L, state, *throughput, volume_segment.accum_emission);
+ *throughput *= volume_segment.accum_transmittance;
+
+ /* free cached steps */
+ kernel_volume_decoupled_free(kg, &volume_segment);
+ }
+ else
+# endif /* __VOLUME_DECOUPLED__ */
+ {
+ /* GPU: no decoupled ray marching, scatter probalistically */
+ int num_samples = kernel_data.integrator.volume_samples;
+ float num_samples_inv = 1.0f/num_samples;
+
+ /* todo: we should cache the shader evaluations from stepping
+ * through the volume, for now we redo them multiple times */
+
+ for(int j = 0; j < num_samples; j++) {
+ PathState ps = *state;
+ Ray pray = *ray;
+ float3 tp = (*throughput) * num_samples_inv;
+
+ /* branch RNG state */
+ path_state_branch(&ps, j, num_samples);
+
+ VolumeIntegrateResult result = kernel_volume_integrate(
+ kg, &ps, sd, &volume_ray, L, &tp, heterogeneous);
+
+# ifdef __VOLUME_SCATTER__
+ if(result == VOLUME_PATH_SCATTERED) {
+ /* todo: support equiangular, MIS and all light sampling.
+ * alternatively get decoupled ray marching working on the GPU */
+ kernel_path_volume_connect_light(kg, sd, emission_sd, tp, state, L);
+
+ if(kernel_path_volume_bounce(kg,
+ sd,
+ &tp,
+ &ps,
+ &L->state,
+ &pray))
+ {
+ kernel_path_indirect(kg,
+ indirect_sd,
+ emission_sd,
+ &pray,
+ tp,
+ &ps,
+ L);
+
+ /* for render passes, sum and reset indirect light pass variables
+ * for the next samples */
+ path_radiance_sum_indirect(L);
+ path_radiance_reset_indirect(L);
+ }
+ }
+# endif /* __VOLUME_SCATTER__ */
+ }
+
+ /* todo: avoid this calculation using decoupled ray marching */
+ kernel_volume_shadow(kg, emission_sd, state, &volume_ray, throughput);
+ }
+}
+#endif /* __VOLUME__ */
/* bounce off surface and integrate indirect light */
ccl_device_noinline void kernel_branched_path_surface_indirect_light(KernelGlobals *kg,
- RNG *rng, ShaderData *sd, ShaderData *indirect_sd, ShaderData *emission_sd,
+ ShaderData *sd, ShaderData *indirect_sd, ShaderData *emission_sd,
float3 throughput, float num_samples_adjust, PathState *state, PathRadiance *L)
{
- for(int i = 0; i < ccl_fetch(sd, num_closure); i++) {
- const ShaderClosure *sc = &ccl_fetch(sd, closure)[i];
+ float sum_sample_weight = 0.0f;
+#ifdef __DENOISING_FEATURES__
+ if(state->denoising_feature_weight > 0.0f) {
+ for(int i = 0; i < sd->num_closure; i++) {
+ const ShaderClosure *sc = &sd->closure[i];
+
+ /* transparency is not handled here, but in outer loop */
+ if(!CLOSURE_IS_BSDF(sc->type) || CLOSURE_IS_BSDF_TRANSPARENT(sc->type)) {
+ continue;
+ }
+
+ sum_sample_weight += sc->sample_weight;
+ }
+ }
+ else {
+ sum_sample_weight = 1.0f;
+ }
+#endif /* __DENOISING_FEATURES__ */
+
+ for(int i = 0; i < sd->num_closure; i++) {
+ const ShaderClosure *sc = &sd->closure[i];
- if(!CLOSURE_IS_BSDF(sc->type))
- continue;
/* transparency is not handled here, but in outer loop */
- if(sc->type == CLOSURE_BSDF_TRANSPARENT_ID)
+ if(!CLOSURE_IS_BSDF(sc->type) || CLOSURE_IS_BSDF_TRANSPARENT(sc->type)) {
continue;
+ }
int num_samples;
@@ -90,34 +268,38 @@ ccl_device_noinline void kernel_branched_path_surface_indirect_light(KernelGloba
num_samples = ceil_to_int(num_samples_adjust*num_samples);
float num_samples_inv = num_samples_adjust/num_samples;
- RNG bsdf_rng = cmj_hash(*rng, i);
for(int j = 0; j < num_samples; j++) {
PathState ps = *state;
float3 tp = throughput;
Ray bsdf_ray;
+#ifdef __SHADOW_TRICKS__
+ float shadow_transparency = L->shadow_transparency;
+#endif
+
+ ps.rng_hash = cmj_hash(state->rng_hash, i);
if(!kernel_branched_path_surface_bounce(kg,
- &bsdf_rng,
sd,
sc,
j,
num_samples,
&tp,
&ps,
- L,
- &bsdf_ray))
+ &L->state,
+ &bsdf_ray,
+ sum_sample_weight))
{
continue;
}
+ ps.rng_hash = state->rng_hash;
+
kernel_path_indirect(kg,
indirect_sd,
emission_sd,
- rng,
&bsdf_ray,
tp*num_samples_inv,
- num_samples,
&ps,
L);
@@ -125,6 +307,10 @@ ccl_device_noinline void kernel_branched_path_surface_indirect_light(KernelGloba
* for the next samples */
path_radiance_sum_indirect(L);
path_radiance_reset_indirect(L);
+
+#ifdef __SHADOW_TRICKS__
+ L->shadow_transparency = shadow_transparency;
+#endif
}
}
}
@@ -136,28 +322,27 @@ ccl_device void kernel_branched_path_subsurface_scatter(KernelGlobals *kg,
ShaderData *emission_sd,
PathRadiance *L,
PathState *state,
- RNG *rng,
Ray *ray,
float3 throughput)
{
- for(int i = 0; i < ccl_fetch(sd, num_closure); i++) {
- ShaderClosure *sc = &ccl_fetch(sd, closure)[i];
+ for(int i = 0; i < sd->num_closure; i++) {
+ ShaderClosure *sc = &sd->closure[i];
if(!CLOSURE_IS_BSSRDF(sc->type))
continue;
/* set up random number generator */
- uint lcg_state = lcg_state_init(rng, state, 0x68bc21eb);
+ uint lcg_state = lcg_state_init(state, 0x68bc21eb);
int num_samples = kernel_data.integrator.subsurface_samples;
float num_samples_inv = 1.0f/num_samples;
- RNG bssrdf_rng = cmj_hash(*rng, i);
+ uint bssrdf_rng_hash = cmj_hash(state->rng_hash, i);
/* do subsurface scatter step with copy of shader data, this will
* replace the BSSRDF with a diffuse BSDF closure */
for(int j = 0; j < num_samples; j++) {
SubsurfaceIntersection ss_isect;
float bssrdf_u, bssrdf_v;
- path_branched_rng_2D(kg, &bssrdf_rng, state, j, num_samples, PRNG_BSDF_U, &bssrdf_u, &bssrdf_v);
+ path_branched_rng_2D(kg, bssrdf_rng_hash, state, j, num_samples, PRNG_BSDF_U, &bssrdf_u, &bssrdf_v);
int num_hits = subsurface_scatter_multi_intersect(kg,
&ss_isect,
sd,
@@ -167,8 +352,9 @@ ccl_device void kernel_branched_path_subsurface_scatter(KernelGlobals *kg,
true);
#ifdef __VOLUME__
Ray volume_ray = *ray;
- bool need_update_volume_stack = kernel_data.integrator.use_volumes &&
- ccl_fetch(sd, flag) & SD_OBJECT_INTERSECTS_VOLUME;
+ bool need_update_volume_stack =
+ kernel_data.integrator.use_volumes &&
+ sd->object_flag & SD_OBJECT_INTERSECTS_VOLUME;
#endif /* __VOLUME__ */
/* compute lighting with the BSDF closure */
@@ -205,10 +391,10 @@ ccl_device void kernel_branched_path_subsurface_scatter(KernelGlobals *kg,
#ifdef __EMISSION__
/* direct light */
if(kernel_data.integrator.use_direct_light) {
- int all = kernel_data.integrator.sample_all_lights_direct;
+ int all = (kernel_data.integrator.sample_all_lights_direct) ||
+ (state->flag & PATH_RAY_SHADOW_CATCHER);
kernel_branched_path_surface_connect_light(
kg,
- rng,
&bssrdf_sd,
emission_sd,
&hit_state,
@@ -222,7 +408,6 @@ ccl_device void kernel_branched_path_subsurface_scatter(KernelGlobals *kg,
/* indirect light */
kernel_branched_path_surface_indirect_light(
kg,
- rng,
&bssrdf_sd,
indirect_sd,
emission_sd,
@@ -236,14 +421,17 @@ ccl_device void kernel_branched_path_subsurface_scatter(KernelGlobals *kg,
}
#endif /* __SUBSURFACE__ */
-ccl_device float4 kernel_branched_path_integrate(KernelGlobals *kg, RNG *rng, int sample, Ray ray, ccl_global float *buffer)
+ccl_device void kernel_branched_path_integrate(KernelGlobals *kg,
+ uint rng_hash,
+ int sample,
+ Ray ray,
+ ccl_global float *buffer,
+ PathRadiance *L)
{
/* initialize */
- PathRadiance L;
float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
- float L_transparent = 0.0f;
- path_radiance_init(&L, kernel_data.film.use_light_pass);
+ path_radiance_init(L, kernel_data.film.use_light_pass);
/* shader data memory used for both volumes and surfaces, saves stack space */
ShaderData sd;
@@ -251,264 +439,67 @@ ccl_device float4 kernel_branched_path_integrate(KernelGlobals *kg, RNG *rng, in
ShaderData emission_sd, indirect_sd;
PathState state;
- path_state_init(kg, &emission_sd, &state, rng, sample, &ray);
-
-#ifdef __KERNEL_DEBUG__
- DebugData debug_data;
- debug_data_init(&debug_data);
-#endif /* __KERNEL_DEBUG__ */
+ path_state_init(kg, &emission_sd, &state, rng_hash, sample, &ray);
/* Main Loop
* Here we only handle transparency intersections from the camera ray.
* Indirect bounces are handled in kernel_branched_path_surface_indirect_light().
*/
for(;;) {
- /* intersect scene */
+ /* Find intersection with objects in scene. */
Intersection isect;
- uint visibility = path_state_ray_visibility(kg, &state);
-
-#ifdef __HAIR__
- float difl = 0.0f, extmax = 0.0f;
- uint lcg_state = 0;
-
- if(kernel_data.bvh.have_curves) {
- if(kernel_data.cam.resolution == 1) {
- float3 pixdiff = ray.dD.dx + ray.dD.dy;
- /*pixdiff = pixdiff - dot(pixdiff, ray.D)*ray.D;*/
- difl = kernel_data.curve.minimum_width * len(pixdiff) * 0.5f;
- }
-
- extmax = kernel_data.curve.maximum_width;
- lcg_state = lcg_state_init(rng, &state, 0x51633e2d);
- }
-
- bool hit = scene_intersect(kg, ray, visibility, &isect, &lcg_state, difl, extmax);
-#else
- bool hit = scene_intersect(kg, ray, visibility, &isect, NULL, 0.0f, 0.0f);
-#endif /* __HAIR__ */
-
-#ifdef __KERNEL_DEBUG__
- debug_data.num_bvh_traversal_steps += isect.num_traversal_steps;
- debug_data.num_bvh_traversed_instances += isect.num_traversed_instances;
- debug_data.num_ray_bounces++;
-#endif /* __KERNEL_DEBUG__ */
+ bool hit = kernel_path_scene_intersect(kg, &state, &ray, &isect, L);
#ifdef __VOLUME__
- /* volume attenuation, emission, scatter */
- if(state.volume_stack[0].shader != SHADER_NONE) {
- Ray volume_ray = ray;
- volume_ray.t = (hit)? isect.t: FLT_MAX;
-
- bool heterogeneous = volume_stack_is_heterogeneous(kg, state.volume_stack);
-
-#ifdef __VOLUME_DECOUPLED__
- /* decoupled ray marching only supported on CPU */
-
- /* cache steps along volume for repeated sampling */
- VolumeSegment volume_segment;
-
- shader_setup_from_volume(kg, &sd, &volume_ray);
- kernel_volume_decoupled_record(kg, &state,
- &volume_ray, &sd, &volume_segment, heterogeneous);
-
- /* direct light sampling */
- if(volume_segment.closure_flag & SD_SCATTER) {
- volume_segment.sampling_method = volume_stack_sampling_method(kg, state.volume_stack);
-
- int all = kernel_data.integrator.sample_all_lights_direct;
-
- kernel_branched_path_volume_connect_light(kg, rng, &sd,
- &emission_sd, throughput, &state, &L, all,
- &volume_ray, &volume_segment);
-
- /* indirect light sampling */
- int num_samples = kernel_data.integrator.volume_samples;
- float num_samples_inv = 1.0f/num_samples;
-
- for(int j = 0; j < num_samples; j++) {
- /* workaround to fix correlation bug in T38710, can find better solution
- * in random number generator later, for now this is done here to not impact
- * performance of rendering without volumes */
- RNG tmp_rng = cmj_hash(*rng, state.rng_offset);
-
- PathState ps = state;
- Ray pray = ray;
- float3 tp = throughput;
-
- /* branch RNG state */
- path_state_branch(&ps, j, num_samples);
-
- /* scatter sample. if we use distance sampling and take just one
- * sample for direct and indirect light, we could share this
- * computation, but makes code a bit complex */
- float rphase = path_state_rng_1D_for_decision(kg, &tmp_rng, &ps, PRNG_PHASE);
- float rscatter = path_state_rng_1D_for_decision(kg, &tmp_rng, &ps, PRNG_SCATTER_DISTANCE);
-
- VolumeIntegrateResult result = kernel_volume_decoupled_scatter(kg,
- &ps, &pray, &sd, &tp, rphase, rscatter, &volume_segment, NULL, false);
-
- (void)result;
- kernel_assert(result == VOLUME_PATH_SCATTERED);
-
- if(kernel_path_volume_bounce(kg,
- rng,
- &sd,
- &tp,
- &ps,
- &L,
- &pray))
- {
- kernel_path_indirect(kg,
- &indirect_sd,
- &emission_sd,
- rng,
- &pray,
- tp*num_samples_inv,
- num_samples,
- &ps,
- &L);
-
- /* for render passes, sum and reset indirect light pass variables
- * for the next samples */
- path_radiance_sum_indirect(&L);
- path_radiance_reset_indirect(&L);
- }
- }
- }
-
- /* emission and transmittance */
- if(volume_segment.closure_flag & SD_EMISSION)
- path_radiance_accum_emission(&L, throughput, volume_segment.accum_emission, state.bounce);
- throughput *= volume_segment.accum_transmittance;
-
- /* free cached steps */
- kernel_volume_decoupled_free(kg, &volume_segment);
-#else
- /* GPU: no decoupled ray marching, scatter probalistically */
- int num_samples = kernel_data.integrator.volume_samples;
- float num_samples_inv = 1.0f/num_samples;
-
- /* todo: we should cache the shader evaluations from stepping
- * through the volume, for now we redo them multiple times */
-
- for(int j = 0; j < num_samples; j++) {
- PathState ps = state;
- Ray pray = ray;
- float3 tp = throughput * num_samples_inv;
-
- /* branch RNG state */
- path_state_branch(&ps, j, num_samples);
-
- VolumeIntegrateResult result = kernel_volume_integrate(
- kg, &ps, &sd, &volume_ray, &L, &tp, rng, heterogeneous);
-
-#ifdef __VOLUME_SCATTER__
- if(result == VOLUME_PATH_SCATTERED) {
- /* todo: support equiangular, MIS and all light sampling.
- * alternatively get decoupled ray marching working on the GPU */
- kernel_path_volume_connect_light(kg, rng, &sd, &emission_sd, tp, &state, &L);
-
- if(kernel_path_volume_bounce(kg,
- rng,
- &sd,
- &tp,
- &ps,
- &L,
- &pray))
- {
- kernel_path_indirect(kg,
- &indirect_sd,
- &emission_sd,
- rng,
- &pray,
- tp,
- num_samples,
- &ps,
- &L);
-
- /* for render passes, sum and reset indirect light pass variables
- * for the next samples */
- path_radiance_sum_indirect(&L);
- path_radiance_reset_indirect(&L);
- }
- }
-#endif /* __VOLUME_SCATTER__ */
- }
-
- /* todo: avoid this calculation using decoupled ray marching */
- kernel_volume_shadow(kg, &emission_sd, &state, &volume_ray, &throughput);
-#endif /* __VOLUME_DECOUPLED__ */
- }
+ /* Volume integration. */
+ kernel_branched_path_volume(kg,
+ &sd,
+ &state,
+ &ray,
+ &throughput,
+ &isect,
+ hit,
+ &indirect_sd,
+ &emission_sd,
+ L);
#endif /* __VOLUME__ */
+ /* Shade background. */
if(!hit) {
- /* eval background shader if nothing hit */
- if(kernel_data.background.transparent) {
- L_transparent += average(throughput);
-
-#ifdef __PASSES__
- if(!(kernel_data.film.pass_flag & PASS_BACKGROUND))
-#endif /* __PASSES__ */
- break;
- }
-
-#ifdef __BACKGROUND__
- /* sample background shader */
- float3 L_background = indirect_background(kg, &emission_sd, &state, &ray);
- path_radiance_accum_background(&L, throughput, L_background, state.bounce);
-#endif /* __BACKGROUND__ */
-
+ kernel_path_background(kg, &state, &ray, throughput, &emission_sd, L);
break;
}
- /* setup shading */
+ /* Setup and evaluate shader. */
shader_setup_from_ray(kg, &sd, &isect, &ray);
- shader_eval_surface(kg, &sd, rng, &state, 0.0f, state.flag, SHADER_CONTEXT_MAIN);
+ shader_eval_surface(kg, &sd, &state, state.flag);
shader_merge_closures(&sd);
- /* holdout */
-#ifdef __HOLDOUT__
- if(sd.flag & (SD_HOLDOUT|SD_HOLDOUT_MASK)) {
- if(kernel_data.background.transparent) {
- float3 holdout_weight;
-
- if(sd.flag & SD_HOLDOUT_MASK)
- holdout_weight = make_float3(1.0f, 1.0f, 1.0f);
- else
- holdout_weight = shader_holdout_eval(kg, &sd);
-
- /* any throughput is ok, should all be identical here */
- L_transparent += average(holdout_weight*throughput);
- }
-
- if(sd.flag & SD_HOLDOUT_MASK)
- break;
- }
-#endif /* __HOLDOUT__ */
-
- /* holdout mask objects do not write data passes */
- kernel_write_data_passes(kg, buffer, &L, &sd, sample, &state, throughput);
-
-#ifdef __EMISSION__
- /* emission */
- if(sd.flag & SD_EMISSION) {
- float3 emission = indirect_primitive_emission(kg, &sd, isect.t, state.flag, state.ray_pdf);
- path_radiance_accum_emission(&L, throughput, emission, state.bounce);
+ /* Apply shadow catcher, holdout, emission. */
+ if(!kernel_path_shader_apply(kg,
+ &sd,
+ &state,
+ &ray,
+ throughput,
+ &emission_sd,
+ L,
+ buffer))
+ {
+ break;
}
-#endif /* __EMISSION__ */
/* transparency termination */
if(state.flag & PATH_RAY_TRANSPARENT) {
/* path termination. this is a strange place to put the termination, it's
* mainly due to the mixed in MIS that we use. gives too many unneeded
* shader evaluations, only need emission if we are going to terminate */
- float probability = path_state_terminate_probability(kg, &state, throughput);
+ float probability = path_state_continuation_probability(kg, &state, throughput);
if(probability == 0.0f) {
break;
}
else if(probability != 1.0f) {
- float terminate = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_TERMINATE);
+ float terminate = path_state_rng_1D(kg, &state, PRNG_TERMINATE);
if(terminate >= probability)
break;
@@ -517,10 +508,12 @@ ccl_device float4 kernel_branched_path_integrate(KernelGlobals *kg, RNG *rng, in
}
}
+ kernel_update_denoising_features(kg, &sd, &state, L);
+
#ifdef __AO__
/* ambient occlusion */
if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) {
- kernel_branched_path_ao(kg, &sd, &emission_sd, &L, &state, rng, throughput);
+ kernel_branched_path_ao(kg, &sd, &emission_sd, L, &state, throughput);
}
#endif /* __AO__ */
@@ -528,7 +521,7 @@ ccl_device float4 kernel_branched_path_integrate(KernelGlobals *kg, RNG *rng, in
/* bssrdf scatter to a different location on the same object */
if(sd.flag & SD_BSSRDF) {
kernel_branched_path_subsurface_scatter(kg, &sd, &indirect_sd, &emission_sd,
- &L, &state, rng, &ray, throughput);
+ L, &state, &ray, throughput);
}
#endif /* __SUBSURFACE__ */
@@ -538,15 +531,16 @@ ccl_device float4 kernel_branched_path_integrate(KernelGlobals *kg, RNG *rng, in
#ifdef __EMISSION__
/* direct light */
if(kernel_data.integrator.use_direct_light) {
- int all = kernel_data.integrator.sample_all_lights_direct;
- kernel_branched_path_surface_connect_light(kg, rng,
- &sd, &emission_sd, &hit_state, throughput, 1.0f, &L, all);
+ int all = (kernel_data.integrator.sample_all_lights_direct) ||
+ (state.flag & PATH_RAY_SHADOW_CATCHER);
+ kernel_branched_path_surface_connect_light(kg,
+ &sd, &emission_sd, &hit_state, throughput, 1.0f, L, all);
}
#endif /* __EMISSION__ */
/* indirect light */
- kernel_branched_path_surface_indirect_light(kg, rng,
- &sd, &indirect_sd, &emission_sd, throughput, 1.0f, &hit_state, &L);
+ kernel_branched_path_surface_indirect_light(kg,
+ &sd, &indirect_sd, &emission_sd, throughput, 1.0f, &hit_state, L);
/* continue in case of transparency */
throughput *= shader_bsdf_transparency(kg, &sd);
@@ -574,50 +568,35 @@ ccl_device float4 kernel_branched_path_integrate(KernelGlobals *kg, RNG *rng, in
kernel_volume_stack_enter_exit(kg, &sd, state.volume_stack);
#endif /* __VOLUME__ */
}
-
- float3 L_sum = path_radiance_clamp_and_sum(kg, &L);
-
- kernel_write_light_passes(kg, buffer, &L, sample);
-
-#ifdef __KERNEL_DEBUG__
- kernel_write_debug_passes(kg, buffer, &state, &debug_data, sample);
-#endif /* __KERNEL_DEBUG__ */
-
- return make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - L_transparent);
}
ccl_device void kernel_branched_path_trace(KernelGlobals *kg,
- ccl_global float *buffer, ccl_global uint *rng_state,
+ ccl_global float *buffer,
int sample, int x, int y, int offset, int stride)
{
/* buffer offset */
int index = offset + x + y*stride;
int pass_stride = kernel_data.film.pass_stride;
- rng_state += index;
buffer += index*pass_stride;
/* initialize random numbers and ray */
- RNG rng;
+ uint rng_hash;
Ray ray;
- kernel_path_trace_setup(kg, rng_state, sample, x, y, &rng, &ray);
+ kernel_path_trace_setup(kg, sample, x, y, &rng_hash, &ray);
/* integrate */
- float4 L;
-
- if(ray.t != 0.0f)
- L = kernel_branched_path_integrate(kg, &rng, sample, ray, buffer);
- else
- L = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
-
- /* accumulate result in output buffer */
- kernel_write_pass_float4(buffer, sample, L);
+ PathRadiance L;
- path_rng_end(kg, rng_state, rng);
+ if(ray.t != 0.0f) {
+ kernel_branched_path_integrate(kg, rng_hash, sample, ray, buffer, &L);
+ kernel_write_result(kg, buffer, sample, &L);
+ }
}
+#endif /* __SPLIT_KERNEL__ */
+
#endif /* __BRANCHED_PATH__ */
CCL_NAMESPACE_END
-
diff --git a/intern/cycles/kernel/kernel_path_common.h b/intern/cycles/kernel/kernel_path_common.h
index 13597eab287..d83fd474cde 100644
--- a/intern/cycles/kernel/kernel_path_common.h
+++ b/intern/cycles/kernel/kernel_path_common.h
@@ -14,15 +14,14 @@
* limitations under the License.
*/
-#include "util_hash.h"
+#include "util/util_hash.h"
CCL_NAMESPACE_BEGIN
ccl_device_inline void kernel_path_trace_setup(KernelGlobals *kg,
- ccl_global uint *rng_state,
int sample,
int x, int y,
- ccl_addr_space RNG *rng,
+ uint *rng_hash,
ccl_addr_space Ray *ray)
{
float filter_u;
@@ -30,24 +29,20 @@ ccl_device_inline void kernel_path_trace_setup(KernelGlobals *kg,
int num_samples = kernel_data.integrator.aa_samples;
- if(sample == 0) {
- *rng_state = hash_int_2d(x, y);
- }
-
- path_rng_init(kg, rng_state, sample, num_samples, rng, x, y, &filter_u, &filter_v);
+ path_rng_init(kg, sample, num_samples, rng_hash, x, y, &filter_u, &filter_v);
/* sample camera ray */
float lens_u = 0.0f, lens_v = 0.0f;
if(kernel_data.cam.aperturesize > 0.0f)
- path_rng_2D(kg, rng, sample, num_samples, PRNG_LENS_U, &lens_u, &lens_v);
+ path_rng_2D(kg, *rng_hash, sample, num_samples, PRNG_LENS_U, &lens_u, &lens_v);
float time = 0.0f;
#ifdef __CAMERA_MOTION__
if(kernel_data.cam.shuttertime != -1.0f)
- time = path_rng_1D(kg, rng, sample, num_samples, PRNG_TIME);
+ time = path_rng_1D(kg, *rng_hash, sample, num_samples, PRNG_TIME);
#endif
camera_sample(kg, x, y, filter_u, filter_v, lens_u, lens_v, time, ray);
diff --git a/intern/cycles/kernel/kernel_path_state.h b/intern/cycles/kernel/kernel_path_state.h
index 661dc52fb31..eccee54c0e3 100644
--- a/intern/cycles/kernel/kernel_path_state.h
+++ b/intern/cycles/kernel/kernel_path_state.h
@@ -19,15 +19,17 @@ CCL_NAMESPACE_BEGIN
ccl_device_inline void path_state_init(KernelGlobals *kg,
ShaderData *stack_sd,
ccl_addr_space PathState *state,
- ccl_addr_space RNG *rng,
+ uint rng_hash,
int sample,
ccl_addr_space Ray *ray)
{
state->flag = PATH_RAY_CAMERA|PATH_RAY_MIS_SKIP;
+ state->rng_hash = rng_hash;
state->rng_offset = PRNG_BASE_NUM;
state->sample = sample;
state->num_samples = kernel_data.integrator.aa_samples;
+ state->branch_factor = 1.0f;
state->bounce = 0;
state->diffuse_bounce = 0;
@@ -35,6 +37,16 @@ ccl_device_inline void path_state_init(KernelGlobals *kg,
state->transmission_bounce = 0;
state->transparent_bounce = 0;
+#ifdef __DENOISING_FEATURES__
+ if(kernel_data.film.pass_denoising_data) {
+ state->flag |= PATH_RAY_STORE_SHADOW_INFO;
+ state->denoising_feature_weight = 1.0f;
+ }
+ else {
+ state->denoising_feature_weight = 0.0f;
+ }
+#endif /* __DENOISING_FEATURES__ */
+
state->min_ray_pdf = FLT_MAX;
state->ray_pdf = 0.0f;
#ifdef __LAMP_MIS__
@@ -48,7 +60,7 @@ ccl_device_inline void path_state_init(KernelGlobals *kg,
/* Initialize volume stack with volume we are inside of. */
kernel_volume_stack_init(kg, stack_sd, state, ray, state->volume_stack);
/* Seed RNG for cases where we can't use stratified samples .*/
- state->rng_congruential = lcg_init(*rng + sample*0x51633e2d);
+ state->rng_congruential = lcg_init(rng_hash + sample*0x51633e2d);
}
else {
state->volume_stack[0].shader = SHADER_NONE;
@@ -64,12 +76,12 @@ ccl_device_inline void path_state_next(KernelGlobals *kg, ccl_addr_space PathSta
state->flag |= PATH_RAY_TRANSPARENT;
state->transparent_bounce++;
- /* don't increase random number generator offset here, to avoid some
- * unwanted patterns, see path_state_rng_1D_for_decision */
-
if(!kernel_data.integrator.transparent_shadows)
state->flag |= PATH_RAY_MIS_SKIP;
+ /* random number generator next bounce */
+ state->rng_offset += PRNG_BOUNCE_NUM;
+
return;
}
@@ -124,9 +136,15 @@ ccl_device_inline void path_state_next(KernelGlobals *kg, ccl_addr_space PathSta
/* random number generator next bounce */
state->rng_offset += PRNG_BOUNCE_NUM;
+
+#ifdef __DENOISING_FEATURES__
+ if((state->denoising_feature_weight == 0.0f) && !(state->flag & PATH_RAY_SHADOW_CATCHER)) {
+ state->flag &= ~PATH_RAY_STORE_SHADOW_INFO;
+ }
+#endif
}
-ccl_device_inline uint path_state_ray_visibility(KernelGlobals *kg, PathState *state)
+ccl_device_inline uint path_state_ray_visibility(KernelGlobals *kg, ccl_addr_space PathState *state)
{
uint flag = state->flag & PATH_RAY_ALL_VISIBILITY;
@@ -140,17 +158,28 @@ ccl_device_inline uint path_state_ray_visibility(KernelGlobals *kg, PathState *s
return flag;
}
-ccl_device_inline float path_state_terminate_probability(KernelGlobals *kg, ccl_addr_space PathState *state, const float3 throughput)
+ccl_device_inline float path_state_continuation_probability(KernelGlobals *kg,
+ ccl_addr_space PathState *state,
+ const float3 throughput)
{
if(state->flag & PATH_RAY_TRANSPARENT) {
- /* transparent rays treated separately */
- if(state->transparent_bounce >= kernel_data.integrator.transparent_max_bounce)
+ /* Transparent rays are treated separately with own max bounces. */
+ if(state->transparent_bounce >= kernel_data.integrator.transparent_max_bounce) {
return 0.0f;
- else if(state->transparent_bounce <= kernel_data.integrator.transparent_min_bounce)
+ }
+ /* Do at least one bounce without RR. */
+ else if(state->transparent_bounce <= 1) {
return 1.0f;
+ }
+#ifdef __SHADOW_TRICKS__
+ /* Exception for shadow catcher not working correctly with RR. */
+ else if((state->flag & PATH_RAY_SHADOW_CATCHER) && (state->transparent_bounce <= 8)) {
+ return 1.0f;
+ }
+#endif
}
else {
- /* other rays */
+ /* Test max bounces for various ray types. */
if((state->bounce >= kernel_data.integrator.max_bounce) ||
(state->diffuse_bounce >= kernel_data.integrator.max_diffuse_bounce) ||
(state->glossy_bounce >= kernel_data.integrator.max_glossy_bounce) ||
@@ -161,13 +190,21 @@ ccl_device_inline float path_state_terminate_probability(KernelGlobals *kg, ccl_
{
return 0.0f;
}
- else if(state->bounce <= kernel_data.integrator.min_bounce) {
+ /* Do at least one bounce without RR. */
+ else if(state->bounce <= 1) {
return 1.0f;
}
+#ifdef __SHADOW_TRICKS__
+ /* Exception for shadow catcher not working correctly with RR. */
+ else if((state->flag & PATH_RAY_SHADOW_CATCHER) && (state->bounce <= 3)) {
+ return 1.0f;
+ }
+#endif
}
- /* probalistic termination */
- return average(throughput); /* todo: try using max here */
+ /* Probalistic termination: use sqrt() to roughly match typical view
+ * transform and do path termination a bit later on average. */
+ return min(sqrtf(max3(fabs(throughput)) * state->branch_factor), 1.0f);
}
/* TODO(DingTo): Find more meaningful name for this */
@@ -180,5 +217,30 @@ ccl_device_inline void path_state_modify_bounce(ccl_addr_space PathState *state,
state->bounce -= 1;
}
+ccl_device_inline bool path_state_ao_bounce(KernelGlobals *kg, ccl_addr_space PathState *state)
+{
+ if(state->bounce <= kernel_data.integrator.ao_bounces) {
+ return false;
+ }
+
+ int bounce = state->bounce - state->transmission_bounce - (state->glossy_bounce > 0);
+ return (bounce > kernel_data.integrator.ao_bounces);
+}
+
+ccl_device_inline void path_state_branch(ccl_addr_space PathState *state,
+ int branch,
+ int num_branches)
+{
+ state->rng_offset += PRNG_BOUNCE_NUM;
+
+ if(num_branches > 1) {
+ /* Path is splitting into a branch, adjust so that each branch
+ * still gets a unique sample from the same sequence. */
+ state->sample = state->sample*num_branches + branch;
+ state->num_samples = state->num_samples*num_branches;
+ state->branch_factor *= num_branches;
+ }
+}
+
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/kernel_path_subsurface.h b/intern/cycles/kernel/kernel_path_subsurface.h
new file mode 100644
index 00000000000..1436e8e5a5b
--- /dev/null
+++ b/intern/cycles/kernel/kernel_path_subsurface.h
@@ -0,0 +1,156 @@
+/*
+ * Copyright 2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+#ifdef __SUBSURFACE__
+# ifndef __KERNEL_CUDA__
+ccl_device
+# else
+ccl_device_inline
+# endif
+bool kernel_path_subsurface_scatter(
+ KernelGlobals *kg,
+ ShaderData *sd,
+ ShaderData *emission_sd,
+ PathRadiance *L,
+ ccl_addr_space PathState *state,
+ ccl_addr_space Ray *ray,
+ ccl_addr_space float3 *throughput,
+ ccl_addr_space SubsurfaceIndirectRays *ss_indirect)
+{
+ float bssrdf_u, bssrdf_v;
+ path_state_rng_2D(kg, state, PRNG_BSDF_U, &bssrdf_u, &bssrdf_v);
+
+ const ShaderClosure *sc = shader_bssrdf_pick(sd, throughput, &bssrdf_u);
+
+ /* do bssrdf scatter step if we picked a bssrdf closure */
+ if(sc) {
+ /* We should never have two consecutive BSSRDF bounces,
+ * the second one should be converted to a diffuse BSDF to
+ * avoid this.
+ */
+ kernel_assert(!(state->flag & PATH_RAY_DIFFUSE_ANCESTOR));
+
+ uint lcg_state = lcg_state_init_addrspace(state, 0x68bc21eb);
+
+ SubsurfaceIntersection ss_isect;
+ int num_hits = subsurface_scatter_multi_intersect(kg,
+ &ss_isect,
+ sd,
+ sc,
+ &lcg_state,
+ bssrdf_u, bssrdf_v,
+ false);
+# ifdef __VOLUME__
+ bool need_update_volume_stack =
+ kernel_data.integrator.use_volumes &&
+ sd->object_flag & SD_OBJECT_INTERSECTS_VOLUME;
+# endif /* __VOLUME__ */
+
+ /* compute lighting with the BSDF closure */
+ for(int hit = 0; hit < num_hits; hit++) {
+ /* NOTE: We reuse the existing ShaderData, we assume the path
+ * integration loop stops when this function returns true.
+ */
+ subsurface_scatter_multi_setup(kg,
+ &ss_isect,
+ hit,
+ sd,
+ state,
+ state->flag,
+ sc,
+ false);
+
+ kernel_path_surface_connect_light(kg, sd, emission_sd, *throughput, state, L);
+
+ ccl_addr_space PathState *hit_state = &ss_indirect->state[ss_indirect->num_rays];
+ ccl_addr_space Ray *hit_ray = &ss_indirect->rays[ss_indirect->num_rays];
+ ccl_addr_space float3 *hit_tp = &ss_indirect->throughputs[ss_indirect->num_rays];
+ PathRadianceState *hit_L_state = &ss_indirect->L_state[ss_indirect->num_rays];
+
+ *hit_state = *state;
+ *hit_ray = *ray;
+ *hit_tp = *throughput;
+ *hit_L_state = L->state;
+
+ hit_state->rng_offset += PRNG_BOUNCE_NUM;
+
+ if(kernel_path_surface_bounce(kg,
+ sd,
+ hit_tp,
+ hit_state,
+ hit_L_state,
+ hit_ray))
+ {
+# ifdef __LAMP_MIS__
+ hit_state->ray_t = 0.0f;
+# endif /* __LAMP_MIS__ */
+
+# ifdef __VOLUME__
+ if(need_update_volume_stack) {
+ Ray volume_ray = *ray;
+ /* Setup ray from previous surface point to the new one. */
+ volume_ray.D = normalize_len(hit_ray->P - volume_ray.P,
+ &volume_ray.t);
+
+ kernel_volume_stack_update_for_subsurface(
+ kg,
+ emission_sd,
+ &volume_ray,
+ hit_state->volume_stack);
+ }
+# endif /* __VOLUME__ */
+ ss_indirect->num_rays++;
+ }
+ }
+ return true;
+ }
+ return false;
+}
+
+ccl_device_inline void kernel_path_subsurface_init_indirect(
+ ccl_addr_space SubsurfaceIndirectRays *ss_indirect)
+{
+ ss_indirect->num_rays = 0;
+}
+
+ccl_device void kernel_path_subsurface_setup_indirect(
+ KernelGlobals *kg,
+ ccl_addr_space SubsurfaceIndirectRays *ss_indirect,
+ ccl_addr_space PathState *state,
+ ccl_addr_space Ray *ray,
+ PathRadiance *L,
+ ccl_addr_space float3 *throughput)
+{
+ /* Setup state, ray and throughput for indirect SSS rays. */
+ ss_indirect->num_rays--;
+
+ path_radiance_sum_indirect(L);
+ path_radiance_reset_indirect(L);
+
+ *state = ss_indirect->state[ss_indirect->num_rays];
+ *ray = ss_indirect->rays[ss_indirect->num_rays];
+ L->state = ss_indirect->L_state[ss_indirect->num_rays];
+ *throughput = ss_indirect->throughputs[ss_indirect->num_rays];
+
+ state->rng_offset += ss_indirect->num_rays * PRNG_BOUNCE_NUM;
+}
+
+#endif /* __SUBSURFACE__ */
+
+CCL_NAMESPACE_END
+
diff --git a/intern/cycles/kernel/kernel_path_surface.h b/intern/cycles/kernel/kernel_path_surface.h
index fea503d06e5..7b566b01b04 100644
--- a/intern/cycles/kernel/kernel_path_surface.h
+++ b/intern/cycles/kernel/kernel_path_surface.h
@@ -16,16 +16,21 @@
CCL_NAMESPACE_BEGIN
-#if defined(__BRANCHED_PATH__) || defined(__SUBSURFACE__)
-
+#if defined(__BRANCHED_PATH__) || defined(__SUBSURFACE__) || defined(__SHADOW_TRICKS__) || defined(__BAKING__)
/* branched path tracing: connect path directly to position on one or more lights and add it to L */
-ccl_device_noinline void kernel_branched_path_surface_connect_light(KernelGlobals *kg, RNG *rng,
- ShaderData *sd, ShaderData *emission_sd, PathState *state, float3 throughput,
- float num_samples_adjust, PathRadiance *L, int sample_all_lights)
+ccl_device_noinline void kernel_branched_path_surface_connect_light(
+ KernelGlobals *kg,
+ ShaderData *sd,
+ ShaderData *emission_sd,
+ ccl_addr_space PathState *state,
+ float3 throughput,
+ float num_samples_adjust,
+ PathRadiance *L,
+ int sample_all_lights)
{
#ifdef __EMISSION__
/* sample illumination from lights to find path contribution */
- if(!(ccl_fetch(sd, flag) & SD_BSDF_HAS_EVAL))
+ if(!(sd->flag & SD_BSDF_HAS_EVAL))
return;
Ray light_ray;
@@ -33,7 +38,7 @@ ccl_device_noinline void kernel_branched_path_surface_connect_light(KernelGlobal
bool is_lamp;
# ifdef __OBJECT_MOTION__
- light_ray.time = ccl_fetch(sd, time);
+ light_ray.time = sd->time;
# endif
if(sample_all_lights) {
@@ -44,15 +49,15 @@ ccl_device_noinline void kernel_branched_path_surface_connect_light(KernelGlobal
int num_samples = ceil_to_int(num_samples_adjust*light_select_num_samples(kg, i));
float num_samples_inv = num_samples_adjust/(num_samples*kernel_data.integrator.num_all_lights);
- RNG lamp_rng = cmj_hash(*rng, i);
+ uint lamp_rng_hash = cmj_hash(state->rng_hash, i);
for(int j = 0; j < num_samples; j++) {
float light_u, light_v;
- path_branched_rng_2D(kg, &lamp_rng, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
- float terminate = path_branched_rng_light_termination(kg, &lamp_rng, state, j, num_samples);
+ path_branched_rng_2D(kg, lamp_rng_hash, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
+ float terminate = path_branched_rng_light_termination(kg, lamp_rng_hash, state, j, num_samples);
LightSample ls;
- if(lamp_light_sample(kg, i, light_u, light_v, ccl_fetch(sd, P), &ls)) {
+ if(lamp_light_sample(kg, i, light_u, light_v, sd->P, &ls)) {
/* The sampling probability returned by lamp_light_sample assumes that all lights were sampled.
* However, this code only samples lamps, so if the scene also had mesh lights, the real probability is twice as high. */
if(kernel_data.integrator.pdf_triangles != 0.0f)
@@ -62,9 +67,12 @@ ccl_device_noinline void kernel_branched_path_surface_connect_light(KernelGlobal
/* trace shadow ray */
float3 shadow;
- if(!shadow_blocked(kg, emission_sd, state, &light_ray, &shadow)) {
+ if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
/* accumulate */
- path_radiance_accum_light(L, throughput*num_samples_inv, &L_light, shadow, num_samples_inv, state->bounce, is_lamp);
+ path_radiance_accum_light(L, state, throughput*num_samples_inv, &L_light, shadow, num_samples_inv, is_lamp);
+ }
+ else {
+ path_radiance_accum_total_light(L, state, throughput*num_samples_inv, &L_light);
}
}
}
@@ -77,17 +85,16 @@ ccl_device_noinline void kernel_branched_path_surface_connect_light(KernelGlobal
float num_samples_inv = num_samples_adjust/num_samples;
for(int j = 0; j < num_samples; j++) {
- float light_t = path_branched_rng_1D(kg, rng, state, j, num_samples, PRNG_LIGHT);
float light_u, light_v;
- path_branched_rng_2D(kg, rng, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
- float terminate = path_branched_rng_light_termination(kg, rng, state, j, num_samples);
+ path_branched_rng_2D(kg, state->rng_hash, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
+ float terminate = path_branched_rng_light_termination(kg, state->rng_hash, state, j, num_samples);
/* only sample triangle lights */
if(kernel_data.integrator.num_all_lights)
- light_t = 0.5f*light_t;
+ light_u = 0.5f*light_u;
LightSample ls;
- if(light_sample(kg, light_t, light_u, light_v, ccl_fetch(sd, time), ccl_fetch(sd, P), state->bounce, &ls)) {
+ if(light_sample(kg, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
/* Same as above, probability needs to be corrected since the sampling was forced to select a mesh light. */
if(kernel_data.integrator.num_all_lights)
ls.pdf *= 2.0f;
@@ -96,9 +103,12 @@ ccl_device_noinline void kernel_branched_path_surface_connect_light(KernelGlobal
/* trace shadow ray */
float3 shadow;
- if(!shadow_blocked(kg, emission_sd, state, &light_ray, &shadow)) {
+ if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
/* accumulate */
- path_radiance_accum_light(L, throughput*num_samples_inv, &L_light, shadow, num_samples_inv, state->bounce, is_lamp);
+ path_radiance_accum_light(L, state, throughput*num_samples_inv, &L_light, shadow, num_samples_inv, is_lamp);
+ }
+ else {
+ path_radiance_accum_total_light(L, state, throughput*num_samples_inv, &L_light);
}
}
}
@@ -107,21 +117,23 @@ ccl_device_noinline void kernel_branched_path_surface_connect_light(KernelGlobal
}
else {
/* sample one light at random */
- float light_t = path_state_rng_1D(kg, rng, state, PRNG_LIGHT);
float light_u, light_v;
- path_state_rng_2D(kg, rng, state, PRNG_LIGHT_U, &light_u, &light_v);
- float terminate = path_state_rng_light_termination(kg, rng, state);
+ path_state_rng_2D(kg, state, PRNG_LIGHT_U, &light_u, &light_v);
+ float terminate = path_state_rng_light_termination(kg, state);
LightSample ls;
- if(light_sample(kg, light_t, light_u, light_v, ccl_fetch(sd, time), ccl_fetch(sd, P), state->bounce, &ls)) {
+ if(light_sample(kg, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
/* sample random light */
if(direct_emission(kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
/* trace shadow ray */
float3 shadow;
- if(!shadow_blocked(kg, emission_sd, state, &light_ray, &shadow)) {
+ if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
/* accumulate */
- path_radiance_accum_light(L, throughput*num_samples_adjust, &L_light, shadow, num_samples_adjust, state->bounce, is_lamp);
+ path_radiance_accum_light(L, state, throughput*num_samples_adjust, &L_light, shadow, num_samples_adjust, is_lamp);
+ }
+ else {
+ path_radiance_accum_total_light(L, state, throughput*num_samples_adjust, &L_light);
}
}
}
@@ -130,9 +142,17 @@ ccl_device_noinline void kernel_branched_path_surface_connect_light(KernelGlobal
}
/* branched path tracing: bounce off or through surface to with new direction stored in ray */
-ccl_device bool kernel_branched_path_surface_bounce(KernelGlobals *kg, RNG *rng,
- ShaderData *sd, const ShaderClosure *sc, int sample, int num_samples,
- float3 *throughput, PathState *state, PathRadiance *L, Ray *ray)
+ccl_device bool kernel_branched_path_surface_bounce(
+ KernelGlobals *kg,
+ ShaderData *sd,
+ const ShaderClosure *sc,
+ int sample,
+ int num_samples,
+ ccl_addr_space float3 *throughput,
+ ccl_addr_space PathState *state,
+ PathRadianceState *L_state,
+ ccl_addr_space Ray *ray,
+ float sum_sample_weight)
{
/* sample BSDF */
float bsdf_pdf;
@@ -140,7 +160,7 @@ ccl_device bool kernel_branched_path_surface_bounce(KernelGlobals *kg, RNG *rng,
float3 bsdf_omega_in;
differential3 bsdf_domega_in;
float bsdf_u, bsdf_v;
- path_branched_rng_2D(kg, rng, state, sample, num_samples, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
+ path_branched_rng_2D(kg, state->rng_hash, state, sample, num_samples, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
int label;
label = shader_bsdf_sample_closure(kg, sd, sc, bsdf_u, bsdf_v, &bsdf_eval,
@@ -150,21 +170,25 @@ ccl_device bool kernel_branched_path_surface_bounce(KernelGlobals *kg, RNG *rng,
return false;
/* modify throughput */
- path_radiance_bsdf_bounce(L, throughput, &bsdf_eval, bsdf_pdf, state->bounce, label);
+ path_radiance_bsdf_bounce(kg, L_state, throughput, &bsdf_eval, bsdf_pdf, state->bounce, label);
+
+#ifdef __DENOISING_FEATURES__
+ state->denoising_feature_weight *= sc->sample_weight / (sum_sample_weight * num_samples);
+#endif
/* modify path state */
path_state_next(kg, state, label);
/* setup ray */
- ray->P = ray_offset(ccl_fetch(sd, P), (label & LABEL_TRANSMIT)? -ccl_fetch(sd, Ng): ccl_fetch(sd, Ng));
+ ray->P = ray_offset(sd->P, (label & LABEL_TRANSMIT)? -sd->Ng: sd->Ng);
ray->D = normalize(bsdf_omega_in);
ray->t = FLT_MAX;
#ifdef __RAY_DIFFERENTIALS__
- ray->dP = ccl_fetch(sd, dP);
+ ray->dP = sd->dP;
ray->dD = bsdf_domega_in;
#endif
#ifdef __OBJECT_MOTION__
- ray->time = ccl_fetch(sd, time);
+ ray->time = sd->time;
#endif
#ifdef __VOLUME__
@@ -188,64 +212,77 @@ ccl_device bool kernel_branched_path_surface_bounce(KernelGlobals *kg, RNG *rng,
#endif
-#ifndef __SPLIT_KERNEL__
/* path tracing: connect path directly to position on a light and add it to L */
-ccl_device_inline void kernel_path_surface_connect_light(KernelGlobals *kg, ccl_addr_space RNG *rng,
+ccl_device_inline void kernel_path_surface_connect_light(KernelGlobals *kg,
ShaderData *sd, ShaderData *emission_sd, float3 throughput, ccl_addr_space PathState *state,
PathRadiance *L)
{
#ifdef __EMISSION__
- if(!(kernel_data.integrator.use_direct_light && (ccl_fetch(sd, flag) & SD_BSDF_HAS_EVAL)))
+ if(!(kernel_data.integrator.use_direct_light && (sd->flag & SD_BSDF_HAS_EVAL)))
return;
+#ifdef __SHADOW_TRICKS__
+ if(state->flag & PATH_RAY_SHADOW_CATCHER) {
+ kernel_branched_path_surface_connect_light(kg,
+ sd,
+ emission_sd,
+ state,
+ throughput,
+ 1.0f,
+ L,
+ 1);
+ return;
+ }
+#endif
+
/* sample illumination from lights to find path contribution */
- float light_t = path_state_rng_1D(kg, rng, state, PRNG_LIGHT);
float light_u, light_v;
- path_state_rng_2D(kg, rng, state, PRNG_LIGHT_U, &light_u, &light_v);
+ path_state_rng_2D(kg, state, PRNG_LIGHT_U, &light_u, &light_v);
Ray light_ray;
BsdfEval L_light;
bool is_lamp;
#ifdef __OBJECT_MOTION__
- light_ray.time = ccl_fetch(sd, time);
+ light_ray.time = sd->time;
#endif
LightSample ls;
- if(light_sample(kg, light_t, light_u, light_v, ccl_fetch(sd, time), ccl_fetch(sd, P), state->bounce, &ls)) {
- float terminate = path_state_rng_light_termination(kg, rng, state);
+ if(light_sample(kg, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
+ float terminate = path_state_rng_light_termination(kg, state);
if(direct_emission(kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
/* trace shadow ray */
float3 shadow;
- if(!shadow_blocked(kg, emission_sd, state, &light_ray, &shadow)) {
+ if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
/* accumulate */
- path_radiance_accum_light(L, throughput, &L_light, shadow, 1.0f, state->bounce, is_lamp);
+ path_radiance_accum_light(L, state, throughput, &L_light, shadow, 1.0f, is_lamp);
+ }
+ else {
+ path_radiance_accum_total_light(L, state, throughput, &L_light);
}
}
}
#endif
}
-#endif
/* path tracing: bounce off or through surface to with new direction stored in ray */
ccl_device bool kernel_path_surface_bounce(KernelGlobals *kg,
- ccl_addr_space RNG *rng,
ShaderData *sd,
ccl_addr_space float3 *throughput,
ccl_addr_space PathState *state,
- PathRadiance *L,
+ PathRadianceState *L_state,
ccl_addr_space Ray *ray)
{
/* no BSDF? we can stop here */
- if(ccl_fetch(sd, flag) & SD_BSDF) {
+ if(sd->flag & SD_BSDF) {
/* sample BSDF */
float bsdf_pdf;
BsdfEval bsdf_eval;
float3 bsdf_omega_in;
differential3 bsdf_domega_in;
float bsdf_u, bsdf_v;
- path_state_rng_2D(kg, rng, state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
+ path_state_rng_2D(kg, state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
int label;
label = shader_bsdf_sample(kg, sd, bsdf_u, bsdf_v, &bsdf_eval,
@@ -255,7 +292,7 @@ ccl_device bool kernel_path_surface_bounce(KernelGlobals *kg,
return false;
/* modify throughput */
- path_radiance_bsdf_bounce(L, throughput, &bsdf_eval, bsdf_pdf, state->bounce, label);
+ path_radiance_bsdf_bounce(kg, L_state, throughput, &bsdf_eval, bsdf_pdf, state->bounce, label);
/* set labels */
if(!(label & LABEL_TRANSPARENT)) {
@@ -270,16 +307,16 @@ ccl_device bool kernel_path_surface_bounce(KernelGlobals *kg,
path_state_next(kg, state, label);
/* setup ray */
- ray->P = ray_offset(ccl_fetch(sd, P), (label & LABEL_TRANSMIT)? -ccl_fetch(sd, Ng): ccl_fetch(sd, Ng));
+ ray->P = ray_offset(sd->P, (label & LABEL_TRANSMIT)? -sd->Ng: sd->Ng);
ray->D = normalize(bsdf_omega_in);
if(state->bounce == 0)
- ray->t -= ccl_fetch(sd, ray_length); /* clipping works through transparent */
+ ray->t -= sd->ray_length; /* clipping works through transparent */
else
ray->t = FLT_MAX;
#ifdef __RAY_DIFFERENTIALS__
- ray->dP = ccl_fetch(sd, dP);
+ ray->dP = sd->dP;
ray->dD = bsdf_domega_in;
#endif
@@ -291,21 +328,21 @@ ccl_device bool kernel_path_surface_bounce(KernelGlobals *kg,
return true;
}
#ifdef __VOLUME__
- else if(ccl_fetch(sd, flag) & SD_HAS_ONLY_VOLUME) {
+ else if(sd->flag & SD_HAS_ONLY_VOLUME) {
/* no surface shader but have a volume shader? act transparent */
/* update path state, count as transparent */
path_state_next(kg, state, LABEL_TRANSPARENT);
if(state->bounce == 0)
- ray->t -= ccl_fetch(sd, ray_length); /* clipping works through transparent */
+ ray->t -= sd->ray_length; /* clipping works through transparent */
else
ray->t = FLT_MAX;
/* setup ray position, direction stays unchanged */
- ray->P = ray_offset(ccl_fetch(sd, P), -ccl_fetch(sd, Ng));
+ ray->P = ray_offset(sd->P, -sd->Ng);
#ifdef __RAY_DIFFERENTIALS__
- ray->dP = ccl_fetch(sd, dP);
+ ray->dP = sd->dP;
#endif
/* enter/exit volume */
diff --git a/intern/cycles/kernel/kernel_path_volume.h b/intern/cycles/kernel/kernel_path_volume.h
index 3d3b7385d8b..b6a856baf24 100644
--- a/intern/cycles/kernel/kernel_path_volume.h
+++ b/intern/cycles/kernel/kernel_path_volume.h
@@ -20,11 +20,10 @@ CCL_NAMESPACE_BEGIN
ccl_device_inline void kernel_path_volume_connect_light(
KernelGlobals *kg,
- RNG *rng,
ShaderData *sd,
ShaderData *emission_sd,
float3 throughput,
- PathState *state,
+ ccl_addr_space PathState *state,
PathRadiance *L)
{
#ifdef __EMISSION__
@@ -32,9 +31,8 @@ ccl_device_inline void kernel_path_volume_connect_light(
return;
/* sample illumination from lights to find path contribution */
- float light_t = path_state_rng_1D(kg, rng, state, PRNG_LIGHT);
float light_u, light_v;
- path_state_rng_2D(kg, rng, state, PRNG_LIGHT_U, &light_u, &light_v);
+ path_state_rng_2D(kg, state, PRNG_LIGHT_U, &light_u, &light_v);
Ray light_ray;
BsdfEval L_light;
@@ -42,24 +40,22 @@ ccl_device_inline void kernel_path_volume_connect_light(
bool is_lamp;
/* connect to light from given point where shader has been evaluated */
-# ifdef __OBJECT_MOTION__
light_ray.time = sd->time;
-# endif
- if(light_sample(kg, light_t, light_u, light_v, sd->time, sd->P, state->bounce, &ls))
+ if(light_sample(kg, light_u, light_v, sd->time, sd->P, state->bounce, &ls))
{
- float terminate = path_state_rng_light_termination(kg, rng, state);
+ float terminate = path_state_rng_light_termination(kg, state);
if(direct_emission(kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
/* trace shadow ray */
float3 shadow;
- if(!shadow_blocked(kg, emission_sd, state, &light_ray, &shadow)) {
+ if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
/* accumulate */
- path_radiance_accum_light(L, throughput, &L_light, shadow, 1.0f, state->bounce, is_lamp);
+ path_radiance_accum_light(L, state, throughput, &L_light, shadow, 1.0f, is_lamp);
}
}
}
-#endif
+#endif /* __EMISSION__ */
}
#ifdef __KERNEL_GPU__
@@ -67,8 +63,13 @@ ccl_device_noinline
#else
ccl_device
#endif
-bool kernel_path_volume_bounce(KernelGlobals *kg, RNG *rng,
- ShaderData *sd, float3 *throughput, PathState *state, PathRadiance *L, Ray *ray)
+bool kernel_path_volume_bounce(
+ KernelGlobals *kg,
+ ShaderData *sd,
+ ccl_addr_space float3 *throughput,
+ ccl_addr_space PathState *state,
+ PathRadianceState *L_state,
+ ccl_addr_space Ray *ray)
{
/* sample phase function */
float phase_pdf;
@@ -76,7 +77,7 @@ bool kernel_path_volume_bounce(KernelGlobals *kg, RNG *rng,
float3 phase_omega_in;
differential3 phase_domega_in;
float phase_u, phase_v;
- path_state_rng_2D(kg, rng, state, PRNG_PHASE_U, &phase_u, &phase_v);
+ path_state_rng_2D(kg, state, PRNG_BSDF_U, &phase_u, &phase_v);
int label;
label = shader_volume_phase_sample(kg, sd, phase_u, phase_v, &phase_eval,
@@ -86,7 +87,7 @@ bool kernel_path_volume_bounce(KernelGlobals *kg, RNG *rng,
return false;
/* modify throughput */
- path_radiance_bsdf_bounce(L, throughput, &phase_eval, phase_pdf, state->bounce, label);
+ path_radiance_bsdf_bounce(kg, L_state, throughput, &phase_eval, phase_pdf, state->bounce, label);
/* set labels */
state->ray_pdf = phase_pdf;
@@ -111,9 +112,17 @@ bool kernel_path_volume_bounce(KernelGlobals *kg, RNG *rng,
return true;
}
-ccl_device void kernel_branched_path_volume_connect_light(KernelGlobals *kg, RNG *rng,
- ShaderData *sd, ShaderData *emission_sd, float3 throughput, PathState *state, PathRadiance *L,
- bool sample_all_lights, Ray *ray, const VolumeSegment *segment)
+#ifndef __SPLIT_KERNEL__
+ccl_device void kernel_branched_path_volume_connect_light(
+ KernelGlobals *kg,
+ ShaderData *sd,
+ ShaderData *emission_sd,
+ float3 throughput,
+ ccl_addr_space PathState *state,
+ PathRadiance *L,
+ bool sample_all_lights,
+ Ray *ray,
+ const VolumeSegment *segment)
{
#ifdef __EMISSION__
if(!kernel_data.integrator.use_direct_light)
@@ -123,9 +132,7 @@ ccl_device void kernel_branched_path_volume_connect_light(KernelGlobals *kg, RNG
BsdfEval L_light;
bool is_lamp;
-# ifdef __OBJECT_MOTION__
light_ray.time = sd->time;
-# endif
if(sample_all_lights) {
/* lamp sampling */
@@ -135,12 +142,12 @@ ccl_device void kernel_branched_path_volume_connect_light(KernelGlobals *kg, RNG
int num_samples = light_select_num_samples(kg, i);
float num_samples_inv = 1.0f/(num_samples*kernel_data.integrator.num_all_lights);
- RNG lamp_rng = cmj_hash(*rng, i);
+ uint lamp_rng_hash = cmj_hash(state->rng_hash, i);
for(int j = 0; j < num_samples; j++) {
/* sample random position on given light */
float light_u, light_v;
- path_branched_rng_2D(kg, &lamp_rng, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
+ path_branched_rng_2D(kg, lamp_rng_hash, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
LightSample ls;
lamp_light_sample(kg, i, light_u, light_v, ray->P, &ls);
@@ -148,28 +155,26 @@ ccl_device void kernel_branched_path_volume_connect_light(KernelGlobals *kg, RNG
float3 tp = throughput;
/* sample position on volume segment */
- float rphase = path_branched_rng_1D_for_decision(kg, rng, state, j, num_samples, PRNG_PHASE);
- float rscatter = path_branched_rng_1D_for_decision(kg, rng, state, j, num_samples, PRNG_SCATTER_DISTANCE);
+ float rphase = path_branched_rng_1D(kg, state->rng_hash, state, j, num_samples, PRNG_PHASE_CHANNEL);
+ float rscatter = path_branched_rng_1D(kg, state->rng_hash, state, j, num_samples, PRNG_SCATTER_DISTANCE);
VolumeIntegrateResult result = kernel_volume_decoupled_scatter(kg,
state, ray, sd, &tp, rphase, rscatter, segment, (ls.t != FLT_MAX)? &ls.P: NULL, false);
- (void)result;
- kernel_assert(result == VOLUME_PATH_SCATTERED);
-
/* todo: split up light_sample so we don't have to call it again with new position */
- if(lamp_light_sample(kg, i, light_u, light_v, sd->P, &ls)) {
+ if(result == VOLUME_PATH_SCATTERED &&
+ lamp_light_sample(kg, i, light_u, light_v, sd->P, &ls)) {
if(kernel_data.integrator.pdf_triangles != 0.0f)
ls.pdf *= 2.0f;
- float terminate = path_branched_rng_light_termination(kg, rng, state, j, num_samples);
+ float terminate = path_branched_rng_light_termination(kg, state->rng_hash, state, j, num_samples);
if(direct_emission(kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
/* trace shadow ray */
float3 shadow;
- if(!shadow_blocked(kg, emission_sd, state, &light_ray, &shadow)) {
+ if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
/* accumulate */
- path_radiance_accum_light(L, tp*num_samples_inv, &L_light, shadow, num_samples_inv, state->bounce, is_lamp);
+ path_radiance_accum_light(L, state, tp*num_samples_inv, &L_light, shadow, num_samples_inv, is_lamp);
}
}
}
@@ -183,42 +188,39 @@ ccl_device void kernel_branched_path_volume_connect_light(KernelGlobals *kg, RNG
for(int j = 0; j < num_samples; j++) {
/* sample random position on random triangle */
- float light_t = path_branched_rng_1D_for_decision(kg, rng, state, j, num_samples, PRNG_LIGHT);
float light_u, light_v;
- path_branched_rng_2D(kg, rng, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
+ path_branched_rng_2D(kg, state->rng_hash, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
/* only sample triangle lights */
if(kernel_data.integrator.num_all_lights)
- light_t = 0.5f*light_t;
+ light_u = 0.5f*light_u;
LightSample ls;
- light_sample(kg, light_t, light_u, light_v, sd->time, ray->P, state->bounce, &ls);
+ light_sample(kg, light_u, light_v, sd->time, ray->P, state->bounce, &ls);
float3 tp = throughput;
/* sample position on volume segment */
- float rphase = path_branched_rng_1D_for_decision(kg, rng, state, j, num_samples, PRNG_PHASE);
- float rscatter = path_branched_rng_1D_for_decision(kg, rng, state, j, num_samples, PRNG_SCATTER_DISTANCE);
+ float rphase = path_branched_rng_1D(kg, state->rng_hash, state, j, num_samples, PRNG_PHASE_CHANNEL);
+ float rscatter = path_branched_rng_1D(kg, state->rng_hash, state, j, num_samples, PRNG_SCATTER_DISTANCE);
VolumeIntegrateResult result = kernel_volume_decoupled_scatter(kg,
state, ray, sd, &tp, rphase, rscatter, segment, (ls.t != FLT_MAX)? &ls.P: NULL, false);
- (void)result;
- kernel_assert(result == VOLUME_PATH_SCATTERED);
-
/* todo: split up light_sample so we don't have to call it again with new position */
- if(light_sample(kg, light_t, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
+ if(result == VOLUME_PATH_SCATTERED &&
+ light_sample(kg, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
if(kernel_data.integrator.num_all_lights)
ls.pdf *= 2.0f;
- float terminate = path_branched_rng_light_termination(kg, rng, state, j, num_samples);
+ float terminate = path_branched_rng_light_termination(kg, state->rng_hash, state, j, num_samples);
if(direct_emission(kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
/* trace shadow ray */
float3 shadow;
- if(!shadow_blocked(kg, emission_sd, state, &light_ray, &shadow)) {
+ if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
/* accumulate */
- path_radiance_accum_light(L, tp*num_samples_inv, &L_light, shadow, num_samples_inv, state->bounce, is_lamp);
+ path_radiance_accum_light(L, state, tp*num_samples_inv, &L_light, shadow, num_samples_inv, is_lamp);
}
}
}
@@ -227,44 +229,42 @@ ccl_device void kernel_branched_path_volume_connect_light(KernelGlobals *kg, RNG
}
else {
/* sample random position on random light */
- float light_t = path_state_rng_1D(kg, rng, state, PRNG_LIGHT);
float light_u, light_v;
- path_state_rng_2D(kg, rng, state, PRNG_LIGHT_U, &light_u, &light_v);
+ path_state_rng_2D(kg, state, PRNG_LIGHT_U, &light_u, &light_v);
LightSample ls;
- light_sample(kg, light_t, light_u, light_v, sd->time, ray->P, state->bounce, &ls);
+ light_sample(kg, light_u, light_v, sd->time, ray->P, state->bounce, &ls);
float3 tp = throughput;
/* sample position on volume segment */
- float rphase = path_state_rng_1D_for_decision(kg, rng, state, PRNG_PHASE);
- float rscatter = path_state_rng_1D_for_decision(kg, rng, state, PRNG_SCATTER_DISTANCE);
+ float rphase = path_state_rng_1D(kg, state, PRNG_PHASE_CHANNEL);
+ float rscatter = path_state_rng_1D(kg, state, PRNG_SCATTER_DISTANCE);
VolumeIntegrateResult result = kernel_volume_decoupled_scatter(kg,
state, ray, sd, &tp, rphase, rscatter, segment, (ls.t != FLT_MAX)? &ls.P: NULL, false);
- (void)result;
- kernel_assert(result == VOLUME_PATH_SCATTERED);
-
/* todo: split up light_sample so we don't have to call it again with new position */
- if(light_sample(kg, light_t, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
+ if(result == VOLUME_PATH_SCATTERED &&
+ light_sample(kg, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
/* sample random light */
- float terminate = path_state_rng_light_termination(kg, rng, state);
+ float terminate = path_state_rng_light_termination(kg, state);
if(direct_emission(kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
/* trace shadow ray */
float3 shadow;
- if(!shadow_blocked(kg, emission_sd, state, &light_ray, &shadow)) {
+ if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
/* accumulate */
- path_radiance_accum_light(L, tp, &L_light, shadow, 1.0f, state->bounce, is_lamp);
+ path_radiance_accum_light(L, state, tp, &L_light, shadow, 1.0f, is_lamp);
}
}
}
}
-#endif
+#endif /* __EMISSION__ */
}
+#endif /* __SPLIT_KERNEL__ */
-#endif
+#endif /* __VOLUME_SCATTER__ */
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/kernel_projection.h b/intern/cycles/kernel/kernel_projection.h
index 9a2b0884a7e..cbb2442d1dc 100644
--- a/intern/cycles/kernel/kernel_projection.h
+++ b/intern/cycles/kernel/kernel_projection.h
@@ -57,6 +57,9 @@ ccl_device float3 spherical_to_direction(float theta, float phi)
ccl_device float2 direction_to_equirectangular_range(float3 dir, float4 range)
{
+ if(is_zero(dir))
+ return make_float2(0.0f, 0.0f);
+
float u = (atan2f(dir.y, dir.x) - range.y) / range.x;
float v = (acosf(dir.z / len(dir)) - range.w) / range.z;
diff --git a/intern/cycles/kernel/kernel_queues.h b/intern/cycles/kernel/kernel_queues.h
index cf5614b8a86..e32d4bbbc1b 100644
--- a/intern/cycles/kernel/kernel_queues.h
+++ b/intern/cycles/kernel/kernel_queues.h
@@ -17,12 +17,15 @@
#ifndef __KERNEL_QUEUE_H__
#define __KERNEL_QUEUE_H__
+CCL_NAMESPACE_BEGIN
+
/*
* Queue utility functions for split kernel
*/
-
+#ifdef __KERNEL_OPENCL__
#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable
#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable
+#endif
/*
* Enqueue ray index into the queue
@@ -35,7 +38,8 @@ ccl_device void enqueue_ray_index(
ccl_global int *queue_index) /* Array of size num_queues; Used for atomic increment. */
{
/* This thread's queue index. */
- int my_queue_index = atomic_inc(&queue_index[queue_number]) + (queue_number * queue_size);
+ int my_queue_index = atomic_fetch_and_inc_uint32((ccl_global uint*)&queue_index[queue_number])
+ + (queue_number * queue_size);
queues[my_queue_index] = ray_index;
}
@@ -47,6 +51,7 @@ ccl_device void enqueue_ray_index(
* is no more ray to allocate to other threads.
*/
ccl_device int get_ray_index(
+ KernelGlobals *kg,
int thread_index, /* Global thread index. */
int queue_number, /* Queue to operate on. */
ccl_global int *queues, /* Buffer of all queues. */
@@ -68,24 +73,25 @@ ccl_device void enqueue_ray_index_local(
int queue_number, /* Queue in which to enqueue ray index. */
char enqueue_flag, /* True for threads whose ray index has to be enqueued. */
int queuesize, /* queue size. */
- ccl_local unsigned int *local_queue_atomics, /* To to local queue atomics. */
+ ccl_local_param unsigned int *local_queue_atomics, /* To to local queue atomics. */
ccl_global int *Queue_data, /* Queues. */
ccl_global int *Queue_index) /* To do global queue atomics. */
{
- int lidx = get_local_id(1) * get_local_size(0) + get_local_id(0);
+ int lidx = ccl_local_id(1) * ccl_local_size(0) + ccl_local_id(0);
/* Get local queue id .*/
unsigned int lqidx;
if(enqueue_flag) {
- lqidx = atomic_inc(local_queue_atomics);
+ lqidx = atomic_fetch_and_inc_uint32(local_queue_atomics);
}
- barrier(CLK_LOCAL_MEM_FENCE);
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
/* Get global queue offset. */
if(lidx == 0) {
- *local_queue_atomics = atomic_add(&Queue_index[queue_number], *local_queue_atomics);
+ *local_queue_atomics = atomic_fetch_and_add_uint32((ccl_global uint*)&Queue_index[queue_number],
+ *local_queue_atomics);
}
- barrier(CLK_LOCAL_MEM_FENCE);
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
/* Get global queue index and enqueue ray. */
if(enqueue_flag) {
@@ -96,19 +102,19 @@ ccl_device void enqueue_ray_index_local(
ccl_device unsigned int get_local_queue_index(
int queue_number, /* Queue in which to enqueue the ray; -1 if no queue */
- ccl_local unsigned int *local_queue_atomics)
+ ccl_local_param unsigned int *local_queue_atomics)
{
- int my_lqidx = atomic_inc(&local_queue_atomics[queue_number]);
+ int my_lqidx = atomic_fetch_and_inc_uint32(&local_queue_atomics[queue_number]);
return my_lqidx;
}
ccl_device unsigned int get_global_per_queue_offset(
int queue_number,
- ccl_local unsigned int *local_queue_atomics,
+ ccl_local_param unsigned int *local_queue_atomics,
ccl_global int* global_queue_atomics)
{
- unsigned int queue_offset = atomic_add(&global_queue_atomics[queue_number],
- local_queue_atomics[queue_number]);
+ unsigned int queue_offset = atomic_fetch_and_add_uint32((ccl_global uint*)&global_queue_atomics[queue_number],
+ local_queue_atomics[queue_number]);
return queue_offset;
}
@@ -116,10 +122,27 @@ ccl_device unsigned int get_global_queue_index(
int queue_number,
int queuesize,
unsigned int lqidx,
- ccl_local unsigned int * global_per_queue_offset)
+ ccl_local_param unsigned int * global_per_queue_offset)
{
int my_gqidx = queuesize * queue_number + lqidx + global_per_queue_offset[queue_number];
return my_gqidx;
}
+ccl_device int dequeue_ray_index(
+ int queue_number,
+ ccl_global int *queues,
+ int queue_size,
+ ccl_global int *queue_index)
+{
+ int index = atomic_fetch_and_dec_uint32((ccl_global uint*)&queue_index[queue_number])-1;
+
+ if(index < 0) {
+ return QUEUE_EMPTY_SLOT;
+ }
+
+ return queues[index + queue_number * queue_size];
+}
+
+CCL_NAMESPACE_END
+
#endif // __KERNEL_QUEUE_H__
diff --git a/intern/cycles/kernel/kernel_random.h b/intern/cycles/kernel/kernel_random.h
index 2b767da5041..e7a6134b8eb 100644
--- a/intern/cycles/kernel/kernel_random.h
+++ b/intern/cycles/kernel/kernel_random.h
@@ -14,222 +14,130 @@
* limitations under the License.
*/
-#include "kernel_jitter.h"
+#include "kernel/kernel_jitter.h"
+#include "util/util_hash.h"
CCL_NAMESPACE_BEGIN
-#ifdef __SOBOL__
-
-/* skip initial numbers that are not as well distributed, especially the
- * first sequence is just 0 everywhere, which can be problematic for e.g.
- * path termination */
-#define SOBOL_SKIP 64
-
-/* High Dimensional Sobol */
+/* Pseudo random numbers, uncomment this for debugging correlations. Only run
+ * this single threaded on a CPU for repeatable resutls. */
+//#define __DEBUG_CORRELATION__
-/* van der corput radical inverse */
-ccl_device uint van_der_corput(uint bits)
-{
- bits = (bits << 16) | (bits >> 16);
- bits = ((bits & 0x00ff00ff) << 8) | ((bits & 0xff00ff00) >> 8);
- bits = ((bits & 0x0f0f0f0f) << 4) | ((bits & 0xf0f0f0f0) >> 4);
- bits = ((bits & 0x33333333) << 2) | ((bits & 0xcccccccc) >> 2);
- bits = ((bits & 0x55555555) << 1) | ((bits & 0xaaaaaaaa) >> 1);
- return bits;
-}
-/* sobol radical inverse */
-ccl_device uint sobol(uint i)
-{
- uint r = 0;
-
- for(uint v = 1U << 31; i; i >>= 1, v ^= v >> 1)
- if(i & 1)
- r ^= v;
-
- return r;
-}
-
-/* inverse of sobol radical inverse */
-ccl_device uint sobol_inverse(uint i)
-{
- const uint msb = 1U << 31;
- uint r = 0;
-
- for(uint v = 1; i; i <<= 1, v ^= v << 1)
- if(i & msb)
- r ^= v;
+/* High Dimensional Sobol.
+ *
+ * Multidimensional sobol with generator matrices. Dimension 0 and 1 are equal
+ * to classic Van der Corput and Sobol sequences. */
- return r;
-}
+#ifdef __SOBOL__
-/* multidimensional sobol with generator matrices
- * dimension 0 and 1 are equal to van_der_corput() and sobol() respectively */
ccl_device uint sobol_dimension(KernelGlobals *kg, int index, int dimension)
{
uint result = 0;
uint i = index;
-
- for(uint j = 0; i; i >>= 1, j++)
- if(i & 1)
+ for(uint j = 0; i; i >>= 1, j++) {
+ if(i & 1) {
result ^= kernel_tex_fetch(__sobol_directions, 32*dimension + j);
-
+ }
+ }
return result;
}
-/* lookup index and x/y coordinate, assumes m is a power of two */
-ccl_device uint sobol_lookup(const uint m, const uint frame, const uint ex, const uint ey, uint *x, uint *y)
-{
- /* shift is constant per frame */
- const uint shift = frame << (m << 1);
- const uint sobol_shift = sobol(shift);
- /* van der Corput is its own inverse */
- const uint lower = van_der_corput(ex << (32 - m));
- /* need to compensate for ey difference and shift */
- const uint sobol_lower = sobol(lower);
- const uint mask = ~-(1 << m) << (32 - m); /* only m upper bits */
- const uint delta = ((ey << (32 - m)) ^ sobol_lower ^ sobol_shift) & mask;
- /* only use m upper bits for the index (m is a power of two) */
- const uint sobol_result = delta | (delta >> m);
- const uint upper = sobol_inverse(sobol_result);
- const uint index = shift | upper | lower;
- *x = van_der_corput(index);
- *y = sobol_shift ^ sobol_result ^ sobol_lower;
- return index;
-}
+#endif /* __SOBOL__ */
-ccl_device_forceinline float path_rng_1D(KernelGlobals *kg, ccl_addr_space RNG *rng, int sample, int num_samples, int dimension)
+
+ccl_device_forceinline float path_rng_1D(KernelGlobals *kg,
+ uint rng_hash,
+ int sample, int num_samples,
+ int dimension)
{
+#ifdef __DEBUG_CORRELATION__
+ return (float)drand48();
+#endif
+
#ifdef __CMJ__
- if(kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ) {
- /* correlated multi-jittered */
- int p = *rng + dimension;
+# ifdef __SOBOL__
+ if(kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ)
+# endif
+ {
+ /* Correlated multi-jitter. */
+ int p = rng_hash + dimension;
return cmj_sample_1D(sample, num_samples, p);
}
#endif
-#ifdef __SOBOL_FULL_SCREEN__
- uint result = sobol_dimension(kg, *rng, dimension);
- float r = (float)result * (1.0f/(float)0xFFFFFFFF);
- return r;
-#else
- /* compute sobol sequence value using direction vectors */
- uint result = sobol_dimension(kg, sample + SOBOL_SKIP, dimension);
+#ifdef __SOBOL__
+ /* Sobol sequence value using direction vectors. */
+ uint result = sobol_dimension(kg, sample, dimension);
float r = (float)result * (1.0f/(float)0xFFFFFFFF);
/* Cranly-Patterson rotation using rng seed */
float shift;
- /* using the same *rng value to offset seems to give correlation issues,
- * we could hash it with the dimension but this has a performance impact,
- * we need to find a solution for this */
- if(dimension & 1)
- shift = (*rng >> 16) * (1.0f/(float)0xFFFF);
- else
- shift = (*rng & 0xFFFF) * (1.0f/(float)0xFFFF);
+ /* Hash rng with dimension to solve correlation issues.
+ * See T38710, T50116.
+ */
+ uint tmp_rng = cmj_hash_simple(dimension, rng_hash);
+ shift = tmp_rng * (1.0f/(float)0xFFFFFFFF);
return r + shift - floorf(r + shift);
#endif
}
-ccl_device_forceinline void path_rng_2D(KernelGlobals *kg, ccl_addr_space RNG *rng, int sample, int num_samples, int dimension, float *fx, float *fy)
+ccl_device_forceinline void path_rng_2D(KernelGlobals *kg,
+ uint rng_hash,
+ int sample, int num_samples,
+ int dimension,
+ float *fx, float *fy)
{
+#ifdef __DEBUG_CORRELATION__
+ *fx = (float)drand48();
+ *fy = (float)drand48();
+ return;
+#endif
+
#ifdef __CMJ__
- if(kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ) {
- /* correlated multi-jittered */
- int p = *rng + dimension;
+# ifdef __SOBOL__
+ if(kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_CMJ)
+# endif
+ {
+ /* Correlated multi-jitter. */
+ int p = rng_hash + dimension;
cmj_sample_2D(sample, num_samples, p, fx, fy);
+ return;
}
- else
#endif
- {
- /* sobol */
- *fx = path_rng_1D(kg, rng, sample, num_samples, dimension);
- *fy = path_rng_1D(kg, rng, sample, num_samples, dimension + 1);
- }
-}
-
-ccl_device_inline void path_rng_init(KernelGlobals *kg, ccl_global uint *rng_state, int sample, int num_samples, ccl_addr_space RNG *rng, int x, int y, float *fx, float *fy)
-{
-#ifdef __SOBOL_FULL_SCREEN__
- uint px, py;
- uint bits = 16; /* limits us to 65536x65536 and 65536 samples */
- uint size = 1 << bits;
- uint frame = sample;
-
- *rng = sobol_lookup(bits, frame, x, y, &px, &py);
-
- *rng ^= kernel_data.integrator.seed;
-
- if(sample == 0) {
- *fx = 0.5f;
- *fy = 0.5f;
- }
- else {
- *fx = size * (float)px * (1.0f/(float)0xFFFFFFFF) - x;
- *fy = size * (float)py * (1.0f/(float)0xFFFFFFFF) - y;
- }
-#else
- *rng = *rng_state;
- *rng ^= kernel_data.integrator.seed;
-
- if(sample == 0) {
- *fx = 0.5f;
- *fy = 0.5f;
- }
- else {
- path_rng_2D(kg, rng, sample, num_samples, PRNG_FILTER_U, fx, fy);
- }
+#ifdef __SOBOL__
+ /* Sobol. */
+ *fx = path_rng_1D(kg, rng_hash, sample, num_samples, dimension);
+ *fy = path_rng_1D(kg, rng_hash, sample, num_samples, dimension + 1);
#endif
}
-ccl_device void path_rng_end(KernelGlobals *kg, ccl_global uint *rng_state, RNG rng)
-{
- /* nothing to do */
-}
-
-#else
-
-/* Linear Congruential Generator */
-
-ccl_device_forceinline float path_rng_1D(KernelGlobals *kg, RNG& rng, int sample, int num_samples, int dimension)
-{
- /* implicit mod 2^32 */
- rng = (1103515245*(rng) + 12345);
- return (float)rng * (1.0f/(float)0xFFFFFFFF);
-}
-
-ccl_device_inline void path_rng_2D(KernelGlobals *kg, RNG& rng, int sample, int num_samples, int dimension, float *fx, float *fy)
-{
- *fx = path_rng_1D(kg, rng, sample, num_samples, dimension);
- *fy = path_rng_1D(kg, rng, sample, num_samples, dimension + 1);
-}
-
-ccl_device void path_rng_init(KernelGlobals *kg, ccl_global uint *rng_state, int sample, int num_samples, RNG *rng, int x, int y, float *fx, float *fy)
+ccl_device_inline void path_rng_init(KernelGlobals *kg,
+ int sample, int num_samples,
+ uint *rng_hash,
+ int x, int y,
+ float *fx, float *fy)
{
/* load state */
- *rng = *rng_state;
+ *rng_hash = hash_int_2d(x, y);
+ *rng_hash ^= kernel_data.integrator.seed;
- *rng ^= kernel_data.integrator.seed;
+#ifdef __DEBUG_CORRELATION__
+ srand48(*rng_hash + sample);
+#endif
if(sample == 0) {
*fx = 0.5f;
*fy = 0.5f;
}
else {
- path_rng_2D(kg, rng, sample, num_samples, PRNG_FILTER_U, fx, fy);
+ path_rng_2D(kg, *rng_hash, sample, num_samples, PRNG_FILTER_U, fx, fy);
}
}
-ccl_device void path_rng_end(KernelGlobals *kg, ccl_global uint *rng_state, RNG rng)
-{
- /* store state for next sample */
- *rng_state = rng;
-}
-
-#endif
-
/* Linear Congruential Generator */
ccl_device uint lcg_step_uint(uint *rng)
@@ -259,90 +167,110 @@ ccl_device uint lcg_init(uint seed)
* dimension to avoid using the same sequence twice.
*
* For branches in the path we must be careful not to reuse the same number
- * in a sequence and offset accordingly. */
-
-ccl_device_inline float path_state_rng_1D(KernelGlobals *kg, ccl_addr_space RNG *rng, const ccl_addr_space PathState *state, int dimension)
-{
- return path_rng_1D(kg, rng, state->sample, state->num_samples, state->rng_offset + dimension);
-}
-
-ccl_device_inline float path_state_rng_1D_for_decision(KernelGlobals *kg, ccl_addr_space RNG *rng, const ccl_addr_space PathState *state, int dimension)
-{
- /* the rng_offset is not increased for transparent bounces. if we do then
- * fully transparent objects can become subtly visible by the different
- * sampling patterns used where the transparent object is.
- *
- * however for some random numbers that will determine if we next bounce
- * is transparent we do need to increase the offset to avoid always making
- * the same decision */
- int rng_offset = state->rng_offset + state->transparent_bounce*PRNG_BOUNCE_NUM;
- return path_rng_1D(kg, rng, state->sample, state->num_samples, rng_offset + dimension);
-}
+ * in a sequence and offset accordingly.
+ */
-ccl_device_inline void path_state_rng_2D(KernelGlobals *kg, ccl_addr_space RNG *rng, const ccl_addr_space PathState *state, int dimension, float *fx, float *fy)
+ccl_device_inline float path_state_rng_1D(KernelGlobals *kg,
+ const ccl_addr_space PathState *state,
+ int dimension)
{
- path_rng_2D(kg, rng, state->sample, state->num_samples, state->rng_offset + dimension, fx, fy);
+ return path_rng_1D(kg,
+ state->rng_hash,
+ state->sample, state->num_samples,
+ state->rng_offset + dimension);
}
-ccl_device_inline float path_branched_rng_1D(KernelGlobals *kg, ccl_addr_space RNG *rng, const PathState *state, int branch, int num_branches, int dimension)
+ccl_device_inline void path_state_rng_2D(KernelGlobals *kg,
+ const ccl_addr_space PathState *state,
+ int dimension,
+ float *fx, float *fy)
{
- return path_rng_1D(kg, rng, state->sample*num_branches + branch, state->num_samples*num_branches, state->rng_offset + dimension);
+ path_rng_2D(kg,
+ state->rng_hash,
+ state->sample, state->num_samples,
+ state->rng_offset + dimension,
+ fx, fy);
}
-ccl_device_inline float path_branched_rng_1D_for_decision(KernelGlobals *kg, ccl_addr_space RNG *rng, const PathState *state, int branch, int num_branches, int dimension)
+ccl_device_inline float path_branched_rng_1D(
+ KernelGlobals *kg,
+ uint rng_hash,
+ const ccl_addr_space PathState *state,
+ int branch,
+ int num_branches,
+ int dimension)
{
- int rng_offset = state->rng_offset + state->transparent_bounce*PRNG_BOUNCE_NUM;
- return path_rng_1D(kg, rng, state->sample*num_branches + branch, state->num_samples*num_branches, rng_offset + dimension);
+ return path_rng_1D(kg,
+ rng_hash,
+ state->sample * num_branches + branch,
+ state->num_samples * num_branches,
+ state->rng_offset + dimension);
}
-ccl_device_inline void path_branched_rng_2D(KernelGlobals *kg, ccl_addr_space RNG *rng, const PathState *state, int branch, int num_branches, int dimension, float *fx, float *fy)
+ccl_device_inline void path_branched_rng_2D(
+ KernelGlobals *kg,
+ uint rng_hash,
+ const ccl_addr_space PathState *state,
+ int branch,
+ int num_branches,
+ int dimension,
+ float *fx, float *fy)
{
- path_rng_2D(kg, rng, state->sample*num_branches + branch, state->num_samples*num_branches, state->rng_offset + dimension, fx, fy);
+ path_rng_2D(kg,
+ rng_hash,
+ state->sample * num_branches + branch,
+ state->num_samples * num_branches,
+ state->rng_offset + dimension,
+ fx, fy);
}
-/* Utitility functions to get light termination value, since it might not be needed in many cases. */
-ccl_device_inline float path_state_rng_light_termination(KernelGlobals *kg, ccl_addr_space RNG *rng, const ccl_addr_space PathState *state)
+/* Utitility functions to get light termination value,
+ * since it might not be needed in many cases.
+ */
+ccl_device_inline float path_state_rng_light_termination(
+ KernelGlobals *kg,
+ const ccl_addr_space PathState *state)
{
if(kernel_data.integrator.light_inv_rr_threshold > 0.0f) {
- return path_state_rng_1D_for_decision(kg, rng, state, PRNG_LIGHT_TERMINATE);
+ return path_state_rng_1D(kg, state, PRNG_LIGHT_TERMINATE);
}
return 0.0f;
}
-ccl_device_inline float path_branched_rng_light_termination(KernelGlobals *kg, ccl_addr_space RNG *rng, const PathState *state, int branch, int num_branches)
+ccl_device_inline float path_branched_rng_light_termination(
+ KernelGlobals *kg,
+ uint rng_hash,
+ const ccl_addr_space PathState *state,
+ int branch,
+ int num_branches)
{
if(kernel_data.integrator.light_inv_rr_threshold > 0.0f) {
- return path_branched_rng_1D_for_decision(kg, rng, state, branch, num_branches, PRNG_LIGHT_TERMINATE);
+ return path_branched_rng_1D(kg,
+ rng_hash,
+ state,
+ branch,
+ num_branches,
+ PRNG_LIGHT_TERMINATE);
}
return 0.0f;
}
-ccl_device_inline void path_state_branch(PathState *state, int branch, int num_branches)
-{
- /* path is splitting into a branch, adjust so that each branch
- * still gets a unique sample from the same sequence */
- state->rng_offset += PRNG_BOUNCE_NUM;
- state->sample = state->sample*num_branches + branch;
- state->num_samples = state->num_samples*num_branches;
-}
-
-ccl_device_inline uint lcg_state_init(RNG *rng, const PathState *state, uint scramble)
+ccl_device_inline uint lcg_state_init(PathState *state,
+ uint scramble)
{
- return lcg_init(*rng + state->rng_offset + state->sample*scramble);
+ return lcg_init(state->rng_hash + state->rng_offset + state->sample*scramble);
}
-/* TODO(sergey): For until we can use generic address space from OpenCL 2.0. */
-
-ccl_device_inline uint lcg_state_init_addrspace(ccl_addr_space RNG *rng,
- const ccl_addr_space PathState *state,
+ccl_device_inline uint lcg_state_init_addrspace(ccl_addr_space PathState *state,
uint scramble)
{
- return lcg_init(*rng + state->rng_offset + state->sample*scramble);
+ return lcg_init(state->rng_hash + state->rng_offset + state->sample*scramble);
}
+
ccl_device float lcg_step_float_addrspace(ccl_addr_space uint *rng)
{
- /* implicit mod 2^32 */
+ /* Implicit mod 2^32 */
*rng = (1103515245*(*rng) + 12345);
return (float)*rng * (1.0f/(float)0xFFFFFFFF);
}
diff --git a/intern/cycles/kernel/kernel_shader.h b/intern/cycles/kernel/kernel_shader.h
index 9d5ea53d5d8..d46da189661 100644
--- a/intern/cycles/kernel/kernel_shader.h
+++ b/intern/cycles/kernel/kernel_shader.h
@@ -24,12 +24,12 @@
*
*/
-#include "closure/alloc.h"
-#include "closure/bsdf_util.h"
-#include "closure/bsdf.h"
-#include "closure/emissive.h"
+#include "kernel/closure/alloc.h"
+#include "kernel/closure/bsdf_util.h"
+#include "kernel/closure/bsdf.h"
+#include "kernel/closure/emissive.h"
-#include "svm/svm.h"
+#include "kernel/svm/svm.h"
CCL_NAMESPACE_BEGIN
@@ -38,13 +38,13 @@ CCL_NAMESPACE_BEGIN
#ifdef __OBJECT_MOTION__
ccl_device void shader_setup_object_transforms(KernelGlobals *kg, ShaderData *sd, float time)
{
- if(ccl_fetch(sd, flag) & SD_OBJECT_MOTION) {
- ccl_fetch(sd, ob_tfm) = object_fetch_transform_motion(kg, ccl_fetch(sd, object), time);
- ccl_fetch(sd, ob_itfm) = transform_quick_inverse(ccl_fetch(sd, ob_tfm));
+ if(sd->object_flag & SD_OBJECT_MOTION) {
+ sd->ob_tfm = object_fetch_transform_motion(kg, sd->object, time);
+ sd->ob_itfm = transform_quick_inverse(sd->ob_tfm);
}
else {
- ccl_fetch(sd, ob_tfm) = object_fetch_transform(kg, ccl_fetch(sd, object), OBJECT_TRANSFORM);
- ccl_fetch(sd, ob_itfm) = object_fetch_transform(kg, ccl_fetch(sd, object), OBJECT_INVERSE_TRANSFORM);
+ sd->ob_tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
+ sd->ob_itfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM);
}
}
#endif
@@ -55,103 +55,104 @@ ccl_device_noinline void shader_setup_from_ray(KernelGlobals *kg,
const Ray *ray)
{
#ifdef __INSTANCING__
- ccl_fetch(sd, object) = (isect->object == PRIM_NONE)? kernel_tex_fetch(__prim_object, isect->prim): isect->object;
+ sd->object = (isect->object == PRIM_NONE)? kernel_tex_fetch(__prim_object, isect->prim): isect->object;
#endif
- ccl_fetch(sd, type) = isect->type;
- ccl_fetch(sd, flag) = kernel_tex_fetch(__object_flag, ccl_fetch(sd, object));
+ sd->type = isect->type;
+ sd->flag = 0;
+ sd->object_flag = kernel_tex_fetch(__object_flag,
+ sd->object);
/* matrices and time */
#ifdef __OBJECT_MOTION__
shader_setup_object_transforms(kg, sd, ray->time);
- ccl_fetch(sd, time) = ray->time;
#endif
+ sd->time = ray->time;
- if(ccl_fetch(sd, type) & PRIMITIVE_VOLUME) {
- ccl_fetch(sd, prim) = isect->prim;
+ if (sd->type & PRIMITIVE_VOLUME) {
+ sd->prim = isect->prim;
}
else {
- ccl_fetch(sd, prim) = kernel_tex_fetch(__prim_index, isect->prim);
+ sd->prim = kernel_tex_fetch(__prim_index, isect->prim);
}
-
- ccl_fetch(sd, ray_length) = isect->t;
+ sd->ray_length = isect->t;
#ifdef __UV__
- ccl_fetch(sd, u) = isect->u;
- ccl_fetch(sd, v) = isect->v;
+ sd->u = isect->u;
+ sd->v = isect->v;
#endif
#ifdef __HAIR__
- if(ccl_fetch(sd, type) & PRIMITIVE_ALL_CURVE) {
+ if(sd->type & PRIMITIVE_ALL_CURVE) {
/* curve */
- float4 curvedata = kernel_tex_fetch(__curves, ccl_fetch(sd, prim));
+ float4 curvedata = kernel_tex_fetch(__curves, sd->prim);
- ccl_fetch(sd, shader) = __float_as_int(curvedata.z);
- ccl_fetch(sd, P) = bvh_curve_refine(kg, sd, isect, ray);
+ sd->shader = __float_as_int(curvedata.z);
+ sd->P = curve_refine(kg, sd, isect, ray);
}
else
#endif
- if(ccl_fetch(sd, type) & PRIMITIVE_TRIANGLE) {
+ if(sd->type & PRIMITIVE_TRIANGLE) {
/* static triangle */
float3 Ng = triangle_normal(kg, sd);
- ccl_fetch(sd, shader) = kernel_tex_fetch(__tri_shader, ccl_fetch(sd, prim));
+ sd->shader = kernel_tex_fetch(__tri_shader, sd->prim);
/* vectors */
- ccl_fetch(sd, P) = triangle_refine(kg, sd, isect, ray);
- ccl_fetch(sd, Ng) = Ng;
- ccl_fetch(sd, N) = Ng;
+ sd->P = triangle_refine(kg, sd, isect, ray);
+ sd->Ng = Ng;
+ sd->N = Ng;
/* smooth normal */
- if(ccl_fetch(sd, shader) & SHADER_SMOOTH_NORMAL)
- ccl_fetch(sd, N) = triangle_smooth_normal(kg, ccl_fetch(sd, prim), ccl_fetch(sd, u), ccl_fetch(sd, v));
+ if(sd->shader & SHADER_SMOOTH_NORMAL)
+ sd->N = triangle_smooth_normal(kg, Ng, sd->prim, sd->u, sd->v);
#ifdef __DPDU__
/* dPdu/dPdv */
- triangle_dPdudv(kg, ccl_fetch(sd, prim), &ccl_fetch(sd, dPdu), &ccl_fetch(sd, dPdv));
+ triangle_dPdudv(kg, sd->prim, &sd->dPdu, &sd->dPdv);
#endif
}
- else if(ccl_fetch(sd, type) & PRIMITIVE_VOLUME) {
- ccl_fetch(sd, shader) = kernel_tex_fetch(__vol_shader, ccl_fetch(sd, prim));
+ else if(sd->type & PRIMITIVE_VOLUME) {
+ sd->shader = kernel_tex_fetch(__vol_shader, sd->prim);
}
else {
/* motion triangle */
motion_triangle_shader_setup(kg, sd, isect, ray, false);
}
- ccl_fetch(sd, I) = -ray->D;
+ sd->I = -ray->D;
- ccl_fetch(sd, flag) |= kernel_tex_fetch(__shader_flag, (ccl_fetch(sd, shader) & SHADER_MASK)*SHADER_SIZE);
+ sd->flag |= kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*SHADER_SIZE);
#ifdef __INSTANCING__
if(isect->object != OBJECT_NONE) {
/* instance transform */
- object_normal_transform_auto(kg, sd, &ccl_fetch(sd, N));
- object_normal_transform_auto(kg, sd, &ccl_fetch(sd, Ng));
+ object_normal_transform_auto(kg, sd, &sd->N);
+ object_normal_transform_auto(kg, sd, &sd->Ng);
# ifdef __DPDU__
- object_dir_transform_auto(kg, sd, &ccl_fetch(sd, dPdu));
- object_dir_transform_auto(kg, sd, &ccl_fetch(sd, dPdv));
+ object_dir_transform_auto(kg, sd, &sd->dPdu);
+ object_dir_transform_auto(kg, sd, &sd->dPdv);
# endif
}
#endif
/* backfacing test */
- bool backfacing = (dot(ccl_fetch(sd, Ng), ccl_fetch(sd, I)) < 0.0f);
+ bool backfacing = (dot(sd->Ng, sd->I) < 0.0f);
if(backfacing) {
- ccl_fetch(sd, flag) |= SD_BACKFACING;
- ccl_fetch(sd, Ng) = -ccl_fetch(sd, Ng);
- ccl_fetch(sd, N) = -ccl_fetch(sd, N);
+ sd->flag |= SD_BACKFACING;
+ sd->Ng = -sd->Ng;
+ sd->N = -sd->N;
#ifdef __DPDU__
- ccl_fetch(sd, dPdu) = -ccl_fetch(sd, dPdu);
- ccl_fetch(sd, dPdv) = -ccl_fetch(sd, dPdv);
+ sd->dPdu = -sd->dPdu;
+ sd->dPdv = -sd->dPdv;
#endif
}
#ifdef __RAY_DIFFERENTIALS__
/* differentials */
- differential_transfer(&ccl_fetch(sd, dP), ray->dP, ray->D, ray->dD, ccl_fetch(sd, Ng), isect->t);
- differential_incoming(&ccl_fetch(sd, dI), ray->dD);
- differential_dudv(&ccl_fetch(sd, du), &ccl_fetch(sd, dv), ccl_fetch(sd, dPdu), ccl_fetch(sd, dPdv), ccl_fetch(sd, dP), ccl_fetch(sd, Ng));
+ differential_transfer(&sd->dP, ray->dP, ray->D, ray->dD, sd->Ng, isect->t);
+ differential_incoming(&sd->dI, ray->dD);
+ differential_dudv(&sd->du, &sd->dv, sd->dPdu, sd->dPdv, sd->dP, sd->Ng);
#endif
}
@@ -169,10 +170,11 @@ void shader_setup_from_subsurface(
const Intersection *isect,
const Ray *ray)
{
- bool backfacing = sd->flag & SD_BACKFACING;
+ const bool backfacing = sd->flag & SD_BACKFACING;
/* object, matrices, time, ray_length stay the same */
- sd->flag = kernel_tex_fetch(__object_flag, sd->object);
+ sd->flag = 0;
+ sd->object_flag = kernel_tex_fetch(__object_flag, sd->object);
sd->prim = kernel_tex_fetch(__prim_index, isect->prim);
sd->type = isect->type;
@@ -192,7 +194,7 @@ void shader_setup_from_subsurface(
sd->N = Ng;
if(sd->shader & SHADER_SMOOTH_NORMAL)
- sd->N = triangle_smooth_normal(kg, sd->prim, sd->u, sd->v);
+ sd->N = triangle_smooth_normal(kg, Ng, sd->prim, sd->u, sd->v);
# ifdef __DPDU__
/* dPdu/dPdv */
@@ -209,11 +211,11 @@ void shader_setup_from_subsurface(
# ifdef __INSTANCING__
if(isect->object != OBJECT_NONE) {
/* instance transform */
- object_normal_transform(kg, sd, &sd->N);
- object_normal_transform(kg, sd, &sd->Ng);
+ object_normal_transform_auto(kg, sd, &sd->N);
+ object_normal_transform_auto(kg, sd, &sd->Ng);
# ifdef __DPDU__
- object_dir_transform(kg, sd, &sd->dPdu);
- object_dir_transform(kg, sd, &sd->dPdv);
+ object_dir_transform_auto(kg, sd, &sd->dPdu);
+ object_dir_transform_auto(kg, sd, &sd->dPdv);
# endif
}
# endif
@@ -255,104 +257,106 @@ ccl_device_inline void shader_setup_from_sample(KernelGlobals *kg,
int lamp)
{
/* vectors */
- ccl_fetch(sd, P) = P;
- ccl_fetch(sd, N) = Ng;
- ccl_fetch(sd, Ng) = Ng;
- ccl_fetch(sd, I) = I;
- ccl_fetch(sd, shader) = shader;
+ sd->P = P;
+ sd->N = Ng;
+ sd->Ng = Ng;
+ sd->I = I;
+ sd->shader = shader;
if(prim != PRIM_NONE)
- ccl_fetch(sd, type) = PRIMITIVE_TRIANGLE;
+ sd->type = PRIMITIVE_TRIANGLE;
else if(lamp != LAMP_NONE)
- ccl_fetch(sd, type) = PRIMITIVE_LAMP;
+ sd->type = PRIMITIVE_LAMP;
else
- ccl_fetch(sd, type) = PRIMITIVE_NONE;
+ sd->type = PRIMITIVE_NONE;
/* primitive */
#ifdef __INSTANCING__
- ccl_fetch(sd, object) = object;
+ sd->object = object;
#endif
/* currently no access to bvh prim index for strand sd->prim*/
- ccl_fetch(sd, prim) = prim;
+ sd->prim = prim;
#ifdef __UV__
- ccl_fetch(sd, u) = u;
- ccl_fetch(sd, v) = v;
+ sd->u = u;
+ sd->v = v;
#endif
- ccl_fetch(sd, ray_length) = t;
+ sd->time = time;
+ sd->ray_length = t;
- ccl_fetch(sd, flag) = kernel_tex_fetch(__shader_flag, (ccl_fetch(sd, shader) & SHADER_MASK)*SHADER_SIZE);
- if(ccl_fetch(sd, object) != OBJECT_NONE) {
- ccl_fetch(sd, flag) |= kernel_tex_fetch(__object_flag, ccl_fetch(sd, object));
+ sd->flag = kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*SHADER_SIZE);
+ sd->object_flag = 0;
+ if(sd->object != OBJECT_NONE) {
+ sd->object_flag |= kernel_tex_fetch(__object_flag,
+ sd->object);
#ifdef __OBJECT_MOTION__
shader_setup_object_transforms(kg, sd, time);
- ccl_fetch(sd, time) = time;
}
else if(lamp != LAMP_NONE) {
- ccl_fetch(sd, ob_tfm) = lamp_fetch_transform(kg, lamp, false);
- ccl_fetch(sd, ob_itfm) = lamp_fetch_transform(kg, lamp, true);
+ sd->ob_tfm = lamp_fetch_transform(kg, lamp, false);
+ sd->ob_itfm = lamp_fetch_transform(kg, lamp, true);
#endif
}
/* transform into world space */
if(object_space) {
- object_position_transform_auto(kg, sd, &ccl_fetch(sd, P));
- object_normal_transform_auto(kg, sd, &ccl_fetch(sd, Ng));
- ccl_fetch(sd, N) = ccl_fetch(sd, Ng);
- object_dir_transform_auto(kg, sd, &ccl_fetch(sd, I));
+ object_position_transform_auto(kg, sd, &sd->P);
+ object_normal_transform_auto(kg, sd, &sd->Ng);
+ sd->N = sd->Ng;
+ object_dir_transform_auto(kg, sd, &sd->I);
}
- if(ccl_fetch(sd, type) & PRIMITIVE_TRIANGLE) {
+ if(sd->type & PRIMITIVE_TRIANGLE) {
/* smooth normal */
- if(ccl_fetch(sd, shader) & SHADER_SMOOTH_NORMAL) {
- ccl_fetch(sd, N) = triangle_smooth_normal(kg, ccl_fetch(sd, prim), ccl_fetch(sd, u), ccl_fetch(sd, v));
+ if(sd->shader & SHADER_SMOOTH_NORMAL) {
+ sd->N = triangle_smooth_normal(kg, Ng, sd->prim, sd->u, sd->v);
#ifdef __INSTANCING__
- if(!(ccl_fetch(sd, flag) & SD_TRANSFORM_APPLIED)) {
- object_normal_transform_auto(kg, sd, &ccl_fetch(sd, N));
+ if(!(sd->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
+ object_normal_transform_auto(kg, sd, &sd->N);
}
#endif
}
/* dPdu/dPdv */
#ifdef __DPDU__
- triangle_dPdudv(kg, ccl_fetch(sd, prim), &ccl_fetch(sd, dPdu), &ccl_fetch(sd, dPdv));
+ triangle_dPdudv(kg, sd->prim, &sd->dPdu, &sd->dPdv);
# ifdef __INSTANCING__
- if(!(ccl_fetch(sd, flag) & SD_TRANSFORM_APPLIED)) {
- object_dir_transform_auto(kg, sd, &ccl_fetch(sd, dPdu));
- object_dir_transform_auto(kg, sd, &ccl_fetch(sd, dPdv));
+ if(!(sd->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
+ object_dir_transform_auto(kg, sd, &sd->dPdu);
+ object_dir_transform_auto(kg, sd, &sd->dPdv);
}
# endif
#endif
}
else {
#ifdef __DPDU__
- ccl_fetch(sd, dPdu) = make_float3(0.0f, 0.0f, 0.0f);
- ccl_fetch(sd, dPdv) = make_float3(0.0f, 0.0f, 0.0f);
+ sd->dPdu = make_float3(0.0f, 0.0f, 0.0f);
+ sd->dPdv = make_float3(0.0f, 0.0f, 0.0f);
#endif
}
/* backfacing test */
- if(ccl_fetch(sd, prim) != PRIM_NONE) {
- bool backfacing = (dot(ccl_fetch(sd, Ng), ccl_fetch(sd, I)) < 0.0f);
+ if(sd->prim != PRIM_NONE) {
+ bool backfacing = (dot(sd->Ng, sd->I) < 0.0f);
if(backfacing) {
- ccl_fetch(sd, flag) |= SD_BACKFACING;
- ccl_fetch(sd, Ng) = -ccl_fetch(sd, Ng);
- ccl_fetch(sd, N) = -ccl_fetch(sd, N);
+ sd->flag |= SD_BACKFACING;
+ sd->Ng = -sd->Ng;
+ sd->N = -sd->N;
#ifdef __DPDU__
- ccl_fetch(sd, dPdu) = -ccl_fetch(sd, dPdu);
- ccl_fetch(sd, dPdv) = -ccl_fetch(sd, dPdv);
+ sd->dPdu = -sd->dPdu;
+ sd->dPdv = -sd->dPdv;
#endif
}
}
#ifdef __RAY_DIFFERENTIALS__
/* no ray differentials here yet */
- ccl_fetch(sd, dP) = differential3_zero();
- ccl_fetch(sd, dI) = differential3_zero();
- ccl_fetch(sd, du) = differential_zero();
- ccl_fetch(sd, dv) = differential_zero();
+ sd->dP = differential3_zero();
+ sd->dI = differential3_zero();
+ sd->du = differential_zero();
+ sd->dv = differential_zero();
#endif
}
@@ -373,7 +377,7 @@ ccl_device void shader_setup_from_displace(KernelGlobals *kg, ShaderData *sd,
P, Ng, I,
shader, object, prim,
u, v, 0.0f, 0.5f,
- !(kernel_tex_fetch(__object_flag, object) & SD_TRANSFORM_APPLIED),
+ !(kernel_tex_fetch(__object_flag, object) & SD_OBJECT_TRANSFORM_APPLIED),
LAMP_NONE);
}
@@ -382,38 +386,37 @@ ccl_device void shader_setup_from_displace(KernelGlobals *kg, ShaderData *sd,
ccl_device_inline void shader_setup_from_background(KernelGlobals *kg, ShaderData *sd, const Ray *ray)
{
/* vectors */
- ccl_fetch(sd, P) = ray->D;
- ccl_fetch(sd, N) = -ray->D;
- ccl_fetch(sd, Ng) = -ray->D;
- ccl_fetch(sd, I) = -ray->D;
- ccl_fetch(sd, shader) = kernel_data.background.surface_shader;
- ccl_fetch(sd, flag) = kernel_tex_fetch(__shader_flag, (ccl_fetch(sd, shader) & SHADER_MASK)*SHADER_SIZE);
-#ifdef __OBJECT_MOTION__
- ccl_fetch(sd, time) = ray->time;
-#endif
- ccl_fetch(sd, ray_length) = 0.0f;
+ sd->P = ray->D;
+ sd->N = -ray->D;
+ sd->Ng = -ray->D;
+ sd->I = -ray->D;
+ sd->shader = kernel_data.background.surface_shader;
+ sd->flag = kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*SHADER_SIZE);
+ sd->object_flag = 0;
+ sd->time = ray->time;
+ sd->ray_length = 0.0f;
#ifdef __INSTANCING__
- ccl_fetch(sd, object) = PRIM_NONE;
+ sd->object = PRIM_NONE;
#endif
- ccl_fetch(sd, prim) = PRIM_NONE;
+ sd->prim = PRIM_NONE;
#ifdef __UV__
- ccl_fetch(sd, u) = 0.0f;
- ccl_fetch(sd, v) = 0.0f;
+ sd->u = 0.0f;
+ sd->v = 0.0f;
#endif
#ifdef __DPDU__
/* dPdu/dPdv */
- ccl_fetch(sd, dPdu) = make_float3(0.0f, 0.0f, 0.0f);
- ccl_fetch(sd, dPdv) = make_float3(0.0f, 0.0f, 0.0f);
+ sd->dPdu = make_float3(0.0f, 0.0f, 0.0f);
+ sd->dPdv = make_float3(0.0f, 0.0f, 0.0f);
#endif
#ifdef __RAY_DIFFERENTIALS__
/* differentials */
- ccl_fetch(sd, dP) = ray->dD;
- differential_incoming(&ccl_fetch(sd, dI), ccl_fetch(sd, dP));
- ccl_fetch(sd, du) = differential_zero();
- ccl_fetch(sd, dv) = differential_zero();
+ sd->dP = ray->dD;
+ differential_incoming(&sd->dI, sd->dP);
+ sd->du = differential_zero();
+ sd->dv = differential_zero();
#endif
}
@@ -429,9 +432,8 @@ ccl_device_inline void shader_setup_from_volume(KernelGlobals *kg, ShaderData *s
sd->I = -ray->D;
sd->shader = SHADER_NONE;
sd->flag = 0;
-#ifdef __OBJECT_MOTION__
+ sd->object_flag = 0;
sd->time = ray->time;
-#endif
sd->ray_length = 0.0f; /* todo: can we set this to some useful value? */
#ifdef __INSTANCING__
@@ -500,25 +502,50 @@ ccl_device_inline void shader_merge_closures(ShaderData *sd)
}
#endif
+/* Defensive sampling. */
+
+ccl_device_inline void shader_prepare_closures(ShaderData *sd,
+ ccl_addr_space PathState *state)
+{
+ /* We can likely also do defensive sampling at deeper bounces, particularly
+ * for cases like a perfect mirror but possibly also others. This will need
+ * a good heuristic. */
+ if(state->bounce + state->transparent_bounce == 0 && sd->num_closure > 1) {
+ float sum = 0.0f;
+
+ for(int i = 0; i < sd->num_closure; i++) {
+ ShaderClosure *sc = &sd->closure[i];
+ if(CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
+ sum += sc->sample_weight;
+ }
+ }
+
+ for(int i = 0; i < sd->num_closure; i++) {
+ ShaderClosure *sc = &sd->closure[i];
+ if(CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
+ sc->sample_weight = max(sc->sample_weight, 0.125f * sum);
+ }
+ }
+ }
+}
+
+
/* BSDF */
ccl_device_inline void _shader_bsdf_multi_eval(KernelGlobals *kg, ShaderData *sd, const float3 omega_in, float *pdf,
- int skip_bsdf, BsdfEval *result_eval, float sum_pdf, float sum_sample_weight)
+ const ShaderClosure *skip_sc, BsdfEval *result_eval, float sum_pdf, float sum_sample_weight)
{
/* this is the veach one-sample model with balance heuristic, some pdf
* factors drop out when using balance heuristic weighting */
- for(int i = 0; i < ccl_fetch(sd, num_closure); i++) {
- if(i == skip_bsdf)
- continue;
-
- const ShaderClosure *sc = ccl_fetch_array(sd, closure, i);
+ for(int i = 0; i < sd->num_closure; i++) {
+ const ShaderClosure *sc = &sd->closure[i];
- if(CLOSURE_IS_BSDF(sc->type)) {
+ if(sc != skip_sc && CLOSURE_IS_BSDF(sc->type)) {
float bsdf_pdf = 0.0f;
float3 eval = bsdf_eval(kg, sd, sc, omega_in, &bsdf_pdf);
if(bsdf_pdf != 0.0f) {
- bsdf_eval_accum(result_eval, sc->type, eval*sc->weight);
+ bsdf_eval_accum(result_eval, sc->type, eval*sc->weight, 1.0f);
sum_pdf += bsdf_pdf*sc->sample_weight;
}
@@ -537,8 +564,8 @@ ccl_device_inline void _shader_bsdf_multi_eval_branched(KernelGlobals *kg,
float light_pdf,
bool use_mis)
{
- for(int i = 0; i < ccl_fetch(sd, num_closure); i++) {
- const ShaderClosure *sc = ccl_fetch_array(sd, closure, i);
+ for(int i = 0; i < sd->num_closure; i++) {
+ const ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF(sc->type)) {
float bsdf_pdf = 0.0f;
float3 eval = bsdf_eval(kg, sd, sc, omega_in, &bsdf_pdf);
@@ -546,7 +573,8 @@ ccl_device_inline void _shader_bsdf_multi_eval_branched(KernelGlobals *kg,
float mis_weight = use_mis? power_heuristic(light_pdf, bsdf_pdf): 1.0f;
bsdf_eval_accum(result_eval,
sc->type,
- eval * sc->weight * mis_weight);
+ eval * sc->weight,
+ mis_weight);
}
}
}
@@ -575,56 +603,128 @@ void shader_bsdf_eval(KernelGlobals *kg,
#endif
{
float pdf;
- _shader_bsdf_multi_eval(kg, sd, omega_in, &pdf, -1, eval, 0.0f, 0.0f);
+ _shader_bsdf_multi_eval(kg, sd, omega_in, &pdf, NULL, eval, 0.0f, 0.0f);
if(use_mis) {
float weight = power_heuristic(light_pdf, pdf);
- bsdf_eval_mul(eval, weight);
+ bsdf_eval_mis(eval, weight);
}
}
}
-ccl_device_inline int shader_bsdf_sample(KernelGlobals *kg,
- ShaderData *sd,
- float randu, float randv,
- BsdfEval *bsdf_eval,
- float3 *omega_in,
- differential3 *domega_in,
- float *pdf)
+ccl_device_inline const ShaderClosure *shader_bsdf_pick(ShaderData *sd,
+ float *randu)
{
int sampled = 0;
- if(ccl_fetch(sd, num_closure) > 1) {
- /* pick a BSDF closure based on sample weights */
+ if(sd->num_closure > 1) {
+ /* Pick a BSDF or based on sample weights. */
float sum = 0.0f;
- for(sampled = 0; sampled < ccl_fetch(sd, num_closure); sampled++) {
- const ShaderClosure *sc = ccl_fetch_array(sd, closure, sampled);
-
- if(CLOSURE_IS_BSDF(sc->type))
+ for(int i = 0; i < sd->num_closure; i++) {
+ const ShaderClosure *sc = &sd->closure[i];
+
+ if(CLOSURE_IS_BSDF(sc->type)) {
sum += sc->sample_weight;
+ }
}
- float r = ccl_fetch(sd, randb_closure)*sum;
- sum = 0.0f;
+ float r = (*randu)*sum;
+ float partial_sum = 0.0f;
+
+ for(int i = 0; i < sd->num_closure; i++) {
+ const ShaderClosure *sc = &sd->closure[i];
- for(sampled = 0; sampled < ccl_fetch(sd, num_closure); sampled++) {
- const ShaderClosure *sc = ccl_fetch_array(sd, closure, sampled);
-
if(CLOSURE_IS_BSDF(sc->type)) {
- sum += sc->sample_weight;
+ float next_sum = partial_sum + sc->sample_weight;
+
+ if(r < next_sum) {
+ sampled = i;
- if(r <= sum)
+ /* Rescale to reuse for direction sample, to better
+ * preserve stratifaction. */
+ *randu = (r - partial_sum) / sc->sample_weight;
break;
+ }
+
+ partial_sum = next_sum;
}
}
+ }
- if(sampled == ccl_fetch(sd, num_closure)) {
- *pdf = 0.0f;
- return LABEL_NONE;
+ return &sd->closure[sampled];
+}
+
+ccl_device_inline const ShaderClosure *shader_bssrdf_pick(ShaderData *sd,
+ ccl_addr_space float3 *throughput,
+ float *randu)
+{
+ int sampled = 0;
+
+ if(sd->num_closure > 1) {
+ /* Pick a BSDF or BSSRDF or based on sample weights. */
+ float sum_bsdf = 0.0f;
+ float sum_bssrdf = 0.0f;
+
+ for(int i = 0; i < sd->num_closure; i++) {
+ const ShaderClosure *sc = &sd->closure[i];
+
+ if(CLOSURE_IS_BSDF(sc->type)) {
+ sum_bsdf += sc->sample_weight;
+ }
+ else if(CLOSURE_IS_BSSRDF(sc->type)) {
+ sum_bssrdf += sc->sample_weight;
+ }
}
+
+ float r = (*randu)*(sum_bsdf + sum_bssrdf);
+ float partial_sum = 0.0f;
+
+ for(int i = 0; i < sd->num_closure; i++) {
+ const ShaderClosure *sc = &sd->closure[i];
+
+ if(CLOSURE_IS_BSDF_OR_BSSRDF(sc->type)) {
+ float next_sum = partial_sum + sc->sample_weight;
+
+ if(r < next_sum) {
+ if(CLOSURE_IS_BSDF(sc->type)) {
+ *throughput *= (sum_bsdf + sum_bssrdf) / sum_bsdf;
+ return NULL;
+ }
+ else {
+ *throughput *= (sum_bsdf + sum_bssrdf) / sum_bssrdf;
+ sampled = i;
+
+ /* Rescale to reuse for direction sample, to better
+ * preserve stratifaction. */
+ *randu = (r - partial_sum) / sc->sample_weight;
+ break;
+ }
+ }
+
+ partial_sum = next_sum;
+ }
+ }
+ }
+
+ return &sd->closure[sampled];
+}
+
+ccl_device_inline int shader_bsdf_sample(KernelGlobals *kg,
+ ShaderData *sd,
+ float randu, float randv,
+ BsdfEval *bsdf_eval,
+ float3 *omega_in,
+ differential3 *domega_in,
+ float *pdf)
+{
+ const ShaderClosure *sc = shader_bsdf_pick(sd, &randu);
+ if(sc == NULL) {
+ *pdf = 0.0f;
+ return LABEL_NONE;
}
- const ShaderClosure *sc = ccl_fetch_array(sd, closure, sampled);
+ /* BSSRDF should already have been handled elsewhere. */
+ kernel_assert(CLOSURE_IS_BSDF(sc->type));
int label;
float3 eval;
@@ -635,9 +735,9 @@ ccl_device_inline int shader_bsdf_sample(KernelGlobals *kg,
if(*pdf != 0.0f) {
bsdf_eval_init(bsdf_eval, sc->type, eval*sc->weight, kernel_data.film.use_light_pass);
- if(ccl_fetch(sd, num_closure) > 1) {
+ if(sd->num_closure > 1) {
float sweight = sc->sample_weight;
- _shader_bsdf_multi_eval(kg, sd, *omega_in, pdf, sampled, bsdf_eval, *pdf*sweight, sweight);
+ _shader_bsdf_multi_eval(kg, sd, *omega_in, pdf, sc, bsdf_eval, *pdf*sweight, sweight);
}
}
@@ -662,23 +762,23 @@ ccl_device int shader_bsdf_sample_closure(KernelGlobals *kg, ShaderData *sd,
ccl_device void shader_bsdf_blur(KernelGlobals *kg, ShaderData *sd, float roughness)
{
- for(int i = 0; i < ccl_fetch(sd, num_closure); i++) {
- ShaderClosure *sc = ccl_fetch_array(sd, closure, i);
+ for(int i = 0; i < sd->num_closure; i++) {
+ ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF(sc->type))
bsdf_blur(kg, sc, roughness);
}
}
-ccl_device float3 shader_bsdf_transparency(KernelGlobals *kg, ShaderData *sd)
+ccl_device float3 shader_bsdf_transparency(KernelGlobals *kg, const ShaderData *sd)
{
- if(ccl_fetch(sd, flag) & SD_HAS_ONLY_VOLUME)
+ if(sd->flag & SD_HAS_ONLY_VOLUME)
return make_float3(1.0f, 1.0f, 1.0f);
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
- for(int i = 0; i < ccl_fetch(sd, num_closure); i++) {
- ShaderClosure *sc = ccl_fetch_array(sd, closure, i);
+ for(int i = 0; i < sd->num_closure; i++) {
+ const ShaderClosure *sc = &sd->closure[i];
if(sc->type == CLOSURE_BSDF_TRANSPARENT_ID) // todo: make this work for osl
eval += sc->weight;
@@ -687,6 +787,18 @@ ccl_device float3 shader_bsdf_transparency(KernelGlobals *kg, ShaderData *sd)
return eval;
}
+ccl_device void shader_bsdf_disable_transparency(KernelGlobals *kg, ShaderData *sd)
+{
+ for(int i = 0; i < sd->num_closure; i++) {
+ ShaderClosure *sc = &sd->closure[i];
+
+ if(sc->type == CLOSURE_BSDF_TRANSPARENT_ID) {
+ sc->sample_weight = 0.0f;
+ sc->weight = make_float3(0.0f, 0.0f, 0.0f);
+ }
+ }
+}
+
ccl_device float3 shader_bsdf_alpha(KernelGlobals *kg, ShaderData *sd)
{
float3 alpha = make_float3(1.0f, 1.0f, 1.0f) - shader_bsdf_transparency(kg, sd);
@@ -701,8 +813,8 @@ ccl_device float3 shader_bsdf_diffuse(KernelGlobals *kg, ShaderData *sd)
{
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
- for(int i = 0; i < ccl_fetch(sd, num_closure); i++) {
- ShaderClosure *sc = ccl_fetch_array(sd, closure, i);
+ for(int i = 0; i < sd->num_closure; i++) {
+ ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF_DIFFUSE(sc->type))
eval += sc->weight;
@@ -715,8 +827,8 @@ ccl_device float3 shader_bsdf_glossy(KernelGlobals *kg, ShaderData *sd)
{
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
- for(int i = 0; i < ccl_fetch(sd, num_closure); i++) {
- ShaderClosure *sc = ccl_fetch_array(sd, closure, i);
+ for(int i = 0; i < sd->num_closure; i++) {
+ ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF_GLOSSY(sc->type))
eval += sc->weight;
@@ -729,8 +841,8 @@ ccl_device float3 shader_bsdf_transmission(KernelGlobals *kg, ShaderData *sd)
{
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
- for(int i = 0; i < ccl_fetch(sd, num_closure); i++) {
- ShaderClosure *sc = ccl_fetch_array(sd, closure, i);
+ for(int i = 0; i < sd->num_closure; i++) {
+ ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF_TRANSMISSION(sc->type))
eval += sc->weight;
@@ -743,8 +855,8 @@ ccl_device float3 shader_bsdf_subsurface(KernelGlobals *kg, ShaderData *sd)
{
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
- for(int i = 0; i < ccl_fetch(sd, num_closure); i++) {
- ShaderClosure *sc = ccl_fetch_array(sd, closure, i);
+ for(int i = 0; i < sd->num_closure; i++) {
+ ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSSRDF(sc->type) || CLOSURE_IS_BSDF_BSSRDF(sc->type))
eval += sc->weight;
@@ -753,13 +865,26 @@ ccl_device float3 shader_bsdf_subsurface(KernelGlobals *kg, ShaderData *sd)
return eval;
}
+ccl_device float3 shader_bsdf_average_normal(KernelGlobals *kg, ShaderData *sd)
+{
+ float3 N = make_float3(0.0f, 0.0f, 0.0f);
+
+ for(int i = 0; i < sd->num_closure; i++) {
+ ShaderClosure *sc = &sd->closure[i];
+ if(CLOSURE_IS_BSDF_OR_BSSRDF(sc->type))
+ N += sc->N*average(sc->weight);
+ }
+
+ return (is_zero(N))? sd->N : normalize(N);
+}
+
ccl_device float3 shader_bsdf_ao(KernelGlobals *kg, ShaderData *sd, float ao_factor, float3 *N_)
{
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
float3 N = make_float3(0.0f, 0.0f, 0.0f);
- for(int i = 0; i < ccl_fetch(sd, num_closure); i++) {
- ShaderClosure *sc = ccl_fetch_array(sd, closure, i);
+ for(int i = 0; i < sd->num_closure; i++) {
+ ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSDF_DIFFUSE(sc->type)) {
const DiffuseBsdf *bsdf = (const DiffuseBsdf*)sc;
@@ -768,16 +893,11 @@ ccl_device float3 shader_bsdf_ao(KernelGlobals *kg, ShaderData *sd, float ao_fac
}
else if(CLOSURE_IS_AMBIENT_OCCLUSION(sc->type)) {
eval += sc->weight;
- N += ccl_fetch(sd, N)*average(sc->weight);
+ N += sd->N*average(sc->weight);
}
}
- if(is_zero(N))
- N = ccl_fetch(sd, N);
- else
- N = normalize(N);
-
- *N_ = N;
+ *N_ = (is_zero(N))? sd->N : normalize(N);
return eval;
}
@@ -788,8 +908,8 @@ ccl_device float3 shader_bssrdf_sum(ShaderData *sd, float3 *N_, float *texture_b
float3 N = make_float3(0.0f, 0.0f, 0.0f);
float texture_blur = 0.0f, weight_sum = 0.0f;
- for(int i = 0; i < ccl_fetch(sd, num_closure); i++) {
- ShaderClosure *sc = ccl_fetch_array(sd, closure, i);
+ for(int i = 0; i < sd->num_closure; i++) {
+ ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BSSRDF(sc->type)) {
const Bssrdf *bssrdf = (const Bssrdf*)sc;
@@ -803,10 +923,10 @@ ccl_device float3 shader_bssrdf_sum(ShaderData *sd, float3 *N_, float *texture_b
}
if(N_)
- *N_ = (is_zero(N))? ccl_fetch(sd, N): normalize(N);
+ *N_ = (is_zero(N))? sd->N: normalize(N);
if(texture_blur_)
- *texture_blur_ = texture_blur/weight_sum;
+ *texture_blur_ = safe_divide(texture_blur, weight_sum);
return eval;
}
@@ -816,7 +936,7 @@ ccl_device float3 shader_bssrdf_sum(ShaderData *sd, float3 *N_, float *texture_b
ccl_device float3 emissive_eval(KernelGlobals *kg, ShaderData *sd, ShaderClosure *sc)
{
- return emissive_simple_eval(ccl_fetch(sd, Ng), ccl_fetch(sd, I));
+ return emissive_simple_eval(sd->Ng, sd->I);
}
ccl_device float3 shader_emissive_eval(KernelGlobals *kg, ShaderData *sd)
@@ -824,8 +944,8 @@ ccl_device float3 shader_emissive_eval(KernelGlobals *kg, ShaderData *sd)
float3 eval;
eval = make_float3(0.0f, 0.0f, 0.0f);
- for(int i = 0; i < ccl_fetch(sd, num_closure); i++) {
- ShaderClosure *sc = ccl_fetch_array(sd, closure, i);
+ for(int i = 0; i < sd->num_closure; i++) {
+ ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_EMISSION(sc->type))
eval += emissive_eval(kg, sd, sc)*sc->weight;
@@ -840,8 +960,8 @@ ccl_device float3 shader_holdout_eval(KernelGlobals *kg, ShaderData *sd)
{
float3 weight = make_float3(0.0f, 0.0f, 0.0f);
- for(int i = 0; i < ccl_fetch(sd, num_closure); i++) {
- ShaderClosure *sc = ccl_fetch_array(sd, closure, i);
+ for(int i = 0; i < sd->num_closure; i++) {
+ ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_HOLDOUT(sc->type))
weight += sc->weight;
@@ -852,16 +972,15 @@ ccl_device float3 shader_holdout_eval(KernelGlobals *kg, ShaderData *sd)
/* Surface Evaluation */
-ccl_device void shader_eval_surface(KernelGlobals *kg, ShaderData *sd, ccl_addr_space RNG *rng,
- ccl_addr_space PathState *state, float randb, int path_flag, ShaderContext ctx)
+ccl_device void shader_eval_surface(KernelGlobals *kg, ShaderData *sd,
+ ccl_addr_space PathState *state, int path_flag)
{
- ccl_fetch(sd, num_closure) = 0;
- ccl_fetch(sd, num_closure_extra) = 0;
- ccl_fetch(sd, randb_closure) = randb;
+ sd->num_closure = 0;
+ sd->num_closure_extra = 0;
#ifdef __OSL__
if(kg->osl)
- OSLShader::eval_surface(kg, sd, state, path_flag, ctx);
+ OSLShader::eval_surface(kg, sd, state, path_flag);
else
#endif
{
@@ -871,29 +990,28 @@ ccl_device void shader_eval_surface(KernelGlobals *kg, ShaderData *sd, ccl_addr_
DiffuseBsdf *bsdf = (DiffuseBsdf*)bsdf_alloc(sd,
sizeof(DiffuseBsdf),
make_float3(0.8f, 0.8f, 0.8f));
- bsdf->N = ccl_fetch(sd, N);
- ccl_fetch(sd, flag) |= bsdf_diffuse_setup(bsdf);
+ bsdf->N = sd->N;
+ sd->flag |= bsdf_diffuse_setup(bsdf);
#endif
}
- if(rng && (ccl_fetch(sd, flag) & SD_BSDF_NEEDS_LCG)) {
- ccl_fetch(sd, lcg_state) = lcg_state_init_addrspace(rng, state, 0xb4bc3953);
+ if(sd->flag & SD_BSDF_NEEDS_LCG) {
+ sd->lcg_state = lcg_state_init_addrspace(state, 0xb4bc3953);
}
}
/* Background Evaluation */
ccl_device float3 shader_eval_background(KernelGlobals *kg, ShaderData *sd,
- ccl_addr_space PathState *state, int path_flag, ShaderContext ctx)
+ ccl_addr_space PathState *state, int path_flag)
{
- ccl_fetch(sd, num_closure) = 0;
- ccl_fetch(sd, num_closure_extra) = 0;
- ccl_fetch(sd, randb_closure) = 0.0f;
+ sd->num_closure = 0;
+ sd->num_closure_extra = 0;
#ifdef __SVM__
#ifdef __OSL__
if(kg->osl) {
- OSLShader::eval_background(kg, sd, state, path_flag, ctx);
+ OSLShader::eval_background(kg, sd, state, path_flag);
}
else
#endif
@@ -903,8 +1021,8 @@ ccl_device float3 shader_eval_background(KernelGlobals *kg, ShaderData *sd,
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
- for(int i = 0; i < ccl_fetch(sd, num_closure); i++) {
- const ShaderClosure *sc = ccl_fetch_array(sd, closure, i);
+ for(int i = 0; i < sd->num_closure; i++) {
+ const ShaderClosure *sc = &sd->closure[i];
if(CLOSURE_IS_BACKGROUND(sc->type))
eval += sc->weight;
@@ -934,7 +1052,7 @@ ccl_device_inline void _shader_volume_phase_multi_eval(const ShaderData *sd, con
float3 eval = volume_phase_eval(sd, sc, omega_in, &phase_pdf);
if(phase_pdf != 0.0f) {
- bsdf_eval_accum(result_eval, sc->type, eval);
+ bsdf_eval_accum(result_eval, sc->type, eval, 1.0f);
sum_pdf += phase_pdf*sc->sample_weight;
}
@@ -970,17 +1088,22 @@ ccl_device int shader_volume_phase_sample(KernelGlobals *kg, const ShaderData *s
sum += sc->sample_weight;
}
- float r = sd->randb_closure*sum;
- sum = 0.0f;
+ float r = randu*sum;
+ float partial_sum = 0.0f;
for(sampled = 0; sampled < sd->num_closure; sampled++) {
const ShaderClosure *sc = &sd->closure[sampled];
if(CLOSURE_IS_PHASE(sc->type)) {
- sum += sc->sample_weight;
+ float next_sum = partial_sum + sc->sample_weight;
- if(r <= sum)
+ if(r <= next_sum) {
+ /* Rescale to reuse for BSDF direction sample. */
+ randu = (r - partial_sum) / sc->sample_weight;
break;
+ }
+
+ partial_sum = next_sum;
}
}
@@ -1026,16 +1149,16 @@ ccl_device int shader_phase_sample_closure(KernelGlobals *kg, const ShaderData *
ccl_device_inline void shader_eval_volume(KernelGlobals *kg,
ShaderData *sd,
- PathState *state,
- VolumeStack *stack,
- int path_flag,
- ShaderContext ctx)
+ ccl_addr_space PathState *state,
+ ccl_addr_space VolumeStack *stack,
+ int path_flag)
{
/* reset closures once at the start, we will be accumulating the closures
* for all volumes in the stack into a single array of closures */
sd->num_closure = 0;
sd->num_closure_extra = 0;
sd->flag = 0;
+ sd->object_flag = 0;
for(int i = 0; stack[i].shader != SHADER_NONE; i++) {
/* setup shaderdata from stack. it's mostly setup already in
@@ -1043,11 +1166,12 @@ ccl_device_inline void shader_eval_volume(KernelGlobals *kg,
sd->object = stack[i].object;
sd->shader = stack[i].shader;
- sd->flag &= ~(SD_SHADER_FLAGS|SD_OBJECT_FLAGS);
+ sd->flag &= ~SD_SHADER_FLAGS;
sd->flag |= kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*SHADER_SIZE);
+ sd->object_flag &= ~SD_OBJECT_FLAGS;
if(sd->object != OBJECT_NONE) {
- sd->flag |= kernel_tex_fetch(__object_flag, sd->object);
+ sd->object_flag |= kernel_tex_fetch(__object_flag, sd->object);
#ifdef __OBJECT_MOTION__
/* todo: this is inefficient for motion blur, we should be
@@ -1060,7 +1184,7 @@ ccl_device_inline void shader_eval_volume(KernelGlobals *kg,
#ifdef __SVM__
# ifdef __OSL__
if(kg->osl) {
- OSLShader::eval_volume(kg, sd, state, path_flag, ctx);
+ OSLShader::eval_volume(kg, sd, state, path_flag);
}
else
# endif
@@ -1079,17 +1203,16 @@ ccl_device_inline void shader_eval_volume(KernelGlobals *kg,
/* Displacement Evaluation */
-ccl_device void shader_eval_displacement(KernelGlobals *kg, ShaderData *sd, ccl_addr_space PathState *state, ShaderContext ctx)
+ccl_device void shader_eval_displacement(KernelGlobals *kg, ShaderData *sd, ccl_addr_space PathState *state)
{
- ccl_fetch(sd, num_closure) = 0;
- ccl_fetch(sd, num_closure_extra) = 0;
- ccl_fetch(sd, randb_closure) = 0.0f;
+ sd->num_closure = 0;
+ sd->num_closure_extra = 0;
/* this will modify sd->P */
#ifdef __SVM__
# ifdef __OSL__
if(kg->osl)
- OSLShader::eval_displacement(kg, sd, ctx);
+ OSLShader::eval_displacement(kg, sd, state);
else
# endif
{
diff --git a/intern/cycles/kernel/kernel_shadow.h b/intern/cycles/kernel/kernel_shadow.h
index 2981f6ac566..8a0da6c3b13 100644
--- a/intern/cycles/kernel/kernel_shadow.h
+++ b/intern/cycles/kernel/kernel_shadow.h
@@ -16,9 +16,118 @@
CCL_NAMESPACE_BEGIN
-#ifdef __SHADOW_RECORD_ALL__
+#ifdef __VOLUME__
+typedef struct VolumeState {
+# ifdef __SPLIT_KERNEL__
+# else
+ PathState ps;
+# endif
+} VolumeState;
+
+/* Get PathState ready for use for volume stack evaluation. */
+# ifdef __SPLIT_KERNEL__
+ccl_addr_space
+# endif
+ccl_device_inline PathState *shadow_blocked_volume_path_state(
+ KernelGlobals *kg,
+ VolumeState *volume_state,
+ ccl_addr_space PathState *state,
+ ShaderData *sd,
+ Ray *ray)
+{
+# ifdef __SPLIT_KERNEL__
+ ccl_addr_space PathState *ps =
+ &kernel_split_state.state_shadow[ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0)];
+# else
+ PathState *ps = &volume_state->ps;
+# endif
+ *ps = *state;
+ /* We are checking for shadow on the "other" side of the surface, so need
+ * to discard volume we are currently at.
+ */
+ if(dot(sd->Ng, ray->D) < 0.0f) {
+ kernel_volume_stack_enter_exit(kg, sd, ps->volume_stack);
+ }
+ return ps;
+}
+#endif /* __VOLUME__ */
+
+/* Attenuate throughput accordingly to the given intersection event.
+ * Returns true if the throughput is zero and traversal can be aborted.
+ */
+ccl_device_forceinline bool shadow_handle_transparent_isect(
+ KernelGlobals *kg,
+ ShaderData *shadow_sd,
+ ccl_addr_space PathState *state,
+# ifdef __VOLUME__
+ ccl_addr_space struct PathState *volume_state,
+# endif
+ Intersection *isect,
+ Ray *ray,
+ float3 *throughput)
+{
+#ifdef __VOLUME__
+ /* Attenuation between last surface and next surface. */
+ if(volume_state->volume_stack[0].shader != SHADER_NONE) {
+ Ray segment_ray = *ray;
+ segment_ray.t = isect->t;
+ kernel_volume_shadow(kg,
+ shadow_sd,
+ volume_state,
+ &segment_ray,
+ throughput);
+ }
+#endif
+ /* Setup shader data at surface. */
+ shader_setup_from_ray(kg, shadow_sd, isect, ray);
+ /* Attenuation from transparent surface. */
+ if(!(shadow_sd->flag & SD_HAS_ONLY_VOLUME)) {
+ path_state_modify_bounce(state, true);
+ shader_eval_surface(kg,
+ shadow_sd,
+ state,
+ PATH_RAY_SHADOW);
+ path_state_modify_bounce(state, false);
+ *throughput *= shader_bsdf_transparency(kg, shadow_sd);
+ }
+ /* Stop if all light is blocked. */
+ if(is_zero(*throughput)) {
+ return true;
+ }
+#ifdef __VOLUME__
+ /* Exit/enter volume. */
+ kernel_volume_stack_enter_exit(kg, shadow_sd, volume_state->volume_stack);
+#endif
+ return false;
+}
+
+/* Special version which only handles opaque shadows. */
+ccl_device bool shadow_blocked_opaque(KernelGlobals *kg,
+ ShaderData *shadow_sd,
+ ccl_addr_space PathState *state,
+ const uint visibility,
+ Ray *ray,
+ Intersection *isect,
+ float3 *shadow)
+{
+ const bool blocked = scene_intersect(kg,
+ *ray,
+ visibility & PATH_RAY_SHADOW_OPAQUE,
+ isect,
+ NULL,
+ 0.0f, 0.0f);
+#ifdef __VOLUME__
+ if(!blocked && state->volume_stack[0].shader != SHADER_NONE) {
+ /* Apply attenuation from current volume shader. */
+ kernel_volume_shadow(kg, shadow_sd, state, ray, shadow);
+ }
+#endif
+ return blocked;
+}
-/* Shadow function to compute how much light is blocked, CPU variation.
+#ifdef __TRANSPARENT_SHADOWS__
+# ifdef __SHADOW_RECORD_ALL__
+/* Shadow function to compute how much light is blocked,
*
* We trace a single ray. If it hits any opaque surface, or more than a given
* number of transparent surfaces is hit, then we consider the geometry to be
@@ -36,261 +145,412 @@ CCL_NAMESPACE_BEGIN
* or there is a performance increase anyway due to avoiding the need to send
* two rays with transparent shadows.
*
- * This is CPU only because of qsort, and malloc or high stack space usage to
- * record all these intersections. */
+ * On CPU it'll handle all transparent bounces (by allocating storage for
+ * intersections when they don't fit into the stack storage).
+ *
+ * On GPU it'll only handle SHADOW_STACK_MAX_HITS-1 intersections, so this
+ * is something to be kept an eye on.
+ */
-#define STACK_MAX_HITS 64
+# define SHADOW_STACK_MAX_HITS 64
-ccl_device_inline bool shadow_blocked(KernelGlobals *kg, ShaderData *shadow_sd, PathState *state, Ray *ray, float3 *shadow)
+/* Actual logic with traversal loop implementation which is free from device
+ * specific tweaks.
+ *
+ * Note that hits array should be as big as max_hits+1.
+ */
+ccl_device bool shadow_blocked_transparent_all_loop(KernelGlobals *kg,
+ ShaderData *sd,
+ ShaderData *shadow_sd,
+ ccl_addr_space PathState *state,
+ const uint visibility,
+ Ray *ray,
+ Intersection *hits,
+ uint max_hits,
+ float3 *shadow)
{
- *shadow = make_float3(1.0f, 1.0f, 1.0f);
-
- if(ray->t == 0.0f)
- return false;
-
- bool blocked;
-
- if(kernel_data.integrator.transparent_shadows) {
- /* check transparent bounces here, for volume scatter which can do
- * lighting before surface path termination is checked */
- if(state->transparent_bounce >= kernel_data.integrator.transparent_max_bounce)
- return true;
-
- /* intersect to find an opaque surface, or record all transparent surface hits */
- Intersection hits_stack[STACK_MAX_HITS];
- Intersection *hits = hits_stack;
- const int transparent_max_bounce = kernel_data.integrator.transparent_max_bounce;
- uint max_hits = transparent_max_bounce - state->transparent_bounce - 1;
-
- /* prefer to use stack but use dynamic allocation if too deep max hits
- * we need max_hits + 1 storage space due to the logic in
- * scene_intersect_shadow_all which will first store and then check if
- * the limit is exceeded */
- if(max_hits + 1 > STACK_MAX_HITS) {
- if(kg->transparent_shadow_intersections == NULL) {
- kg->transparent_shadow_intersections =
- (Intersection*)malloc(sizeof(Intersection)*(transparent_max_bounce + 1));
+ /* Intersect to find an opaque surface, or record all transparent
+ * surface hits.
+ */
+ uint num_hits;
+ const bool blocked = scene_intersect_shadow_all(kg,
+ ray,
+ hits,
+ visibility,
+ max_hits,
+ &num_hits);
+# ifdef __VOLUME__
+ VolumeState volume_state;
+# endif
+ /* If no opaque surface found but we did find transparent hits,
+ * shade them.
+ */
+ if(!blocked && num_hits > 0) {
+ float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
+ float3 Pend = ray->P + ray->D*ray->t;
+ float last_t = 0.0f;
+ int bounce = state->transparent_bounce;
+ Intersection *isect = hits;
+# ifdef __VOLUME__
+# ifdef __SPLIT_KERNEL__
+ ccl_addr_space
+# endif
+ PathState *ps = shadow_blocked_volume_path_state(kg,
+ &volume_state,
+ state,
+ sd,
+ ray);
+# endif
+ sort_intersections(hits, num_hits);
+ for(int hit = 0; hit < num_hits; hit++, isect++) {
+ /* Adjust intersection distance for moving ray forward. */
+ float new_t = isect->t;
+ isect->t -= last_t;
+ /* Skip hit if we did not move forward, step by step raytracing
+ * would have skipped it as well then.
+ */
+ if(last_t == new_t) {
+ continue;
}
- hits = kg->transparent_shadow_intersections;
- }
-
- uint num_hits;
- blocked = scene_intersect_shadow_all(kg, ray, hits, max_hits, &num_hits);
-
- /* if no opaque surface found but we did find transparent hits, shade them */
- if(!blocked && num_hits > 0) {
- float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
- float3 Pend = ray->P + ray->D*ray->t;
- float last_t = 0.0f;
- int bounce = state->transparent_bounce;
- Intersection *isect = hits;
-#ifdef __VOLUME__
- PathState ps = *state;
-#endif
-
- qsort(hits, num_hits, sizeof(Intersection), intersections_compare);
-
- for(int hit = 0; hit < num_hits; hit++, isect++) {
- /* adjust intersection distance for moving ray forward */
- float new_t = isect->t;
- isect->t -= last_t;
-
- /* skip hit if we did not move forward, step by step raytracing
- * would have skipped it as well then */
- if(last_t == new_t)
- continue;
-
- last_t = new_t;
-
-#ifdef __VOLUME__
- /* attenuation between last surface and next surface */
- if(ps.volume_stack[0].shader != SHADER_NONE) {
- Ray segment_ray = *ray;
- segment_ray.t = isect->t;
- kernel_volume_shadow(kg, shadow_sd, &ps, &segment_ray, &throughput);
- }
-#endif
-
- /* setup shader data at surface */
- shader_setup_from_ray(kg, shadow_sd, isect, ray);
-
- /* attenuation from transparent surface */
- if(!(shadow_sd->flag & SD_HAS_ONLY_VOLUME)) {
- path_state_modify_bounce(state, true);
- shader_eval_surface(kg, shadow_sd, NULL, state, 0.0f, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW);
- path_state_modify_bounce(state, false);
-
- throughput *= shader_bsdf_transparency(kg, shadow_sd);
- }
-
- /* stop if all light is blocked */
- if(is_zero(throughput)) {
- return true;
- }
-
- /* move ray forward */
- ray->P = shadow_sd->P;
- if(ray->t != FLT_MAX) {
- ray->D = normalize_len(Pend - ray->P, &ray->t);
- }
-
+ last_t = new_t;
+ /* Attenuate the throughput. */
+ if(shadow_handle_transparent_isect(kg,
+ shadow_sd,
+ state,
#ifdef __VOLUME__
- /* exit/enter volume */
- kernel_volume_stack_enter_exit(kg, shadow_sd, ps.volume_stack);
+ ps,
#endif
-
- bounce++;
+ isect,
+ ray,
+ &throughput))
+ {
+ return true;
}
-
-#ifdef __VOLUME__
- /* attenuation for last line segment towards light */
- if(ps.volume_stack[0].shader != SHADER_NONE)
- kernel_volume_shadow(kg, shadow_sd, &ps, ray, &throughput);
-#endif
-
- *shadow = throughput;
-
- return is_zero(throughput);
+ /* Move ray forward. */
+ ray->P = shadow_sd->P;
+ if(ray->t != FLT_MAX) {
+ ray->D = normalize_len(Pend - ray->P, &ray->t);
+ }
+ bounce++;
}
+# ifdef __VOLUME__
+ /* Attenuation for last line segment towards light. */
+ if(ps->volume_stack[0].shader != SHADER_NONE) {
+ kernel_volume_shadow(kg, shadow_sd, ps, ray, &throughput);
+ }
+# endif
+ *shadow = throughput;
+ return is_zero(throughput);
}
- else {
- Intersection isect;
- blocked = scene_intersect(kg, *ray, PATH_RAY_SHADOW_OPAQUE, &isect, NULL, 0.0f, 0.0f);
- }
-
-#ifdef __VOLUME__
+# ifdef __VOLUME__
if(!blocked && state->volume_stack[0].shader != SHADER_NONE) {
- /* apply attenuation from current volume shader */
- kernel_volume_shadow(kg, shadow_sd, state, ray, shadow);
+ /* Apply attenuation from current volume shader. */
+# ifdef __SPLIT_KERNEL__
+ ccl_addr_space
+# endif
+ PathState *ps = shadow_blocked_volume_path_state(kg,
+ &volume_state,
+ state,
+ sd,
+ ray);
+ kernel_volume_shadow(kg, shadow_sd, ps, ray, shadow);
}
-#endif
-
+# endif
return blocked;
}
-#undef STACK_MAX_HITS
-
-#else
+/* Here we do all device specific trickery before invoking actual traversal
+ * loop to help readability of the actual logic.
+ */
+ccl_device bool shadow_blocked_transparent_all(KernelGlobals *kg,
+ ShaderData *sd,
+ ShaderData *shadow_sd,
+ ccl_addr_space PathState *state,
+ const uint visibility,
+ Ray *ray,
+ uint max_hits,
+ float3 *shadow)
+{
+# ifdef __SPLIT_KERNEL__
+ Intersection hits_[SHADOW_STACK_MAX_HITS];
+ Intersection *hits = &hits_[0];
+# elif defined(__KERNEL_CUDA__)
+ Intersection *hits = kg->hits_stack;
+# else
+ Intersection hits_stack[SHADOW_STACK_MAX_HITS];
+ Intersection *hits = hits_stack;
+# endif
+# ifndef __KERNEL_GPU__
+ /* Prefer to use stack but use dynamic allocation if too deep max hits
+ * we need max_hits + 1 storage space due to the logic in
+ * scene_intersect_shadow_all which will first store and then check if
+ * the limit is exceeded.
+ *
+ * Ignore this on GPU because of slow/unavailable malloc().
+ */
+ if(max_hits + 1 > SHADOW_STACK_MAX_HITS) {
+ if(kg->transparent_shadow_intersections == NULL) {
+ const int transparent_max_bounce = kernel_data.integrator.transparent_max_bounce;
+ kg->transparent_shadow_intersections =
+ (Intersection*)malloc(sizeof(Intersection)*(transparent_max_bounce + 1));
+ }
+ hits = kg->transparent_shadow_intersections;
+ }
+# endif /* __KERNEL_GPU__ */
+ /* Invoke actual traversal. */
+ return shadow_blocked_transparent_all_loop(kg,
+ sd,
+ shadow_sd,
+ state,
+ visibility,
+ ray,
+ hits,
+ max_hits,
+ shadow);
+}
+# endif /* __SHADOW_RECORD_ALL__ */
-/* Shadow function to compute how much light is blocked, GPU variation.
+# if defined(__KERNEL_GPU__) || !defined(__SHADOW_RECORD_ALL__)
+/* Shadow function to compute how much light is blocked,
*
* Here we raytrace from one transparent surface to the next step by step.
* To minimize overhead in cases where we don't need transparent shadows, we
* first trace a regular shadow ray. We check if the hit primitive was
* potentially transparent, and only in that case start marching. this gives
- * one extra ray cast for the cases were we do want transparency. */
+ * one extra ray cast for the cases were we do want transparency.
+ */
-ccl_device_noinline bool shadow_blocked(KernelGlobals *kg,
- ShaderData *shadow_sd,
- ccl_addr_space PathState *state,
- ccl_addr_space Ray *ray_input,
- float3 *shadow)
+/* This function is only implementing device-independent traversal logic
+ * which requires some precalculation done.
+ */
+ccl_device bool shadow_blocked_transparent_stepped_loop(
+ KernelGlobals *kg,
+ ShaderData *sd,
+ ShaderData *shadow_sd,
+ ccl_addr_space PathState *state,
+ const uint visibility,
+ Ray *ray,
+ Intersection *isect,
+ const bool blocked,
+ const bool is_transparent_isect,
+ float3 *shadow)
{
- *shadow = make_float3(1.0f, 1.0f, 1.0f);
-
- if(ray_input->t == 0.0f)
- return false;
-
-#ifdef __SPLIT_KERNEL__
- Ray private_ray = *ray_input;
- Ray *ray = &private_ray;
-#else
- Ray *ray = ray_input;
-#endif
-
-#ifdef __SPLIT_KERNEL__
- Intersection *isect = &kg->isect_shadow[SD_THREAD];
-#else
- Intersection isect_object;
- Intersection *isect = &isect_object;
-#endif
-
- bool blocked = scene_intersect(kg, *ray, PATH_RAY_SHADOW_OPAQUE, isect, NULL, 0.0f, 0.0f);
-
-#ifdef __TRANSPARENT_SHADOWS__
- if(blocked && kernel_data.integrator.transparent_shadows) {
- if(shader_transparent_shadow(kg, isect)) {
- float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
- float3 Pend = ray->P + ray->D*ray->t;
- int bounce = state->transparent_bounce;
-#ifdef __VOLUME__
- PathState ps = *state;
-#endif
-
- for(;;) {
- if(bounce >= kernel_data.integrator.transparent_max_bounce)
- return true;
-
- if(!scene_intersect(kg, *ray, PATH_RAY_SHADOW_TRANSPARENT, isect, NULL, 0.0f, 0.0f))
- {
+# ifdef __VOLUME__
+ VolumeState volume_state;
+# endif
+ if(blocked && is_transparent_isect) {
+ float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
+ float3 Pend = ray->P + ray->D*ray->t;
+ int bounce = state->transparent_bounce;
+# ifdef __VOLUME__
+# ifdef __SPLIT_KERNEL__
+ ccl_addr_space
+# endif
+ PathState *ps = shadow_blocked_volume_path_state(kg,
+ &volume_state,
+ state,
+ sd,
+ ray);
+# endif
+ for(;;) {
+ if(bounce >= kernel_data.integrator.transparent_max_bounce) {
+ return true;
+ }
+ if(!scene_intersect(kg,
+ *ray,
+ visibility & PATH_RAY_SHADOW_TRANSPARENT,
+ isect,
+ NULL,
+ 0.0f, 0.0f))
+ {
+ break;
+ }
+ if(!shader_transparent_shadow(kg, isect)) {
+ return true;
+ }
+ /* Attenuate the throughput. */
+ if(shadow_handle_transparent_isect(kg,
+ shadow_sd,
+ state,
#ifdef __VOLUME__
- /* attenuation for last line segment towards light */
- if(ps.volume_stack[0].shader != SHADER_NONE)
- kernel_volume_shadow(kg, shadow_sd, &ps, ray, &throughput);
+ ps,
#endif
+ isect,
+ ray,
+ &throughput))
+ {
+ return true;
+ }
+ /* Move ray forward. */
+ ray->P = ray_offset(shadow_sd->P, -shadow_sd->Ng);
+ if(ray->t != FLT_MAX) {
+ ray->D = normalize_len(Pend - ray->P, &ray->t);
+ }
+ bounce++;
+ }
+# ifdef __VOLUME__
+ /* Attenuation for last line segment towards light. */
+ if(ps->volume_stack[0].shader != SHADER_NONE) {
+ kernel_volume_shadow(kg, shadow_sd, ps, ray, &throughput);
+ }
+# endif
+ *shadow *= throughput;
+ return is_zero(throughput);
+ }
+# ifdef __VOLUME__
+ if(!blocked && state->volume_stack[0].shader != SHADER_NONE) {
+ /* Apply attenuation from current volume shader. */
+# ifdef __SPLIT_KERNEL__
+ ccl_addr_space
+# endif
+ PathState *ps = shadow_blocked_volume_path_state(kg,
+ &volume_state,
+ state,
+ sd,
+ ray);
+ kernel_volume_shadow(kg, shadow_sd, ps, ray, shadow);
+ }
+# endif
+ return blocked;
+}
- *shadow *= throughput;
-
- return false;
- }
+ccl_device bool shadow_blocked_transparent_stepped(
+ KernelGlobals *kg,
+ ShaderData *sd,
+ ShaderData *shadow_sd,
+ ccl_addr_space PathState *state,
+ const uint visibility,
+ Ray *ray,
+ Intersection *isect,
+ float3 *shadow)
+{
+ bool blocked = scene_intersect(kg,
+ *ray,
+ visibility & PATH_RAY_SHADOW_OPAQUE,
+ isect,
+ NULL,
+ 0.0f, 0.0f);
+ bool is_transparent_isect = blocked
+ ? shader_transparent_shadow(kg, isect)
+ : false;
+ return shadow_blocked_transparent_stepped_loop(kg,
+ sd,
+ shadow_sd,
+ state,
+ visibility,
+ ray,
+ isect,
+ blocked,
+ is_transparent_isect,
+ shadow);
+}
- if(!shader_transparent_shadow(kg, isect)) {
- return true;
- }
+# endif /* __KERNEL_GPU__ || !__SHADOW_RECORD_ALL__ */
+#endif /* __TRANSPARENT_SHADOWS__ */
-#ifdef __VOLUME__
- /* attenuation between last surface and next surface */
- if(ps.volume_stack[0].shader != SHADER_NONE) {
- Ray segment_ray = *ray;
- segment_ray.t = isect->t;
- kernel_volume_shadow(kg, shadow_sd, &ps, &segment_ray, &throughput);
- }
+ccl_device_inline bool shadow_blocked(KernelGlobals *kg,
+ ShaderData *sd,
+ ShaderData *shadow_sd,
+ ccl_addr_space PathState *state,
+ Ray *ray_input,
+ float3 *shadow)
+{
+ Ray *ray = ray_input;
+ Intersection isect;
+ /* Some common early checks. */
+ *shadow = make_float3(1.0f, 1.0f, 1.0f);
+ if(ray->t == 0.0f) {
+ return false;
+ }
+#ifdef __SHADOW_TRICKS__
+ const uint visibility = (state->flag & PATH_RAY_SHADOW_CATCHER)
+ ? PATH_RAY_SHADOW_NON_CATCHER
+ : PATH_RAY_SHADOW;
+#else
+ const uint visibility = PATH_RAY_SHADOW;
#endif
-
- /* setup shader data at surface */
- shader_setup_from_ray(kg, shadow_sd, isect, ray);
-
- /* attenuation from transparent surface */
- if(!(ccl_fetch(shadow_sd, flag) & SD_HAS_ONLY_VOLUME)) {
- path_state_modify_bounce(state, true);
- shader_eval_surface(kg, shadow_sd, NULL, state, 0.0f, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW);
- path_state_modify_bounce(state, false);
-
- throughput *= shader_bsdf_transparency(kg, shadow_sd);
- }
-
- /* stop if all light is blocked */
- if(is_zero(throughput)) {
- return true;
- }
-
- /* move ray forward */
- ray->P = ray_offset(ccl_fetch(shadow_sd, P), -ccl_fetch(shadow_sd, Ng));
- if(ray->t != FLT_MAX) {
- ray->D = normalize_len(Pend - ray->P, &ray->t);
- }
-
-#ifdef __VOLUME__
- /* exit/enter volume */
- kernel_volume_stack_enter_exit(kg, shadow_sd, ps.volume_stack);
+ /* Do actual shadow shading. */
+ /* First of all, we check if integrator requires transparent shadows.
+ * if not, we use simplest and fastest ever way to calculate occlusion.
+ */
+#ifdef __TRANSPARENT_SHADOWS__
+ if(!kernel_data.integrator.transparent_shadows)
#endif
-
- bounce++;
- }
- }
+ {
+ return shadow_blocked_opaque(kg,
+ shadow_sd,
+ state,
+ visibility,
+ ray,
+ &isect,
+ shadow);
}
-#ifdef __VOLUME__
- else if(!blocked && state->volume_stack[0].shader != SHADER_NONE) {
- /* apply attenuation from current volume shader */
- kernel_volume_shadow(kg, shadow_sd, state, ray, shadow);
+#ifdef __TRANSPARENT_SHADOWS__
+# ifdef __SHADOW_RECORD_ALL__
+ /* For the transparent shadows we try to use record-all logic on the
+ * devices which supports this.
+ */
+ const int transparent_max_bounce = kernel_data.integrator.transparent_max_bounce;
+ /* Check transparent bounces here, for volume scatter which can do
+ * lighting before surface path termination is checked.
+ */
+ if(state->transparent_bounce >= transparent_max_bounce) {
+ return true;
}
-#endif
-#endif
-
- return blocked;
+ const uint max_hits = transparent_max_bounce - state->transparent_bounce - 1;
+# ifdef __KERNEL_GPU__
+ /* On GPU we do trickey with tracing opaque ray first, this avoids speed
+ * regressions in some files.
+ *
+ * TODO(sergey): Check why using record-all behavior causes slowdown in such
+ * cases. Could that be caused by a higher spill pressure?
+ */
+ const bool blocked = scene_intersect(kg,
+ *ray,
+ visibility & PATH_RAY_SHADOW_OPAQUE,
+ &isect,
+ NULL,
+ 0.0f, 0.0f);
+ const bool is_transparent_isect = blocked
+ ? shader_transparent_shadow(kg, &isect)
+ : false;
+ if(!blocked || !is_transparent_isect ||
+ max_hits + 1 >= SHADOW_STACK_MAX_HITS)
+ {
+ return shadow_blocked_transparent_stepped_loop(kg,
+ sd,
+ shadow_sd,
+ state,
+ visibility,
+ ray,
+ &isect,
+ blocked,
+ is_transparent_isect,
+ shadow);
+ }
+# endif /* __KERNEL_GPU__ */
+ return shadow_blocked_transparent_all(kg,
+ sd,
+ shadow_sd,
+ state,
+ visibility,
+ ray,
+ max_hits,
+ shadow);
+# else /* __SHADOW_RECORD_ALL__ */
+ /* Fallback to a slowest version which works on all devices. */
+ return shadow_blocked_transparent_stepped(kg,
+ sd,
+ shadow_sd,
+ state,
+ visibility,
+ ray,
+ &isect,
+ shadow);
+# endif /* __SHADOW_RECORD_ALL__ */
+#endif /* __TRANSPARENT_SHADOWS__ */
}
-#endif
+#undef SHADOW_STACK_MAX_HITS
CCL_NAMESPACE_END
-
diff --git a/intern/cycles/kernel/kernel_subsurface.h b/intern/cycles/kernel/kernel_subsurface.h
index 52c05b85aee..23a09e5e2ca 100644
--- a/intern/cycles/kernel/kernel_subsurface.h
+++ b/intern/cycles/kernel/kernel_subsurface.h
@@ -28,87 +28,31 @@ CCL_NAMESPACE_BEGIN
* - try to reduce one sample model variance
*/
-#define BSSRDF_MULTI_EVAL
-
-ccl_device ShaderClosure *subsurface_scatter_pick_closure(KernelGlobals *kg, ShaderData *sd, float *probability)
-{
- /* sum sample weights of bssrdf and bsdf */
- float bsdf_sum = 0.0f;
- float bssrdf_sum = 0.0f;
-
- for(int i = 0; i < sd->num_closure; i++) {
- ShaderClosure *sc = &sd->closure[i];
-
- if(CLOSURE_IS_BSDF(sc->type))
- bsdf_sum += sc->sample_weight;
- else if(CLOSURE_IS_BSSRDF(sc->type))
- bssrdf_sum += sc->sample_weight;
- }
-
- /* use bsdf or bssrdf? */
- float r = sd->randb_closure*(bsdf_sum + bssrdf_sum);
-
- if(r < bsdf_sum) {
- /* use bsdf, and adjust randb so we can reuse it for picking a bsdf */
- sd->randb_closure = r/bsdf_sum;
- *probability = (bsdf_sum > 0.0f)? (bsdf_sum + bssrdf_sum)/bsdf_sum: 1.0f;
- return NULL;
- }
-
- /* use bssrdf */
- r -= bsdf_sum;
-
- float sum = 0.0f;
-
- for(int i = 0; i < sd->num_closure; i++) {
- ShaderClosure *sc = &sd->closure[i];
-
- if(CLOSURE_IS_BSSRDF(sc->type)) {
- sum += sc->sample_weight;
-
- if(r <= sum) {
- sd->randb_closure = (r - (sum - sc->sample_weight))/sc->sample_weight;
-
-#ifdef BSSRDF_MULTI_EVAL
- *probability = (bssrdf_sum > 0.0f)? (bsdf_sum + bssrdf_sum)/bssrdf_sum: 1.0f;
-#else
- *probability = (bssrdf_sum > 0.0f)? (bsdf_sum + bssrdf_sum)/sc->sample_weight: 1.0f;
-#endif
- return sc;
- }
- }
- }
-
- /* should never happen */
- sd->randb_closure = 0.0f;
- *probability = 1.0f;
- return NULL;
-}
-
ccl_device_inline float3 subsurface_scatter_eval(ShaderData *sd,
- ShaderClosure *sc,
+ const ShaderClosure *sc,
float disk_r,
float r,
bool all)
{
-#ifdef BSSRDF_MULTI_EVAL
/* this is the veach one-sample model with balance heuristic, some pdf
* factors drop out when using balance heuristic weighting */
float3 eval_sum = make_float3(0.0f, 0.0f, 0.0f);
float pdf_sum = 0.0f;
- float sample_weight_sum = 0.0f;
- int num_bssrdf = 0;
+ float sample_weight_inv = 0.0f;
- for(int i = 0; i < sd->num_closure; i++) {
- sc = &sd->closure[i];
-
- if(CLOSURE_IS_BSSRDF(sc->type)) {
- float sample_weight = (all)? 1.0f: sc->sample_weight;
- sample_weight_sum += sample_weight;
+ if(!all) {
+ float sample_weight_sum = 0.0f;
+
+ for(int i = 0; i < sd->num_closure; i++) {
+ sc = &sd->closure[i];
+
+ if(CLOSURE_IS_BSSRDF(sc->type)) {
+ sample_weight_sum += sc->sample_weight;
+ }
}
- }
- float sample_weight_inv = 1.0f/sample_weight_sum;
+ sample_weight_inv = 1.0f/sample_weight_sum;
+ }
for(int i = 0; i < sd->num_closure; i++) {
sc = &sd->closure[i];
@@ -125,38 +69,49 @@ ccl_device_inline float3 subsurface_scatter_eval(ShaderData *sd,
/* TODO power heuristic is not working correct here */
eval_sum += sc->weight*pdf; //*sample_weight*disk_pdf;
pdf_sum += sample_weight*disk_pdf; //*sample_weight*disk_pdf;
-
- num_bssrdf++;
}
}
return (pdf_sum > 0.0f)? eval_sum / pdf_sum : make_float3(0.0f, 0.0f, 0.0f);
-#else
- float pdf = bssrdf_pdf(pick_sc, r);
- float disk_pdf = bssrdf_pdf(pick_sc, disk_r);
-
- return pick_sc->weight * pdf / disk_pdf;
-#endif
}
/* replace closures with a single diffuse bsdf closure after scatter step */
-ccl_device void subsurface_scatter_setup_diffuse_bsdf(ShaderData *sd, float3 weight, bool hit, float3 N)
+ccl_device void subsurface_scatter_setup_diffuse_bsdf(ShaderData *sd, const ShaderClosure *sc, float3 weight, bool hit, float3 N)
{
sd->flag &= ~SD_CLOSURE_FLAGS;
- sd->randb_closure = 0.0f;
sd->num_closure = 0;
sd->num_closure_extra = 0;
if(hit) {
- DiffuseBsdf *bsdf = (DiffuseBsdf*)bsdf_alloc(sd, sizeof(DiffuseBsdf), weight);
-
- if(bsdf) {
- bsdf->N = N;
- sd->flag |= bsdf_diffuse_setup(bsdf);
-
- /* replace CLOSURE_BSDF_DIFFUSE_ID with this special ID so render passes
- * can recognize it as not being a regular diffuse closure */
- bsdf->type = CLOSURE_BSDF_BSSRDF_ID;
+ Bssrdf *bssrdf = (Bssrdf *)sc;
+#ifdef __PRINCIPLED__
+ if(bssrdf->type == CLOSURE_BSSRDF_PRINCIPLED_ID) {
+ PrincipledDiffuseBsdf *bsdf = (PrincipledDiffuseBsdf*)bsdf_alloc(sd, sizeof(PrincipledDiffuseBsdf), weight);
+
+ if(bsdf) {
+ bsdf->N = N;
+ bsdf->roughness = bssrdf->roughness;
+ sd->flag |= bsdf_principled_diffuse_setup(bsdf);
+
+ /* replace CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID with this special ID so render passes
+ * can recognize it as not being a regular Disney principled diffuse closure */
+ bsdf->type = CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID;
+ }
+ }
+ else if(CLOSURE_IS_BSDF_BSSRDF(bssrdf->type) ||
+ CLOSURE_IS_BSSRDF(bssrdf->type))
+#endif /* __PRINCIPLED__ */
+ {
+ DiffuseBsdf *bsdf = (DiffuseBsdf*)bsdf_alloc(sd, sizeof(DiffuseBsdf), weight);
+
+ if(bsdf) {
+ bsdf->N = N;
+ sd->flag |= bsdf_diffuse_setup(bsdf);
+
+ /* replace CLOSURE_BSDF_DIFFUSE_ID with this special ID so render passes
+ * can recognize it as not being a regular diffuse closure */
+ bsdf->type = CLOSURE_BSDF_BSSRDF_ID;
+ }
}
}
}
@@ -185,7 +140,7 @@ ccl_device float3 subsurface_color_pow(float3 color, float exponent)
ccl_device void subsurface_color_bump_blur(KernelGlobals *kg,
ShaderData *sd,
- PathState *state,
+ ccl_addr_space PathState *state,
int state_flag,
float3 *eval,
float3 *N)
@@ -199,7 +154,7 @@ ccl_device void subsurface_color_bump_blur(KernelGlobals *kg,
if(bump || texture_blur > 0.0f) {
/* average color and normal at incoming point */
- shader_eval_surface(kg, sd, NULL, state, 0.0f, state_flag, SHADER_CONTEXT_SSS);
+ shader_eval_surface(kg, sd, state, state_flag);
float3 in_color = shader_bssrdf_sum(sd, (bump)? N: NULL, NULL);
/* we simply divide out the average color and multiply with the average
@@ -222,7 +177,7 @@ ccl_device_inline int subsurface_scatter_multi_intersect(
KernelGlobals *kg,
SubsurfaceIntersection *ss_isect,
ShaderData *sd,
- ShaderClosure *sc,
+ const ShaderClosure *sc,
uint *lcg_state,
float disk_u,
float disk_v,
@@ -235,26 +190,20 @@ ccl_device_inline int subsurface_scatter_multi_intersect(
disk_N = sd->Ng;
make_orthonormals(disk_N, &disk_T, &disk_B);
- /* reusing variable for picking the closure gives a bit nicer stratification
- * for path tracer, for branched we do all closures so it doesn't help */
- float axisu = (all)? disk_u: sd->randb_closure;
-
- if(axisu < 0.5f) {
+ if(disk_u < 0.5f) {
pick_pdf_N = 0.5f;
pick_pdf_T = 0.25f;
pick_pdf_B = 0.25f;
- if(all)
- disk_u *= 2.0f;
+ disk_u *= 2.0f;
}
- else if(axisu < 0.75f) {
+ else if(disk_u < 0.75f) {
float3 tmp = disk_N;
disk_N = disk_T;
disk_T = tmp;
pick_pdf_N = 0.25f;
pick_pdf_T = 0.5f;
pick_pdf_B = 0.25f;
- if(all)
- disk_u = (disk_u - 0.5f)*4.0f;
+ disk_u = (disk_u - 0.5f)*4.0f;
}
else {
float3 tmp = disk_N;
@@ -263,8 +212,7 @@ ccl_device_inline int subsurface_scatter_multi_intersect(
pick_pdf_N = 0.25f;
pick_pdf_T = 0.25f;
pick_pdf_B = 0.5f;
- if(all)
- disk_u = (disk_u - 0.75f)*4.0f;
+ disk_u = (disk_u - 0.75f)*4.0f;
}
/* sample point on disk */
@@ -277,7 +225,12 @@ ccl_device_inline int subsurface_scatter_multi_intersect(
float3 disk_P = (disk_r*cosf(phi)) * disk_T + (disk_r*sinf(phi)) * disk_B;
/* create ray */
+#ifdef __SPLIT_KERNEL__
+ Ray ray_object = ss_isect->ray;
+ Ray *ray = &ray_object;
+#else
Ray *ray = &ss_isect->ray;
+#endif
ray->P = sd->P + disk_N*disk_height + disk_P;
ray->D = -disk_N;
ray->t = 2.0f*disk_height;
@@ -288,7 +241,7 @@ ccl_device_inline int subsurface_scatter_multi_intersect(
/* intersect with the same object. if multiple intersections are found it
* will use at most BSSRDF_MAX_HITS hits, a random subset of all hits */
scene_intersect_subsurface(kg,
- ray,
+ *ray,
ss_isect,
sd->object,
lcg_state,
@@ -298,20 +251,20 @@ ccl_device_inline int subsurface_scatter_multi_intersect(
for(int hit = 0; hit < num_eval_hits; hit++) {
/* Quickly retrieve P and Ng without setting up ShaderData. */
float3 hit_P;
- if(ccl_fetch(sd, type) & PRIMITIVE_TRIANGLE) {
+ if(sd->type & PRIMITIVE_TRIANGLE) {
hit_P = triangle_refine_subsurface(kg,
sd,
&ss_isect->hits[hit],
ray);
}
#ifdef __OBJECT_MOTION__
- else if(ccl_fetch(sd, type) & PRIMITIVE_MOTION_TRIANGLE) {
+ else if(sd->type & PRIMITIVE_MOTION_TRIANGLE) {
float3 verts[3];
motion_triangle_vertices(
kg,
- ccl_fetch(sd, object),
+ sd->object,
kernel_tex_fetch(__prim_index, ss_isect->hits[hit].prim),
- ccl_fetch(sd, time),
+ sd->time,
verts);
hit_P = motion_triangle_refine_subsurface(kg,
sd,
@@ -351,6 +304,10 @@ ccl_device_inline int subsurface_scatter_multi_intersect(
ss_isect->weight[hit] = eval;
}
+#ifdef __SPLIT_KERNEL__
+ ss_isect->ray = *ray;
+#endif
+
return num_eval_hits;
}
@@ -359,13 +316,25 @@ ccl_device_noinline void subsurface_scatter_multi_setup(
SubsurfaceIntersection* ss_isect,
int hit,
ShaderData *sd,
- PathState *state,
+ ccl_addr_space PathState *state,
int state_flag,
- ShaderClosure *sc,
+ const ShaderClosure *sc,
bool all)
{
+#ifdef __SPLIT_KERNEL__
+ Ray ray_object = ss_isect->ray;
+ Ray *ray = &ray_object;
+#else
+ Ray *ray = &ss_isect->ray;
+#endif
+
+ /* Workaround for AMD GPU OpenCL compiler. Most probably cache bypass issue. */
+#if defined(__SPLIT_KERNEL__) && defined(__KERNEL_OPENCL_AMD__) && defined(__KERNEL_GPU__)
+ kernel_split_params.dummy_sd_flag = sd->flag;
+#endif
+
/* Setup new shading point. */
- shader_setup_from_subsurface(kg, sd, &ss_isect->hits[hit], &ss_isect->ray);
+ shader_setup_from_subsurface(kg, sd, &ss_isect->hits[hit], ray);
/* Optionally blur colors and bump mapping. */
float3 weight = ss_isect->weight[hit];
@@ -373,12 +342,12 @@ ccl_device_noinline void subsurface_scatter_multi_setup(
subsurface_color_bump_blur(kg, sd, state, state_flag, &weight, &N);
/* Setup diffuse BSDF. */
- subsurface_scatter_setup_diffuse_bsdf(sd, weight, true, N);
+ subsurface_scatter_setup_diffuse_bsdf(sd, sc, weight, true, N);
}
/* subsurface scattering step, from a point on the surface to another nearby point on the same object */
-ccl_device void subsurface_scatter_step(KernelGlobals *kg, ShaderData *sd, PathState *state,
- int state_flag, ShaderClosure *sc, uint *lcg_state, float disk_u, float disk_v, bool all)
+ccl_device void subsurface_scatter_step(KernelGlobals *kg, ShaderData *sd, ccl_addr_space PathState *state,
+ int state_flag, const ShaderClosure *sc, uint *lcg_state, float disk_u, float disk_v, bool all)
{
float3 eval = make_float3(0.0f, 0.0f, 0.0f);
@@ -389,18 +358,20 @@ ccl_device void subsurface_scatter_step(KernelGlobals *kg, ShaderData *sd, PathS
disk_N = sd->Ng;
make_orthonormals(disk_N, &disk_T, &disk_B);
- if(sd->randb_closure < 0.5f) {
+ if(disk_u < 0.5f) {
pick_pdf_N = 0.5f;
pick_pdf_T = 0.25f;
pick_pdf_B = 0.25f;
+ disk_u *= 2.0f;
}
- else if(sd->randb_closure < 0.75f) {
+ else if(disk_u < 0.75f) {
float3 tmp = disk_N;
disk_N = disk_T;
disk_T = tmp;
pick_pdf_N = 0.25f;
pick_pdf_T = 0.5f;
pick_pdf_B = 0.25f;
+ disk_u = (disk_u - 0.5f)*4.0f;
}
else {
float3 tmp = disk_N;
@@ -409,6 +380,7 @@ ccl_device void subsurface_scatter_step(KernelGlobals *kg, ShaderData *sd, PathS
pick_pdf_N = 0.25f;
pick_pdf_T = 0.25f;
pick_pdf_B = 0.5f;
+ disk_u = (disk_u - 0.75f)*4.0f;
}
/* sample point on disk */
@@ -432,12 +404,16 @@ ccl_device void subsurface_scatter_step(KernelGlobals *kg, ShaderData *sd, PathS
/* intersect with the same object. if multiple intersections are
* found it will randomly pick one of them */
SubsurfaceIntersection ss_isect;
- scene_intersect_subsurface(kg, &ray, &ss_isect, sd->object, lcg_state, 1);
+ scene_intersect_subsurface(kg, ray, &ss_isect, sd->object, lcg_state, 1);
/* evaluate bssrdf */
if(ss_isect.num_hits > 0) {
float3 origP = sd->P;
+ /* Workaround for AMD GPU OpenCL compiler. Most probably cache bypass issue. */
+#if defined(__SPLIT_KERNEL__) && defined(__KERNEL_OPENCL_AMD__) && defined(__KERNEL_GPU__)
+ kernel_split_params.dummy_sd_flag = sd->flag;
+#endif
/* setup new shading point */
shader_setup_from_subsurface(kg, sd, &ss_isect.hits[0], &ray);
@@ -463,7 +439,7 @@ ccl_device void subsurface_scatter_step(KernelGlobals *kg, ShaderData *sd, PathS
subsurface_color_bump_blur(kg, sd, state, state_flag, &eval, &N);
/* setup diffuse bsdf */
- subsurface_scatter_setup_diffuse_bsdf(sd, eval, (ss_isect.num_hits > 0), N);
+ subsurface_scatter_setup_diffuse_bsdf(sd, sc, eval, (ss_isect.num_hits > 0), N);
}
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/kernel_textures.h b/intern/cycles/kernel/kernel_textures.h
index 65aeea18336..c8e54954a84 100644
--- a/intern/cycles/kernel/kernel_textures.h
+++ b/intern/cycles/kernel/kernel_textures.h
@@ -15,7 +15,7 @@
*/
#ifndef KERNEL_TEX
-# define KERNEL_TEX(type, ttype, name)
+# define KERNEL_TEX(type, name)
#endif
#ifndef KERNEL_IMAGE_TEX
@@ -23,177 +23,169 @@
#endif
/* bvh */
-KERNEL_TEX(float4, texture_float4, __bvh_nodes)
-KERNEL_TEX(float4, texture_float4, __bvh_leaf_nodes)
-KERNEL_TEX(float4, texture_float4, __prim_tri_verts)
-KERNEL_TEX(uint, texture_uint, __prim_tri_index)
-KERNEL_TEX(uint, texture_uint, __prim_type)
-KERNEL_TEX(uint, texture_uint, __prim_visibility)
-KERNEL_TEX(uint, texture_uint, __prim_index)
-KERNEL_TEX(uint, texture_uint, __prim_object)
-KERNEL_TEX(uint, texture_uint, __object_node)
+KERNEL_TEX(float4, __bvh_nodes)
+KERNEL_TEX(float4, __bvh_leaf_nodes)
+KERNEL_TEX(float4, __prim_tri_verts)
+KERNEL_TEX(uint, __prim_tri_index)
+KERNEL_TEX(uint, __prim_type)
+KERNEL_TEX(uint, __prim_visibility)
+KERNEL_TEX(uint, __prim_index)
+KERNEL_TEX(uint, __prim_object)
+KERNEL_TEX(uint, __object_node)
+KERNEL_TEX(float2, __prim_time)
/* objects */
-KERNEL_TEX(float4, texture_float4, __objects)
-KERNEL_TEX(float4, texture_float4, __objects_vector)
+KERNEL_TEX(float4, __objects)
+KERNEL_TEX(float4, __objects_vector)
/* triangles */
-KERNEL_TEX(uint, texture_uint, __tri_shader)
-KERNEL_TEX(float4, texture_float4, __tri_vnormal)
-KERNEL_TEX(uint4, texture_uint4, __tri_vindex)
-KERNEL_TEX(uint, texture_uint, __tri_patch)
-KERNEL_TEX(float2, texture_float2, __tri_patch_uv)
+KERNEL_TEX(uint, __tri_shader)
+KERNEL_TEX(float4, __tri_vnormal)
+KERNEL_TEX(uint4, __tri_vindex)
+KERNEL_TEX(uint, __tri_patch)
+KERNEL_TEX(float2, __tri_patch_uv)
/* curves */
-KERNEL_TEX(float4, texture_float4, __curves)
-KERNEL_TEX(float4, texture_float4, __curve_keys)
+KERNEL_TEX(float4, __curves)
+KERNEL_TEX(float4, __curve_keys)
/* patches */
-KERNEL_TEX(uint, texture_uint, __patches)
+KERNEL_TEX(uint, __patches)
/* attributes */
-KERNEL_TEX(uint4, texture_uint4, __attributes_map)
-KERNEL_TEX(float, texture_float, __attributes_float)
-KERNEL_TEX(float4, texture_float4, __attributes_float3)
-KERNEL_TEX(uchar4, texture_uchar4, __attributes_uchar4)
+KERNEL_TEX(uint4, __attributes_map)
+KERNEL_TEX(float, __attributes_float)
+KERNEL_TEX(float4, __attributes_float3)
+KERNEL_TEX(uchar4, __attributes_uchar4)
/* lights */
-KERNEL_TEX(float4, texture_float4, __light_distribution)
-KERNEL_TEX(float4, texture_float4, __light_data)
-KERNEL_TEX(float2, texture_float2, __light_background_marginal_cdf)
-KERNEL_TEX(float2, texture_float2, __light_background_conditional_cdf)
+KERNEL_TEX(float4, __light_distribution)
+KERNEL_TEX(float4, __light_data)
+KERNEL_TEX(float2, __light_background_marginal_cdf)
+KERNEL_TEX(float2, __light_background_conditional_cdf)
/* particles */
-KERNEL_TEX(float4, texture_float4, __particles)
+KERNEL_TEX(float4, __particles)
/* shaders */
-KERNEL_TEX(uint4, texture_uint4, __svm_nodes)
-KERNEL_TEX(uint, texture_uint, __shader_flag)
-KERNEL_TEX(uint, texture_uint, __object_flag)
+KERNEL_TEX(uint4, __svm_nodes)
+KERNEL_TEX(uint, __shader_flag)
+KERNEL_TEX(uint, __object_flag)
/* lookup tables */
-KERNEL_TEX(float, texture_float, __lookup_table)
+KERNEL_TEX(float, __lookup_table)
/* sobol */
-KERNEL_TEX(uint, texture_uint, __sobol_directions)
+KERNEL_TEX(uint, __sobol_directions)
/* volume */
-KERNEL_TEX(uint, texture_uint, __vol_shader)
+KERNEL_TEX(uint, __vol_shader)
-#ifdef __KERNEL_CUDA__
-# if __CUDA_ARCH__ < 300
+#if !defined(__KERNEL_CUDA__) || __CUDA_ARCH__ >= 300
+/* image textures */
+KERNEL_TEX(TextureInfo, __texture_info)
+#else
/* full-float image */
KERNEL_IMAGE_TEX(float4, texture_image_float4, __tex_image_float4_000)
-KERNEL_IMAGE_TEX(float4, texture_image_float4, __tex_image_float4_001)
-KERNEL_IMAGE_TEX(float4, texture_image_float4, __tex_image_float4_002)
-KERNEL_IMAGE_TEX(float4, texture_image_float4, __tex_image_float4_003)
-KERNEL_IMAGE_TEX(float4, texture_image_float4, __tex_image_float4_004)
+KERNEL_IMAGE_TEX(float4, texture_image_float4, __tex_image_float4_008)
+KERNEL_IMAGE_TEX(float4, texture_image_float4, __tex_image_float4_016)
+KERNEL_IMAGE_TEX(float4, texture_image_float4, __tex_image_float4_024)
+KERNEL_IMAGE_TEX(float4, texture_image_float4, __tex_image_float4_032)
KERNEL_IMAGE_TEX(float4, texture_image3d_float4, __tex_image_float4_3d_000)
-KERNEL_IMAGE_TEX(float4, texture_image3d_float4, __tex_image_float4_3d_001)
-KERNEL_IMAGE_TEX(float4, texture_image3d_float4, __tex_image_float4_3d_002)
-KERNEL_IMAGE_TEX(float4, texture_image3d_float4, __tex_image_float4_3d_003)
-KERNEL_IMAGE_TEX(float4, texture_image3d_float4, __tex_image_float4_3d_004)
-
-/* image */
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_005)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_006)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_007)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_008)
+KERNEL_IMAGE_TEX(float4, texture_image3d_float4, __tex_image_float4_3d_008)
+KERNEL_IMAGE_TEX(float4, texture_image3d_float4, __tex_image_float4_3d_016)
+KERNEL_IMAGE_TEX(float4, texture_image3d_float4, __tex_image_float4_3d_024)
+KERNEL_IMAGE_TEX(float4, texture_image3d_float4, __tex_image_float4_3d_032)
+
+/* image
+ * These texture names are encoded to their flattened slots as
+ * ImageManager::type_index_to_flattened_slot() returns them. */
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_001)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_009)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_010)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_011)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_012)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_013)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_014)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_015)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_016)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_017)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_018)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_019)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_020)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_021)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_022)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_023)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_024)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_025)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_026)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_027)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_028)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_029)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_030)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_031)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_032)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_033)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_034)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_035)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_036)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_037)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_038)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_039)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_040)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_041)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_042)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_043)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_044)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_045)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_046)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_047)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_048)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_049)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_050)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_051)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_052)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_053)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_054)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_055)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_056)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_057)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_058)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_059)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_060)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_061)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_062)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_063)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_064)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_065)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_066)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_067)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_068)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_069)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_070)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_071)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_072)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_073)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_074)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_075)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_076)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_077)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_078)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_079)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_080)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_081)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_082)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_083)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_084)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_085)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_086)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_087)
-KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_088)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_089)
-
-# else
-/* bindless textures */
-KERNEL_TEX(uint, texture_uint, __bindless_mapping)
-# endif
-#endif
-
-/* packed image (opencl) */
-KERNEL_TEX(uchar4, texture_uchar4, __tex_image_byte4_packed)
-KERNEL_TEX(float4, texture_float4, __tex_image_float4_packed)
-KERNEL_TEX(uchar, texture_uchar, __tex_image_byte_packed)
-KERNEL_TEX(float, texture_float, __tex_image_float_packed)
-KERNEL_TEX(uint4, texture_uint4, __tex_image_packed_info)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_097)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_105)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_113)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_121)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_129)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_137)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_145)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_153)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_161)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_169)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_177)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_185)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_193)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_201)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_209)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_217)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_225)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_233)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_241)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_249)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_257)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_265)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_273)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_281)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_289)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_297)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_305)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_313)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_321)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_329)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_337)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_345)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_353)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_361)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_369)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_377)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_385)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_393)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_401)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_409)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_417)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_425)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_433)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_441)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_449)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_457)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_465)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_473)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_481)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_489)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_497)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_505)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_513)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_521)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_529)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_537)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_545)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_553)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_561)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_569)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_577)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_585)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_593)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_601)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_609)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_617)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_625)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_633)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_641)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_649)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_657)
+KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_665)
+#endif /* defined(__KERNEL_CUDA__) && __CUDA_ARCH__ < 300 */
#undef KERNEL_TEX
#undef KERNEL_IMAGE_TEX
diff --git a/intern/cycles/kernel/kernel_types.h b/intern/cycles/kernel/kernel_types.h
index 15960dba40d..6c8e1c4e336 100644
--- a/intern/cycles/kernel/kernel_types.h
+++ b/intern/cycles/kernel/kernel_types.h
@@ -17,9 +17,9 @@
#ifndef __KERNEL_TYPES_H__
#define __KERNEL_TYPES_H__
-#include "kernel_math.h"
-#include "svm/svm_types.h"
-#include "util_static_assert.h"
+#include "kernel/kernel_math.h"
+#include "kernel/svm/svm_types.h"
+#include "util/util_static_assert.h"
#ifndef __KERNEL_GPU__
# define __KERNEL_CPU__
@@ -56,6 +56,26 @@ CCL_NAMESPACE_BEGIN
#define VOLUME_STACK_SIZE 16
+#define WORK_POOL_SIZE_GPU 64
+#define WORK_POOL_SIZE_CPU 1
+#ifdef __KERNEL_GPU__
+# define WORK_POOL_SIZE WORK_POOL_SIZE_GPU
+#else
+# define WORK_POOL_SIZE WORK_POOL_SIZE_CPU
+#endif
+
+
+#define SHADER_SORT_BLOCK_SIZE 2048
+
+#ifdef __KERNEL_OPENCL__
+# define SHADER_SORT_LOCAL_SIZE 64
+#elif defined(__KERNEL_CUDA__)
+# define SHADER_SORT_LOCAL_SIZE 32
+#else
+# define SHADER_SORT_LOCAL_SIZE 1
+#endif
+
+
/* device capabilities */
#ifdef __KERNEL_CPU__
# ifdef __KERNEL_SSE2__
@@ -70,23 +90,28 @@ CCL_NAMESPACE_BEGIN
# ifdef WITH_OPENVDB
# define __OPENVDB__
# endif
+# define __PRINCIPLED__
# define __SUBSURFACE__
# define __CMJ__
# define __VOLUME__
-# define __VOLUME_DECOUPLED__
# define __VOLUME_SCATTER__
# define __SHADOW_RECORD_ALL__
+# define __VOLUME_DECOUPLED__
# define __VOLUME_RECORD_ALL__
#endif /* __KERNEL_CPU__ */
#ifdef __KERNEL_CUDA__
# define __KERNEL_SHADING__
# define __KERNEL_ADV_SHADING__
-# define __BRANCHED_PATH__
# define __VOLUME__
# define __VOLUME_SCATTER__
# define __SUBSURFACE__
+# define __PRINCIPLED__
+# define __SHADOW_RECORD_ALL__
# define __CMJ__
+# ifndef __SPLIT_KERNEL__
+# define __BRANCHED_PATH__
+# endif
#endif /* __KERNEL_CUDA__ */
#ifdef __KERNEL_OPENCL__
@@ -96,36 +121,45 @@ CCL_NAMESPACE_BEGIN
# ifdef __KERNEL_OPENCL_NVIDIA__
# define __KERNEL_SHADING__
# define __KERNEL_ADV_SHADING__
-# ifdef __KERNEL_EXPERIMENTAL__
-# define __CMJ__
-# endif
+# define __SUBSURFACE__
+# define __PRINCIPLED__
+# define __VOLUME__
+# define __VOLUME_SCATTER__
+# define __SHADOW_RECORD_ALL__
+# define __CMJ__
+# define __BRANCHED_PATH__
# endif /* __KERNEL_OPENCL_NVIDIA__ */
# ifdef __KERNEL_OPENCL_APPLE__
# define __KERNEL_SHADING__
# define __KERNEL_ADV_SHADING__
+# define __PRINCIPLED__
+# define __CMJ__
/* TODO(sergey): Currently experimental section is ignored here,
* this is because megakernel in device_opencl does not support
* custom cflags depending on the scene features.
*/
-# ifdef __KERNEL_EXPERIMENTAL__
-# define __CMJ__
-# endif
-# endif /* __KERNEL_OPENCL_NVIDIA__ */
+# endif /* __KERNEL_OPENCL_APPLE__ */
# ifdef __KERNEL_OPENCL_AMD__
# define __CL_USE_NATIVE__
# define __KERNEL_SHADING__
# define __KERNEL_ADV_SHADING__
+# define __SUBSURFACE__
+# define __PRINCIPLED__
+# define __VOLUME__
+# define __VOLUME_SCATTER__
+# define __SHADOW_RECORD_ALL__
+# define __CMJ__
+# define __BRANCHED_PATH__
# endif /* __KERNEL_OPENCL_AMD__ */
# ifdef __KERNEL_OPENCL_INTEL_CPU__
# define __CL_USE_NATIVE__
# define __KERNEL_SHADING__
# define __KERNEL_ADV_SHADING__
-# ifdef __KERNEL_EXPERIMENTAL__
-# define __CMJ__
-# endif
+# define __PRINCIPLED__
+# define __CMJ__
# endif /* __KERNEL_OPENCL_INTEL_CPU__ */
#endif /* __KERNEL_OPENCL__ */
@@ -143,6 +177,9 @@ CCL_NAMESPACE_BEGIN
#define __INTERSECTION_REFINE__
#define __CLAMP_SAMPLE__
#define __PATCH_EVAL__
+#define __SHADOW_TRICKS__
+
+#define __DENOISING_FEATURES__
#ifdef __KERNEL_SHADING__
# define __SVM__
@@ -195,10 +232,18 @@ CCL_NAMESPACE_BEGIN
#ifdef __NO_PATCH_EVAL__
# undef __PATCH_EVAL__
#endif
-
-/* Random Numbers */
-
-typedef uint RNG;
+#ifdef __NO_TRANSPARENT__
+# undef __TRANSPARENT_SHADOWS__
+#endif
+#ifdef __NO_SHADOW_TRICKS__
+# undef __SHADOW_TRICKS__
+#endif
+#ifdef __NO_PRINCIPLED__
+# undef __PRINCIPLED__
+#endif
+#ifdef __NO_DENOISING__
+# undef __DENOISING_FEATURES__
+#endif
/* Shader Evaluation */
@@ -239,31 +284,21 @@ enum PathTraceDimension {
PRNG_FILTER_V = 1,
PRNG_LENS_U = 2,
PRNG_LENS_V = 3,
-#ifdef __CAMERA_MOTION__
PRNG_TIME = 4,
PRNG_UNUSED_0 = 5,
PRNG_UNUSED_1 = 6, /* for some reason (6, 7) is a bad sobol pattern */
PRNG_UNUSED_2 = 7, /* with a low number of samples (< 64) */
-#endif
- PRNG_BASE_NUM = 8,
+ PRNG_BASE_NUM = 10,
PRNG_BSDF_U = 0,
PRNG_BSDF_V = 1,
- PRNG_BSDF = 2,
- PRNG_LIGHT = 3,
- PRNG_LIGHT_U = 4,
- PRNG_LIGHT_V = 5,
- PRNG_LIGHT_TERMINATE = 6,
- PRNG_TERMINATE = 7,
-
-#ifdef __VOLUME__
- PRNG_PHASE_U = 8,
- PRNG_PHASE_V = 9,
- PRNG_PHASE = 10,
- PRNG_SCATTER_DISTANCE = 11,
-#endif
-
- PRNG_BOUNCE_NUM = 12,
+ PRNG_LIGHT_U = 2,
+ PRNG_LIGHT_V = 3,
+ PRNG_LIGHT_TERMINATE = 4,
+ PRNG_TERMINATE = 5,
+ PRNG_PHASE_CHANNEL = 6,
+ PRNG_SCATTER_DISTANCE = 7,
+ PRNG_BOUNCE_NUM = 8,
};
enum SamplingPattern {
@@ -276,29 +311,36 @@ enum SamplingPattern {
/* these flags values correspond to raytypes in osl.cpp, so keep them in sync! */
enum PathRayFlag {
- PATH_RAY_CAMERA = 1,
- PATH_RAY_REFLECT = 2,
- PATH_RAY_TRANSMIT = 4,
- PATH_RAY_DIFFUSE = 8,
- PATH_RAY_GLOSSY = 16,
- PATH_RAY_SINGULAR = 32,
- PATH_RAY_TRANSPARENT = 64,
-
- PATH_RAY_SHADOW_OPAQUE = 128,
- PATH_RAY_SHADOW_TRANSPARENT = 256,
- PATH_RAY_SHADOW = (PATH_RAY_SHADOW_OPAQUE|PATH_RAY_SHADOW_TRANSPARENT),
-
- PATH_RAY_CURVE = 512, /* visibility flag to define curve segments */
- PATH_RAY_VOLUME_SCATTER = 1024, /* volume scattering */
+ PATH_RAY_CAMERA = (1 << 0),
+ PATH_RAY_REFLECT = (1 << 1),
+ PATH_RAY_TRANSMIT = (1 << 2),
+ PATH_RAY_DIFFUSE = (1 << 3),
+ PATH_RAY_GLOSSY = (1 << 4),
+ PATH_RAY_SINGULAR = (1 << 5),
+ PATH_RAY_TRANSPARENT = (1 << 6),
+
+ PATH_RAY_SHADOW_OPAQUE_NON_CATCHER = (1 << 7),
+ PATH_RAY_SHADOW_OPAQUE_CATCHER = (1 << 8),
+ PATH_RAY_SHADOW_OPAQUE = (PATH_RAY_SHADOW_OPAQUE_NON_CATCHER|PATH_RAY_SHADOW_OPAQUE_CATCHER),
+ PATH_RAY_SHADOW_TRANSPARENT_NON_CATCHER = (1 << 9),
+ PATH_RAY_SHADOW_TRANSPARENT_CATCHER = (1 << 10),
+ PATH_RAY_SHADOW_TRANSPARENT = (PATH_RAY_SHADOW_TRANSPARENT_NON_CATCHER|PATH_RAY_SHADOW_TRANSPARENT_CATCHER),
+ PATH_RAY_SHADOW_NON_CATCHER = (PATH_RAY_SHADOW_OPAQUE_NON_CATCHER|PATH_RAY_SHADOW_TRANSPARENT_NON_CATCHER),
+ PATH_RAY_SHADOW = (PATH_RAY_SHADOW_OPAQUE|PATH_RAY_SHADOW_TRANSPARENT),
+
+ PATH_RAY_CURVE = (1 << 11), /* visibility flag to define curve segments */
+ PATH_RAY_VOLUME_SCATTER = (1 << 12), /* volume scattering */
/* Special flag to tag unaligned BVH nodes. */
- PATH_RAY_NODE_UNALIGNED = 2048,
+ PATH_RAY_NODE_UNALIGNED = (1 << 13),
- PATH_RAY_ALL_VISIBILITY = (1|2|4|8|16|32|64|128|256|512|1024|2048),
+ PATH_RAY_ALL_VISIBILITY = ((1 << 14)-1),
- PATH_RAY_MIS_SKIP = 4096,
- PATH_RAY_DIFFUSE_ANCESTOR = 8192,
- PATH_RAY_SINGLE_PASS_DONE = 16384,
+ PATH_RAY_MIS_SKIP = (1 << 15),
+ PATH_RAY_DIFFUSE_ANCESTOR = (1 << 16),
+ PATH_RAY_SINGLE_PASS_DONE = (1 << 17),
+ PATH_RAY_SHADOW_CATCHER = (1 << 18),
+ PATH_RAY_STORE_SHADOW_INFO = (1 << 19),
};
/* Closure Label */
@@ -345,14 +387,31 @@ typedef enum PassType {
PASS_SUBSURFACE_COLOR = (1 << 24),
PASS_LIGHT = (1 << 25), /* no real pass, used to force use_light_pass */
#ifdef __KERNEL_DEBUG__
- PASS_BVH_TRAVERSAL_STEPS = (1 << 26),
+ PASS_BVH_TRAVERSED_NODES = (1 << 26),
PASS_BVH_TRAVERSED_INSTANCES = (1 << 27),
- PASS_RAY_BOUNCES = (1 << 28),
+ PASS_BVH_INTERSECTIONS = (1 << 28),
+ PASS_RAY_BOUNCES = (1 << 29),
#endif
} PassType;
#define PASS_ALL (~0)
+typedef enum DenoisingPassOffsets {
+ DENOISING_PASS_NORMAL = 0,
+ DENOISING_PASS_NORMAL_VAR = 3,
+ DENOISING_PASS_ALBEDO = 6,
+ DENOISING_PASS_ALBEDO_VAR = 9,
+ DENOISING_PASS_DEPTH = 12,
+ DENOISING_PASS_DEPTH_VAR = 13,
+ DENOISING_PASS_SHADOW_A = 14,
+ DENOISING_PASS_SHADOW_B = 17,
+ DENOISING_PASS_COLOR = 20,
+ DENOISING_PASS_COLOR_VAR = 23,
+
+ DENOISING_PASS_SIZE_BASE = 26,
+ DENOISING_PASS_SIZE_CLEAN = 3,
+} DenoisingPassOffsets;
+
typedef enum BakePassFilter {
BAKE_FILTER_NONE = 0,
BAKE_FILTER_DIRECT = (1 << 0),
@@ -386,18 +445,54 @@ typedef enum BakePassFilterCombos {
BAKE_FILTER_SUBSURFACE_INDIRECT = (BAKE_FILTER_INDIRECT | BAKE_FILTER_SUBSURFACE),
} BakePassFilterCombos;
+typedef enum DenoiseFlag {
+ DENOISING_CLEAN_DIFFUSE_DIR = (1 << 0),
+ DENOISING_CLEAN_DIFFUSE_IND = (1 << 1),
+ DENOISING_CLEAN_GLOSSY_DIR = (1 << 2),
+ DENOISING_CLEAN_GLOSSY_IND = (1 << 3),
+ DENOISING_CLEAN_TRANSMISSION_DIR = (1 << 4),
+ DENOISING_CLEAN_TRANSMISSION_IND = (1 << 5),
+ DENOISING_CLEAN_SUBSURFACE_DIR = (1 << 6),
+ DENOISING_CLEAN_SUBSURFACE_IND = (1 << 7),
+ DENOISING_CLEAN_ALL_PASSES = (1 << 8)-1,
+} DenoiseFlag;
+
+#ifdef __KERNEL_DEBUG__
+/* NOTE: This is a runtime-only struct, alignment is not
+ * really important here.
+ */
+typedef struct DebugData {
+ int num_bvh_traversed_nodes;
+ int num_bvh_traversed_instances;
+ int num_bvh_intersections;
+ int num_ray_bounces;
+} DebugData;
+#endif
+
+typedef ccl_addr_space struct PathRadianceState {
+#ifdef __PASSES__
+ float3 diffuse;
+ float3 glossy;
+ float3 transmission;
+ float3 subsurface;
+ float3 scatter;
+
+ float3 direct;
+#endif
+} PathRadianceState;
+
typedef ccl_addr_space struct PathRadiance {
#ifdef __PASSES__
int use_light_pass;
#endif
+ float transparent;
float3 emission;
#ifdef __PASSES__
float3 background;
float3 ao;
float3 indirect;
- float3 direct_throughput;
float3 direct_emission;
float3 color_diffuse;
@@ -418,15 +513,46 @@ typedef ccl_addr_space struct PathRadiance {
float3 indirect_subsurface;
float3 indirect_scatter;
- float3 path_diffuse;
- float3 path_glossy;
- float3 path_transmission;
- float3 path_subsurface;
- float3 path_scatter;
-
float4 shadow;
float mist;
#endif
+
+ struct PathRadianceState state;
+
+#ifdef __SHADOW_TRICKS__
+ /* Total light reachable across the path, ignoring shadow blocked queries. */
+ float3 path_total;
+ /* Total light reachable across the path with shadow blocked queries
+ * applied here.
+ *
+ * Dividing this figure by path_total will give estimate of shadow pass.
+ */
+ float3 path_total_shaded;
+
+ /* Color of the background on which shadow is alpha-overed. */
+ float3 shadow_background_color;
+
+ /* Path radiance sum and throughput at the moment when ray hits shadow
+ * catcher object.
+ */
+ float shadow_throughput;
+
+ /* Accumulated transparency along the path after shadow catcher bounce. */
+ float shadow_transparency;
+
+ /* Indicate if any shadow catcher data is set. */
+ int has_shadow_catcher;
+#endif
+
+#ifdef __DENOISING_FEATURES__
+ float3 denoising_normal;
+ float3 denoising_albedo;
+ float denoising_depth;
+#endif /* __DENOISING_FEATURES__ */
+
+#ifdef __KERNEL_DEBUG__
+ DebugData debug_data;
+#endif /* __KERNEL_DEBUG__ */
} PathRadiance;
typedef struct BsdfEval {
@@ -442,6 +568,9 @@ typedef struct BsdfEval {
float3 subsurface;
float3 scatter;
#endif
+#ifdef __SHADOW_TRICKS__
+ float3 sum_no_mis;
+#endif
} BsdfEval;
/* Shader Flag */
@@ -535,29 +664,32 @@ typedef struct Ray {
/* Intersection */
-typedef ccl_addr_space struct Intersection {
+typedef struct Intersection {
float t, u, v;
int prim;
int object;
int type;
#ifdef __KERNEL_DEBUG__
- int num_traversal_steps;
+ int num_traversed_nodes;
int num_traversed_instances;
+ int num_intersections;
#endif
} Intersection;
/* Primitives */
typedef enum PrimitiveType {
- PRIMITIVE_NONE = 0,
- PRIMITIVE_TRIANGLE = 1,
- PRIMITIVE_MOTION_TRIANGLE = 2,
- PRIMITIVE_CURVE = 4,
- PRIMITIVE_MOTION_CURVE = 8,
- /* Lamp primitive is not included below on purpose, since it is no real traceable primitive */
- PRIMITIVE_LAMP = 16,
- PRIMITIVE_VOLUME = 32,
+ PRIMITIVE_NONE = 0,
+ PRIMITIVE_TRIANGLE = (1 << 0),
+ PRIMITIVE_MOTION_TRIANGLE = (1 << 1),
+ PRIMITIVE_CURVE = (1 << 2),
+ PRIMITIVE_MOTION_CURVE = (1 << 3),
+ /* Lamp primitive is not included below on purpose,
+ * since it is no real traceable primitive.
+ */
+ PRIMITIVE_LAMP = (1 << 4),
+ PRIMITIVE_VOLUME = (1 << 5),
PRIMITIVE_ALL_TRIANGLE = (PRIMITIVE_TRIANGLE|PRIMITIVE_MOTION_TRIANGLE),
PRIMITIVE_ALL_CURVE = (PRIMITIVE_CURVE|PRIMITIVE_MOTION_CURVE),
@@ -565,14 +697,14 @@ typedef enum PrimitiveType {
PRIMITIVE_ALL_VOLUME = (PRIMITIVE_VOLUME),
PRIMITIVE_ALL = (PRIMITIVE_ALL_TRIANGLE|PRIMITIVE_ALL_CURVE|PRIMITIVE_ALL_VOLUME),
- /* Total number of different primitives.
+ /* Total number of different traceable primitives.
* NOTE: This is an actual value, not a bitflag.
*/
PRIMITIVE_NUM_TOTAL = 4,
} PrimitiveType;
-#define PRIMITIVE_PACK_SEGMENT(type, segment) ((segment << 16) | type)
-#define PRIMITIVE_UNPACK_SEGMENT(type) (type >> 16)
+#define PRIMITIVE_PACK_SEGMENT(type, segment) ((segment << PRIMITIVE_NUM_TOTAL) | (type))
+#define PRIMITIVE_UNPACK_SEGMENT(type) (type >> PRIMITIVE_NUM_TOTAL)
/* Attributes */
@@ -665,175 +797,197 @@ typedef struct AttributeDescriptor {
#define SHADER_CLOSURE_BASE \
float3 weight; \
ClosureType type; \
- float sample_weight \
+ float sample_weight; \
+ float3 N
typedef ccl_addr_space struct ccl_align(16) ShaderClosure {
SHADER_CLOSURE_BASE;
- float data[14]; /* pad to 80 bytes */
+ float data[10]; /* pad to 80 bytes */
} ShaderClosure;
-/* Shader Context
- *
- * For OSL we recycle a fixed number of contexts for speed */
-
-typedef enum ShaderContext {
- SHADER_CONTEXT_MAIN = 0,
- SHADER_CONTEXT_INDIRECT = 1,
- SHADER_CONTEXT_EMISSION = 2,
- SHADER_CONTEXT_SHADOW = 3,
- SHADER_CONTEXT_SSS = 4,
- SHADER_CONTEXT_VOLUME = 5,
- SHADER_CONTEXT_NUM = 6
-} ShaderContext;
-
/* Shader Data
*
* Main shader state at a point on the surface or in a volume. All coordinates
- * are in world space. */
+ * are in world space.
+ */
enum ShaderDataFlag {
- /* runtime flags */
- SD_BACKFACING = (1 << 0), /* backside of surface? */
- SD_EMISSION = (1 << 1), /* have emissive closure? */
- SD_BSDF = (1 << 2), /* have bsdf closure? */
- SD_BSDF_HAS_EVAL = (1 << 3), /* have non-singular bsdf closure? */
- SD_BSSRDF = (1 << 4), /* have bssrdf */
- SD_HOLDOUT = (1 << 5), /* have holdout closure? */
- SD_ABSORPTION = (1 << 6), /* have volume absorption closure? */
- SD_SCATTER = (1 << 7), /* have volume phase closure? */
- SD_AO = (1 << 8), /* have ao closure? */
- SD_TRANSPARENT = (1 << 9), /* have transparent closure? */
+ /* Runtime flags. */
+
+ /* Set when ray hits backside of surface. */
+ SD_BACKFACING = (1 << 0),
+ /* Shader has emissive closure. */
+ SD_EMISSION = (1 << 1),
+ /* Shader has BSDF closure. */
+ SD_BSDF = (1 << 2),
+ /* Shader has non-singular BSDF closure. */
+ SD_BSDF_HAS_EVAL = (1 << 3),
+ /* Shader has BSSRDF closure. */
+ SD_BSSRDF = (1 << 4),
+ /* Shader has holdout closure. */
+ SD_HOLDOUT = (1 << 5),
+ /* Shader has volume absorption closure. */
+ SD_ABSORPTION = (1 << 6),
+ /* Shader has have volume phase (scatter) closure. */
+ SD_SCATTER = (1 << 7),
+ /* Shader has AO closure. */
+ SD_AO = (1 << 8),
+ /* Shader has transparent closure. */
+ SD_TRANSPARENT = (1 << 9),
+ /* BSDF requires LCG for evaluation. */
SD_BSDF_NEEDS_LCG = (1 << 10),
- SD_CLOSURE_FLAGS = (SD_EMISSION|SD_BSDF|SD_BSDF_HAS_EVAL|SD_BSSRDF|
- SD_HOLDOUT|SD_ABSORPTION|SD_SCATTER|SD_AO|
+ SD_CLOSURE_FLAGS = (SD_EMISSION |
+ SD_BSDF |
+ SD_BSDF_HAS_EVAL |
+ SD_BSSRDF |
+ SD_HOLDOUT |
+ SD_ABSORPTION |
+ SD_SCATTER |
+ SD_AO |
SD_BSDF_NEEDS_LCG),
- /* shader flags */
- SD_USE_MIS = (1 << 12), /* direct light sample */
- SD_HAS_TRANSPARENT_SHADOW = (1 << 13), /* has transparent shadow */
- SD_HAS_VOLUME = (1 << 14), /* has volume shader */
- SD_HAS_ONLY_VOLUME = (1 << 15), /* has only volume shader, no surface */
- SD_HETEROGENEOUS_VOLUME = (1 << 16), /* has heterogeneous volume */
- SD_HAS_BSSRDF_BUMP = (1 << 17), /* bssrdf normal uses bump */
- SD_VOLUME_EQUIANGULAR = (1 << 18), /* use equiangular sampling */
- SD_VOLUME_MIS = (1 << 19), /* use multiple importance sampling */
- SD_VOLUME_CUBIC = (1 << 20), /* use cubic interpolation for voxels */
- SD_HAS_BUMP = (1 << 21), /* has data connected to the displacement input */
- SD_HAS_DISPLACEMENT = (1 << 22), /* has true displacement */
- SD_HAS_CONSTANT_EMISSION = (1 << 23), /* has constant emission (value stored in __shader_flag) */
-
- SD_SHADER_FLAGS = (SD_USE_MIS|SD_HAS_TRANSPARENT_SHADOW|SD_HAS_VOLUME|
- SD_HAS_ONLY_VOLUME|SD_HETEROGENEOUS_VOLUME|
- SD_HAS_BSSRDF_BUMP|SD_VOLUME_EQUIANGULAR|SD_VOLUME_MIS|
- SD_VOLUME_CUBIC|SD_HAS_BUMP|SD_HAS_DISPLACEMENT|SD_HAS_CONSTANT_EMISSION),
-
- /* object flags */
- SD_HOLDOUT_MASK = (1 << 24), /* holdout for camera rays */
- SD_OBJECT_MOTION = (1 << 25), /* has object motion blur */
- SD_TRANSFORM_APPLIED = (1 << 26), /* vertices have transform applied */
- SD_NEGATIVE_SCALE_APPLIED = (1 << 27), /* vertices have negative scale applied */
- SD_OBJECT_HAS_VOLUME = (1 << 28), /* object has a volume shader */
- SD_OBJECT_INTERSECTS_VOLUME = (1 << 29), /* object intersects AABB of an object with volume shader */
- SD_OBJECT_HAS_VERTEX_MOTION = (1 << 30), /* has position for motion vertices */
-
- SD_OBJECT_FLAGS = (SD_HOLDOUT_MASK|SD_OBJECT_MOTION|SD_TRANSFORM_APPLIED|
- SD_NEGATIVE_SCALE_APPLIED|SD_OBJECT_HAS_VOLUME|
- SD_OBJECT_INTERSECTS_VOLUME)
+ /* Shader flags. */
+
+ /* direct light sample */
+ SD_USE_MIS = (1 << 16),
+ /* Has transparent shadow. */
+ SD_HAS_TRANSPARENT_SHADOW = (1 << 17),
+ /* Has volume shader. */
+ SD_HAS_VOLUME = (1 << 18),
+ /* Has only volume shader, no surface. */
+ SD_HAS_ONLY_VOLUME = (1 << 19),
+ /* Has heterogeneous volume. */
+ SD_HETEROGENEOUS_VOLUME = (1 << 20),
+ /* BSSRDF normal uses bump. */
+ SD_HAS_BSSRDF_BUMP = (1 << 21),
+ /* Use equiangular volume sampling */
+ SD_VOLUME_EQUIANGULAR = (1 << 22),
+ /* Use multiple importance volume sampling. */
+ SD_VOLUME_MIS = (1 << 23),
+ /* Use cubic interpolation for voxels. */
+ SD_VOLUME_CUBIC = (1 << 24),
+ /* Has data connected to the displacement input or uses bump map. */
+ SD_HAS_BUMP = (1 << 25),
+ /* Has true displacement. */
+ SD_HAS_DISPLACEMENT = (1 << 26),
+ /* Has constant emission (value stored in __shader_flag) */
+ SD_HAS_CONSTANT_EMISSION = (1 << 27),
+
+ SD_SHADER_FLAGS = (SD_USE_MIS |
+ SD_HAS_TRANSPARENT_SHADOW |
+ SD_HAS_VOLUME |
+ SD_HAS_ONLY_VOLUME |
+ SD_HETEROGENEOUS_VOLUME|
+ SD_HAS_BSSRDF_BUMP |
+ SD_VOLUME_EQUIANGULAR |
+ SD_VOLUME_MIS |
+ SD_VOLUME_CUBIC |
+ SD_HAS_BUMP |
+ SD_HAS_DISPLACEMENT |
+ SD_HAS_CONSTANT_EMISSION)
};
-#ifdef __SPLIT_KERNEL__
-# define SD_THREAD (get_global_id(1) * get_global_size(0) + get_global_id(0))
-# if !defined(__SPLIT_KERNEL_SOA__)
- /* ShaderData is stored as an Array-of-Structures */
-# define ccl_soa_member(type, name) type soa_##name
-# define ccl_fetch(s, t) (s[SD_THREAD].soa_##t)
-# define ccl_fetch_array(s, t, index) (&s[SD_THREAD].soa_##t[index])
-# else
- /* ShaderData is stored as an Structure-of-Arrays */
-# define SD_GLOBAL_SIZE (get_global_size(0) * get_global_size(1))
-# define SD_FIELD_SIZE(t) sizeof(((struct ShaderData*)0)->t)
-# define SD_OFFSETOF(t) ((char*)(&((struct ShaderData*)0)->t) - (char*)0)
-# define ccl_soa_member(type, name) type soa_##name
-# define ccl_fetch(s, t) (((ShaderData*)((ccl_addr_space char*)s + SD_GLOBAL_SIZE * SD_OFFSETOF(soa_##t) + SD_FIELD_SIZE(soa_##t) * SD_THREAD - SD_OFFSETOF(soa_##t)))->soa_##t)
-# define ccl_fetch_array(s, t, index) (&ccl_fetch(s, t)[index])
-# endif
-#else
-# define ccl_soa_member(type, name) type name
-# define ccl_fetch(s, t) (s->t)
-# define ccl_fetch_array(s, t, index) (&s->t[index])
-#endif
+ /* Object flags. */
+enum ShaderDataObjectFlag {
+ /* Holdout for camera rays. */
+ SD_OBJECT_HOLDOUT_MASK = (1 << 0),
+ /* Has object motion blur. */
+ SD_OBJECT_MOTION = (1 << 1),
+ /* Vertices have transform applied. */
+ SD_OBJECT_TRANSFORM_APPLIED = (1 << 2),
+ /* Vertices have negative scale applied. */
+ SD_OBJECT_NEGATIVE_SCALE_APPLIED = (1 << 3),
+ /* Object has a volume shader. */
+ SD_OBJECT_HAS_VOLUME = (1 << 4),
+ /* Object intersects AABB of an object with volume shader. */
+ SD_OBJECT_INTERSECTS_VOLUME = (1 << 5),
+ /* Has position for motion vertices. */
+ SD_OBJECT_HAS_VERTEX_MOTION = (1 << 6),
+ /* object is used to catch shadows */
+ SD_OBJECT_SHADOW_CATCHER = (1 << 7),
+
+ SD_OBJECT_FLAGS = (SD_OBJECT_HOLDOUT_MASK |
+ SD_OBJECT_MOTION |
+ SD_OBJECT_TRANSFORM_APPLIED |
+ SD_OBJECT_NEGATIVE_SCALE_APPLIED |
+ SD_OBJECT_HAS_VOLUME |
+ SD_OBJECT_INTERSECTS_VOLUME |
+ SD_OBJECT_SHADOW_CATCHER)
+};
typedef ccl_addr_space struct ShaderData {
/* position */
- ccl_soa_member(float3, P);
+ float3 P;
/* smooth normal for shading */
- ccl_soa_member(float3, N);
+ float3 N;
/* true geometric normal */
- ccl_soa_member(float3, Ng);
+ float3 Ng;
/* view/incoming direction */
- ccl_soa_member(float3, I);
+ float3 I;
/* shader id */
- ccl_soa_member(int, shader);
+ int shader;
/* booleans describing shader, see ShaderDataFlag */
- ccl_soa_member(int, flag);
+ int flag;
+ /* booleans describing object of the shader, see ShaderDataObjectFlag */
+ int object_flag;
/* primitive id if there is one, ~0 otherwise */
- ccl_soa_member(int, prim);
+ int prim;
/* combined type and curve segment for hair */
- ccl_soa_member(int, type);
+ int type;
/* parametric coordinates
* - barycentric weights for triangles */
- ccl_soa_member(float, u);
- ccl_soa_member(float, v);
+ float u;
+ float v;
/* object id if there is one, ~0 otherwise */
- ccl_soa_member(int, object);
+ int object;
/* motion blur sample time */
- ccl_soa_member(float, time);
+ float time;
/* length of the ray being shaded */
- ccl_soa_member(float, ray_length);
+ float ray_length;
#ifdef __RAY_DIFFERENTIALS__
/* differential of P. these are orthogonal to Ng, not N */
- ccl_soa_member(differential3, dP);
+ differential3 dP;
/* differential of I */
- ccl_soa_member(differential3, dI);
+ differential3 dI;
/* differential of u, v */
- ccl_soa_member(differential, du);
- ccl_soa_member(differential, dv);
+ differential du;
+ differential dv;
#endif
#ifdef __DPDU__
/* differential of P w.r.t. parametric coordinates. note that dPdu is
* not readily suitable as a tangent for shading on triangles. */
- ccl_soa_member(float3, dPdu);
- ccl_soa_member(float3, dPdv);
+ float3 dPdu;
+ float3 dPdv;
#endif
#ifdef __OBJECT_MOTION__
/* object <-> world space transformations, cached to avoid
* re-interpolating them constantly for shading */
- ccl_soa_member(Transform, ob_tfm);
- ccl_soa_member(Transform, ob_itfm);
+ Transform ob_tfm;
+ Transform ob_itfm;
#endif
/* Closure data, we store a fixed array of closures */
- ccl_soa_member(struct ShaderClosure, closure[MAX_CLOSURE]);
- ccl_soa_member(int, num_closure);
- ccl_soa_member(int, num_closure_extra);
- ccl_soa_member(float, randb_closure);
- ccl_soa_member(float3, svm_closure_weight);
+ struct ShaderClosure closure[MAX_CLOSURE];
+ int num_closure;
+ int num_closure_extra;
+ float randb_closure;
+ float3 svm_closure_weight;
/* LCG state for closures that require additional random numbers. */
- ccl_soa_member(uint, lcg_state);
+ uint lcg_state;
/* ray start position, only set for backgrounds */
- ccl_soa_member(float3, ray_P);
- ccl_soa_member(differential3, ray_dP);
+ float3 ray_P;
+ differential3 ray_dP;
#ifdef __OSL__
struct KernelGlobals *osl_globals;
@@ -856,9 +1010,11 @@ typedef struct PathState {
int flag;
/* random number generator state */
- int rng_offset; /* dimension offset */
- int sample; /* path sample number */
- int num_samples; /* total number of times this path will be sampled */
+ uint rng_hash; /* per pixel hash */
+ int rng_offset; /* dimension offset */
+ int sample; /* path sample number */
+ int num_samples; /* total number of times this path will be sampled */
+ float branch_factor; /* number of branches in indirect paths */
/* bounce counting */
int bounce;
@@ -867,6 +1023,10 @@ typedef struct PathState {
int transmission_bounce;
int transparent_bounce;
+#ifdef __DENOISING_FEATURES__
+ float denoising_feature_weight;
+#endif /* __DENOISING_FEATURES__ */
+
/* multiple importance sampling */
float min_ray_pdf; /* smallest bounce pdf over entire path up to now */
float ray_pdf; /* last bounce pdf */
@@ -877,7 +1037,7 @@ typedef struct PathState {
/* volume rendering */
#ifdef __VOLUME__
int volume_bounce;
- RNG rng_congruential;
+ uint rng_congruential;
VolumeStack volume_stack[VOLUME_STACK_SIZE];
#endif
} PathState;
@@ -885,29 +1045,25 @@ typedef struct PathState {
/* Subsurface */
/* Struct to gather multiple SSS hits. */
-struct SubsurfaceIntersection
-{
+typedef struct SubsurfaceIntersection {
Ray ray;
float3 weight[BSSRDF_MAX_HITS];
int num_hits;
struct Intersection hits[BSSRDF_MAX_HITS];
float3 Ng[BSSRDF_MAX_HITS];
-};
+} SubsurfaceIntersection;
/* Struct to gather SSS indirect rays and delay tracing them. */
-struct SubsurfaceIndirectRays
-{
- bool need_update_volume_stack;
- bool tracing;
+typedef struct SubsurfaceIndirectRays {
PathState state[BSSRDF_MAX_HITS];
- struct PathRadiance direct_L;
int num_rays;
+
struct Ray rays[BSSRDF_MAX_HITS];
float3 throughputs[BSSRDF_MAX_HITS];
- struct PathRadiance L[BSSRDF_MAX_HITS];
-};
+ struct PathRadianceState L_state[BSSRDF_MAX_HITS];
+} SubsurfaceIndirectRays;
/* Constant Kernel Data
*
@@ -1040,11 +1196,16 @@ typedef struct KernelFilm {
float mist_inv_depth;
float mist_falloff;
+ int pass_denoising_data;
+ int pass_denoising_clean;
+ int denoising_flags;
+ int pad;
+
#ifdef __KERNEL_DEBUG__
- int pass_bvh_traversal_steps;
+ int pass_bvh_traversed_nodes;
int pass_bvh_traversed_instances;
+ int pass_bvh_intersections;
int pass_ray_bounces;
- int pass_pad3;
#endif
} KernelFilm;
static_assert_align(KernelFilm, 16);
@@ -1080,7 +1241,6 @@ typedef struct KernelIntegrator {
int portal_offset;
/* bounces */
- int min_bounce;
int max_bounce;
int max_diffuse_bounce;
@@ -1088,8 +1248,9 @@ typedef struct KernelIntegrator {
int max_transmission_bounce;
int max_volume_bounce;
+ int ao_bounces;
+
/* transparent */
- int transparent_min_bounce;
int transparent_max_bounce;
int transparent_shadows;
@@ -1107,6 +1268,7 @@ typedef struct KernelIntegrator {
/* branched path */
int branched;
+ int volume_decoupled;
int diffuse_samples;
int glossy_samples;
int transmission_samples;
@@ -1131,7 +1293,7 @@ typedef struct KernelIntegrator {
float light_inv_rr_threshold;
- int pad1;
+ int start_sample;
} KernelIntegrator;
static_assert_align(KernelIntegrator, 16);
@@ -1143,7 +1305,8 @@ typedef struct KernelBVH {
int have_curves;
int have_instancing;
int use_qbvh;
- int pad1, pad2;
+ int use_bvh_steps;
+ int pad1;
} KernelBVH;
static_assert_align(KernelBVH, 16);
@@ -1185,19 +1348,6 @@ typedef struct KernelData {
} KernelData;
static_assert_align(KernelData, 16);
-#ifdef __KERNEL_DEBUG__
-/* NOTE: This is a runtime-only struct, alignment is not
- * really important here.
- */
-typedef ccl_addr_space struct DebugData {
- // Total number of BVH node traversal steps and primitives intersections
- // for the camera rays.
- int num_bvh_traversal_steps;
- int num_bvh_traversed_instances;
- int num_ray_bounces;
-} DebugData;
-#endif
-
/* Declarations required for split kernel */
/* Macro for queues */
@@ -1210,7 +1360,6 @@ typedef ccl_addr_space struct DebugData {
* Queue 3 - Shadow ray cast kernel - AO
* Queeu 4 - Shadow ray cast kernel - direct lighting
*/
-#define NUM_QUEUES 4
/* Queue names */
enum QueueNumber {
@@ -1223,45 +1372,75 @@ enum QueueNumber {
* 3. Rays to be regenerated
* are enqueued here.
*/
- QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS = 1,
+ QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS,
/* All rays for which a shadow ray should be cast to determine radiance
* contribution for AO are enqueued here.
*/
- QUEUE_SHADOW_RAY_CAST_AO_RAYS = 2,
+ QUEUE_SHADOW_RAY_CAST_AO_RAYS,
/* All rays for which a shadow ray should be cast to determine radiance
* contributing for direct lighting are enqueued here.
*/
- QUEUE_SHADOW_RAY_CAST_DL_RAYS = 3,
+ QUEUE_SHADOW_RAY_CAST_DL_RAYS,
+
+ /* Rays sorted according to shader->id */
+ QUEUE_SHADER_SORTED_RAYS,
+
+#ifdef __BRANCHED_PATH__
+ /* All rays moving to next iteration of the indirect loop for light */
+ QUEUE_LIGHT_INDIRECT_ITER,
+ /* Queue of all inactive rays. These are candidates for sharing work of indirect loops */
+ QUEUE_INACTIVE_RAYS,
+# ifdef __VOLUME__
+ /* All rays moving to next iteration of the indirect loop for volumes */
+ QUEUE_VOLUME_INDIRECT_ITER,
+# endif
+# ifdef __SUBSURFACE__
+ /* All rays moving to next iteration of the indirect loop for subsurface */
+ QUEUE_SUBSURFACE_INDIRECT_ITER,
+# endif
+#endif /* __BRANCHED_PATH__ */
+
+ NUM_QUEUES
};
-/* We use RAY_STATE_MASK to get ray_state (enums 0 to 5) */
-#define RAY_STATE_MASK 0x007
-#define RAY_FLAG_MASK 0x0F8
+/* We use RAY_STATE_MASK to get ray_state */
+#define RAY_STATE_MASK 0x0F
+#define RAY_FLAG_MASK 0xF0
enum RayState {
+ RAY_INVALID = 0,
/* Denotes ray is actively involved in path-iteration. */
- RAY_ACTIVE = 0,
+ RAY_ACTIVE,
/* Denotes ray has completed processing all samples and is inactive. */
- RAY_INACTIVE = 1,
+ RAY_INACTIVE,
/* Denoted ray has exited path-iteration and needs to update output buffer. */
- RAY_UPDATE_BUFFER = 2,
+ RAY_UPDATE_BUFFER,
/* Donotes ray has hit background */
- RAY_HIT_BACKGROUND = 3,
+ RAY_HIT_BACKGROUND,
/* Denotes ray has to be regenerated */
- RAY_TO_REGENERATE = 4,
+ RAY_TO_REGENERATE,
/* Denotes ray has been regenerated */
- RAY_REGENERATED = 5,
- /* Denotes ray should skip direct lighting */
- RAY_SKIP_DL = 6,
- /* Flag's ray has to execute shadow blocked function in AO part */
- RAY_SHADOW_RAY_CAST_AO = 16,
- /* Flag's ray has to execute shadow blocked function in direct lighting part. */
- RAY_SHADOW_RAY_CAST_DL = 32,
+ RAY_REGENERATED,
+ /* Denotes ray is moving to next iteration of the branched indirect loop */
+ RAY_LIGHT_INDIRECT_NEXT_ITER,
+ RAY_VOLUME_INDIRECT_NEXT_ITER,
+ RAY_SUBSURFACE_INDIRECT_NEXT_ITER,
+
+ /* Ray flags */
+
+ /* Flags to denote that the ray is currently evaluating the branched indirect loop */
+ RAY_BRANCHED_LIGHT_INDIRECT = (1 << 4),
+ RAY_BRANCHED_VOLUME_INDIRECT = (1 << 5),
+ RAY_BRANCHED_SUBSURFACE_INDIRECT = (1 << 6),
+ RAY_BRANCHED_INDIRECT = (RAY_BRANCHED_LIGHT_INDIRECT | RAY_BRANCHED_VOLUME_INDIRECT | RAY_BRANCHED_SUBSURFACE_INDIRECT),
+
+ /* Ray is evaluating an iteration of an indirect loop for another thread */
+ RAY_BRANCHED_INDIRECT_SHARED = (1 << 7),
};
#define ASSIGN_RAY_STATE(ray_state, ray_index, state) (ray_state[ray_index] = ((ray_state[ray_index] & RAY_FLAG_MASK) | state))
-#define IS_STATE(ray_state, ray_index, state) ((ray_state[ray_index] & RAY_STATE_MASK) == state)
+#define IS_STATE(ray_state, ray_index, state) ((ray_index) != QUEUE_EMPTY_SLOT && ((ray_state)[(ray_index)] & RAY_STATE_MASK) == (state))
#define ADD_RAY_FLAG(ray_state, ray_index, flag) (ray_state[ray_index] = (ray_state[ray_index] | flag))
#define REMOVE_RAY_FLAG(ray_state, ray_index, flag) (ray_state[ray_index] = (ray_state[ray_index] & (~flag)))
#define IS_FLAG(ray_state, ray_index, flag) (ray_state[ray_index] & flag)
@@ -1276,6 +1455,20 @@ enum RayState {
#define PATCH_MAP_NODE_IS_LEAF (1u << 31)
#define PATCH_MAP_NODE_INDEX_MASK (~(PATCH_MAP_NODE_IS_SET | PATCH_MAP_NODE_IS_LEAF))
+/* Work Tiles */
+
+typedef struct WorkTile {
+ uint x, y, w, h;
+
+ uint start_sample;
+ uint num_samples;
+
+ uint offset;
+ uint stride;
+
+ ccl_global float *buffer;
+} WorkTile;
+
CCL_NAMESPACE_END
#endif /* __KERNEL_TYPES_H__ */
diff --git a/intern/cycles/kernel/kernel_volume.h b/intern/cycles/kernel/kernel_volume.h
index e973afe79eb..35f58850f56 100644
--- a/intern/cycles/kernel/kernel_volume.h
+++ b/intern/cycles/kernel/kernel_volume.h
@@ -41,12 +41,12 @@ typedef struct VolumeShaderCoefficients {
/* evaluate shader to get extinction coefficient at P */
ccl_device_inline bool volume_shader_extinction_sample(KernelGlobals *kg,
ShaderData *sd,
- PathState *state,
+ ccl_addr_space PathState *state,
float3 P,
float3 *extinction)
{
sd->P = P;
- shader_eval_volume(kg, sd, state, state->volume_stack, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW);
+ shader_eval_volume(kg, sd, state, state->volume_stack, PATH_RAY_SHADOW);
if(!(sd->flag & (SD_ABSORPTION|SD_SCATTER)))
return false;
@@ -67,12 +67,12 @@ ccl_device_inline bool volume_shader_extinction_sample(KernelGlobals *kg,
/* evaluate shader to get absorption, scattering and emission at P */
ccl_device_inline bool volume_shader_sample(KernelGlobals *kg,
ShaderData *sd,
- PathState *state,
+ ccl_addr_space PathState *state,
float3 P,
VolumeShaderCoefficients *coeff)
{
sd->P = P;
- shader_eval_volume(kg, sd, state, state->volume_stack, state->flag, SHADER_CONTEXT_VOLUME);
+ shader_eval_volume(kg, sd, state, state->volume_stack, state->flag);
if(!(sd->flag & (SD_ABSORPTION|SD_SCATTER|SD_EMISSION)))
return false;
@@ -115,7 +115,7 @@ ccl_device float kernel_volume_channel_get(float3 value, int channel)
return (channel == 0)? value.x: ((channel == 1)? value.y: value.z);
}
-ccl_device bool volume_stack_is_heterogeneous(KernelGlobals *kg, VolumeStack *stack)
+ccl_device bool volume_stack_is_heterogeneous(KernelGlobals *kg, ccl_addr_space VolumeStack *stack)
{
for(int i = 0; stack[i].shader != SHADER_NONE; i++) {
int shader_flag = kernel_tex_fetch(__shader_flag, (stack[i].shader & SHADER_MASK)*SHADER_SIZE);
@@ -164,7 +164,11 @@ ccl_device int volume_stack_sampling_method(KernelGlobals *kg, VolumeStack *stac
/* homogeneous volume: assume shader evaluation at the starts gives
* the extinction coefficient for the entire line segment */
-ccl_device void kernel_volume_shadow_homogeneous(KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd, float3 *throughput)
+ccl_device void kernel_volume_shadow_homogeneous(KernelGlobals *kg,
+ ccl_addr_space PathState *state,
+ Ray *ray,
+ ShaderData *sd,
+ float3 *throughput)
{
float3 sigma_t;
@@ -206,7 +210,11 @@ ccl_device_inline bool kernel_volume_integrate_shadow_ray(
/* heterogeneous volume: integrate stepping through the volume until we
* reach the end, get absorbed entirely, or run out of iterations */
-ccl_device void kernel_volume_shadow_heterogeneous(KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd, float3 *throughput)
+ccl_device void kernel_volume_shadow_heterogeneous(KernelGlobals *kg,
+ ccl_addr_space PathState *state,
+ Ray *ray,
+ ShaderData *sd,
+ float3 *throughput)
{
float3 tp = *throughput;
const float tp_eps = 1e-6f; /* todo: this is likely not the right value */
@@ -214,7 +222,7 @@ ccl_device void kernel_volume_shadow_heterogeneous(KernelGlobals *kg, PathState
/* prepare for stepping */
int max_steps = kernel_data.integrator.volume_max_steps;
float step = kernel_data.integrator.volume_step_size;
- float random_jitter_offset = lcg_step_float(&state->rng_congruential) * step;
+ float random_jitter_offset = lcg_step_float_addrspace(&state->rng_congruential) * step;
/* compute extinction at the start */
float t = 0.0f;
@@ -295,7 +303,11 @@ ccl_device void kernel_volume_shadow_heterogeneous(KernelGlobals *kg, PathState
/* get the volume attenuation over line segment defined by ray, with the
* assumption that there are no surfaces blocking light between the endpoints */
-ccl_device_noinline void kernel_volume_shadow(KernelGlobals *kg, ShaderData *shadow_sd, PathState *state, Ray *ray, float3 *throughput)
+ccl_device_noinline void kernel_volume_shadow(KernelGlobals *kg,
+ ShaderData *shadow_sd,
+ ccl_addr_space PathState *state,
+ Ray *ray,
+ float3 *throughput)
{
shader_setup_from_volume(kg, shadow_sd, ray);
@@ -313,11 +325,18 @@ ccl_device float kernel_volume_equiangular_sample(Ray *ray, float3 light_P, floa
float t = ray->t;
float delta = dot((light_P - ray->P) , ray->D);
- float D = sqrtf(len_squared(light_P - ray->P) - delta * delta);
+ float D = safe_sqrtf(len_squared(light_P - ray->P) - delta * delta);
+ if(UNLIKELY(D == 0.0f)) {
+ *pdf = 0.0f;
+ return 0.0f;
+ }
float theta_a = -atan2f(delta, D);
float theta_b = atan2f(t - delta, D);
float t_ = D * tanf((xi * theta_b) + (1 - xi) * theta_a);
-
+ if(UNLIKELY(theta_b == theta_a)) {
+ *pdf = 0.0f;
+ return 0.0f;
+ }
*pdf = D / ((theta_b - theta_a) * (D * D + t_ * t_));
return min(t, delta + t_); /* min is only for float precision errors */
@@ -326,13 +345,19 @@ ccl_device float kernel_volume_equiangular_sample(Ray *ray, float3 light_P, floa
ccl_device float kernel_volume_equiangular_pdf(Ray *ray, float3 light_P, float sample_t)
{
float delta = dot((light_P - ray->P) , ray->D);
- float D = sqrtf(len_squared(light_P - ray->P) - delta * delta);
+ float D = safe_sqrtf(len_squared(light_P - ray->P) - delta * delta);
+ if(UNLIKELY(D == 0.0f)) {
+ return 0.0f;
+ }
float t = ray->t;
float t_ = sample_t - delta;
float theta_a = -atan2f(delta, D);
float theta_b = atan2f(t - delta, D);
+ if(UNLIKELY(theta_b == theta_a)) {
+ return 0.0f;
+ }
float pdf = D / ((theta_b - theta_a) * (D * D + t_ * t_));
@@ -396,9 +421,14 @@ ccl_device float3 kernel_volume_emission_integrate(VolumeShaderCoefficients *coe
/* homogeneous volume: assume shader evaluation at the start gives
* the volume shading coefficient for the entire line segment */
-ccl_device VolumeIntegrateResult kernel_volume_integrate_homogeneous(KernelGlobals *kg,
- PathState *state, Ray *ray, ShaderData *sd, PathRadiance *L, float3 *throughput,
- RNG *rng, bool probalistic_scatter)
+ccl_device VolumeIntegrateResult kernel_volume_integrate_homogeneous(
+ KernelGlobals *kg,
+ ccl_addr_space PathState *state,
+ Ray *ray,
+ ShaderData *sd,
+ PathRadiance *L,
+ ccl_addr_space float3 *throughput,
+ bool probalistic_scatter)
{
VolumeShaderCoefficients coeff;
@@ -417,13 +447,12 @@ ccl_device VolumeIntegrateResult kernel_volume_integrate_homogeneous(KernelGloba
/* pick random color channel, we use the Veach one-sample
* model with balance heuristic for the channels */
- float rphase = path_state_rng_1D_for_decision(kg, rng, state, PRNG_PHASE);
+ float rphase = path_state_rng_1D(kg, state, PRNG_PHASE_CHANNEL);
int channel = (int)(rphase*3.0f);
- sd->randb_closure = rphase*3.0f - channel;
/* decide if we will hit or miss */
bool scatter = true;
- float xi = path_state_rng_1D_for_decision(kg, rng, state, PRNG_SCATTER_DISTANCE);
+ float xi = path_state_rng_1D(kg, state, PRNG_SCATTER_DISTANCE);
if(probalistic_scatter) {
float sample_sigma_t = kernel_volume_channel_get(sigma_t, channel);
@@ -476,7 +505,7 @@ ccl_device VolumeIntegrateResult kernel_volume_integrate_homogeneous(KernelGloba
float3 sigma_t = coeff.sigma_a + coeff.sigma_s;
float3 transmittance = volume_color_transmittance(sigma_t, ray->t);
float3 emission = kernel_volume_emission_integrate(&coeff, closure_flag, transmittance, ray->t);
- path_radiance_accum_emission(L, *throughput, emission, state->bounce);
+ path_radiance_accum_emission(L, state, *throughput, emission);
}
/* modify throughput */
@@ -496,17 +525,27 @@ ccl_device VolumeIntegrateResult kernel_volume_integrate_homogeneous(KernelGloba
}
ccl_device_inline VolumeIntegrateResult kernel_volume_integrate_ray(
- KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd,
- PathRadiance *L, float3 *throughput, float t, float new_t,
- float random_jitter_offset, bool has_scatter, float3 *accum_transmittance,
- int channel, const float tp_eps, float *xi)
+ KernelGlobals *kg,
+ PathState *state,
+ Ray *ray,
+ ShaderData *sd,
+ PathRadiance *L,
+ float3 *throughput,
+ float t,
+ float new_t,
+ float random_jitter_offset,
+ bool has_scatter,
+ float3 *accum_transmittance,
+ int channel,
+ const float tp_eps,
+ float *xi)
{
float dt = new_t - t;
float3 tp = *throughput;
/* use random position inside this segment to sample shader */
if(new_t == ray->t)
- random_jitter_offset = lcg_step_float(&state->rng_congruential) * dt;
+ random_jitter_offset = lcg_step_float_addrspace(&state->rng_congruential) * dt;
float3 new_P = ray->P + ray->D * (t + random_jitter_offset);
VolumeShaderCoefficients coeff;
@@ -568,7 +607,7 @@ ccl_device_inline VolumeIntegrateResult kernel_volume_integrate_ray(
/* integrate emission attenuated by absorption */
if(L && (closure_flag & SD_EMISSION)) {
float3 emission = kernel_volume_emission_integrate(&coeff, closure_flag, transmittance, dt);
- path_radiance_accum_emission(L, tp, emission, state->bounce);
+ path_radiance_accum_emission(L, state, tp, emission);
}
/* modify throughput */
@@ -606,7 +645,7 @@ ccl_device_inline VolumeIntegrateResult kernel_volume_integrate_ray(
* iterations. this does probabilistically scatter or get transmitted through
* for path tracing where we don't want to branch. */
ccl_device VolumeIntegrateResult kernel_volume_integrate_heterogeneous_distance(KernelGlobals *kg,
- PathState *state, Ray *ray, ShaderData *sd, PathRadiance *L, float3 *throughput, RNG *rng)
+ PathState *state, Ray *ray, ShaderData *sd, PathRadiance *L, float3 *throughput)
{
VolumeIntegrateResult result = VOLUME_PATH_MISSED;
const float tp_eps = 1e-6f; /* todo: this is likely not the right value */
@@ -614,7 +653,7 @@ ccl_device VolumeIntegrateResult kernel_volume_integrate_heterogeneous_distance(
/* prepare for stepping */
int max_steps = kernel_data.integrator.volume_max_steps;
float step_size = kernel_data.integrator.volume_step_size;
- float random_jitter_offset = lcg_step_float(&state->rng_congruential) * step_size;
+ float random_jitter_offset = lcg_step_float_addrspace(&state->rng_congruential) * step_size;
/* compute coefficients at the start */
float t = 0.0f;
@@ -622,8 +661,8 @@ ccl_device VolumeIntegrateResult kernel_volume_integrate_heterogeneous_distance(
/* pick random color channel, we use the Veach one-sample
* model with balance heuristic for the channels */
- float xi = path_state_rng_1D_for_decision(kg, rng, state, PRNG_SCATTER_DISTANCE);
- float rphase = path_state_rng_1D_for_decision(kg, rng, state, PRNG_PHASE);
+ float xi = path_state_rng_1D(kg, state, PRNG_SCATTER_DISTANCE);
+ float rphase = path_state_rng_1D(kg, state, PRNG_PHASE_CHANNEL);
int channel = (int)(rphase*3.0f);
sd->randb_closure = rphase*3.0f - channel;
bool has_scatter = false;
@@ -702,22 +741,24 @@ ccl_device VolumeIntegrateResult kernel_volume_integrate_heterogeneous_distance(
* ray, with the assumption that there are no surfaces blocking light
* between the endpoints. distance sampling is used to decide if we will
* scatter or not. */
-ccl_device_noinline VolumeIntegrateResult kernel_volume_integrate(KernelGlobals *kg,
- PathState *state, ShaderData *sd, Ray *ray, PathRadiance *L, float3 *throughput, RNG *rng, bool heterogeneous)
+ccl_device_noinline VolumeIntegrateResult kernel_volume_integrate(
+ KernelGlobals *kg,
+ ccl_addr_space PathState *state,
+ ShaderData *sd,
+ Ray *ray,
+ PathRadiance *L,
+ ccl_addr_space float3 *throughput,
+ bool heterogeneous)
{
- /* workaround to fix correlation bug in T38710, can find better solution
- * in random number generator later, for now this is done here to not impact
- * performance of rendering without volumes */
- RNG tmp_rng = cmj_hash(*rng, state->rng_offset);
-
shader_setup_from_volume(kg, sd, ray);
if(heterogeneous)
- return kernel_volume_integrate_heterogeneous_distance(kg, state, ray, sd, L, throughput, &tmp_rng);
+ return kernel_volume_integrate_heterogeneous_distance(kg, state, ray, sd, L, throughput);
else
- return kernel_volume_integrate_homogeneous(kg, state, ray, sd, L, throughput, &tmp_rng, true);
+ return kernel_volume_integrate_homogeneous(kg, state, ray, sd, L, throughput, true);
}
+#ifndef __SPLIT_KERNEL__
/* Decoupled Volume Sampling
*
* VolumeSegment is list of coefficients and transmittance stored at all steps
@@ -756,6 +797,7 @@ typedef struct VolumeSegment {
* but the entire segment is needed to do always scattering, rather than probabilistically
* hitting or missing the volume. if we don't know the transmittance at the end of the
* volume we can't generate stratified distance samples up to that transmittance */
+#ifdef __VOLUME_DECOUPLED__
ccl_device void kernel_volume_decoupled_record(KernelGlobals *kg, PathState *state,
Ray *ray, ShaderData *sd, VolumeSegment *segment, bool heterogeneous)
{
@@ -1026,6 +1068,7 @@ ccl_device void kernel_volume_decoupled_free(KernelGlobals *kg, VolumeSegment *s
#endif
}
}
+#endif /* __VOLUME_DECOUPLED__ */
/* scattering for homogeneous and heterogeneous volumes, using decoupled ray
* marching.
@@ -1041,7 +1084,6 @@ ccl_device VolumeIntegrateResult kernel_volume_decoupled_scatter(
/* pick random color channel, we use the Veach one-sample
* model with balance heuristic for the channels */
int channel = (int)(rphase*3.0f);
- sd->randb_closure = rphase*3.0f - channel;
float xi = rscatter;
/* probabilistic scattering decision based on transmittance */
@@ -1195,6 +1237,9 @@ ccl_device VolumeIntegrateResult kernel_volume_decoupled_scatter(
mis_weight = 2.0f*power_heuristic(pdf, distance_pdf);
}
}
+ if(sample_t < 0.0f || pdf == 0.0f) {
+ return VOLUME_PATH_MISSED;
+ }
/* compute transmittance up to this step */
if(step != segment->steps)
@@ -1216,6 +1261,7 @@ ccl_device VolumeIntegrateResult kernel_volume_decoupled_scatter(
return VOLUME_PATH_SCATTERED;
}
+#endif /* __SPLIT_KERNEL */
/* decide if we need to use decoupled or not */
ccl_device bool kernel_volume_use_decoupled(KernelGlobals *kg, bool heterogeneous, bool direct, int sampling_method)
@@ -1223,6 +1269,9 @@ ccl_device bool kernel_volume_use_decoupled(KernelGlobals *kg, bool heterogeneou
/* decoupled ray marching for heterogeneous volumes not supported on the GPU,
* which also means equiangular and multiple importance sampling is not
* support for that case */
+ if(!kernel_data.integrator.volume_decoupled)
+ return false;
+
#ifdef __KERNEL_GPU__
if(heterogeneous)
return false;
@@ -1247,9 +1296,9 @@ ccl_device bool kernel_volume_use_decoupled(KernelGlobals *kg, bool heterogeneou
ccl_device void kernel_volume_stack_init(KernelGlobals *kg,
ShaderData *stack_sd,
- const PathState *state,
- const Ray *ray,
- VolumeStack *stack)
+ ccl_addr_space const PathState *state,
+ ccl_addr_space const Ray *ray,
+ ccl_addr_space VolumeStack *stack)
{
/* NULL ray happens in the baker, does it need proper initialization of
* camera in volume?
@@ -1393,7 +1442,7 @@ ccl_device void kernel_volume_stack_init(KernelGlobals *kg,
}
}
-ccl_device void kernel_volume_stack_enter_exit(KernelGlobals *kg, ShaderData *sd, VolumeStack *stack)
+ccl_device void kernel_volume_stack_enter_exit(KernelGlobals *kg, ShaderData *sd, ccl_addr_space VolumeStack *stack)
{
/* todo: we should have some way for objects to indicate if they want the
* world shader to work inside them. excluding it by default is problematic
@@ -1442,7 +1491,7 @@ ccl_device void kernel_volume_stack_enter_exit(KernelGlobals *kg, ShaderData *sd
ccl_device void kernel_volume_stack_update_for_subsurface(KernelGlobals *kg,
ShaderData *stack_sd,
Ray *ray,
- VolumeStack *stack)
+ ccl_addr_space VolumeStack *stack)
{
kernel_assert(kernel_data.integrator.use_volumes);
@@ -1489,4 +1538,30 @@ ccl_device void kernel_volume_stack_update_for_subsurface(KernelGlobals *kg,
}
#endif
+/* Clean stack after the last bounce.
+ *
+ * It is expected that all volumes are closed manifolds, so at the time when ray
+ * hits nothing (for example, it is a last bounce which goes to environment) the
+ * only expected volume in the stack is the world's one. All the rest volume
+ * entries should have been exited already.
+ *
+ * This isn't always true because of ray intersection precision issues, which
+ * could lead us to an infinite non-world volume in the stack, causing render
+ * artifacts.
+ *
+ * Use this function after the last bounce to get rid of all volumes apart from
+ * the world's one after the last bounce to avoid render artifacts.
+ */
+ccl_device_inline void kernel_volume_clean_stack(KernelGlobals *kg,
+ ccl_addr_space VolumeStack *volume_stack)
+{
+ if(kernel_data.background.volume_shader != SHADER_NONE) {
+ /* Keep the world's volume in stack. */
+ volume_stack[1].shader = SHADER_NONE;
+ }
+ else {
+ volume_stack[0].shader = SHADER_NONE;
+ }
+}
+
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/kernel_work_stealing.h b/intern/cycles/kernel/kernel_work_stealing.h
index 7d559b1aa31..0c2d9379b63 100644
--- a/intern/cycles/kernel/kernel_work_stealing.h
+++ b/intern/cycles/kernel/kernel_work_stealing.h
@@ -17,177 +17,66 @@
#ifndef __KERNEL_WORK_STEALING_H__
#define __KERNEL_WORK_STEALING_H__
+CCL_NAMESPACE_BEGIN
+
/*
* Utility functions for work stealing
*/
-#ifdef __WORK_STEALING__
-
#ifdef __KERNEL_OPENCL__
# pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable
#endif
-uint get_group_id_with_ray_index(uint ray_index,
- uint tile_dim_x,
- uint tile_dim_y,
- uint parallel_samples,
- int dim)
+#ifdef __SPLIT_KERNEL__
+/* Returns true if there is work */
+ccl_device bool get_next_work(KernelGlobals *kg,
+ ccl_global uint *work_pools,
+ uint total_work_size,
+ uint ray_index,
+ ccl_private uint *global_work_index)
{
- if(dim == 0) {
- uint x_span = ray_index % (tile_dim_x * parallel_samples);
- return x_span / get_local_size(0);
+ /* With a small amount of work there may be more threads than work due to
+ * rounding up of global size, stop such threads immediately. */
+ if(ray_index >= total_work_size) {
+ return false;
}
- else /*if(dim == 1)*/ {
- kernel_assert(dim == 1);
- uint y_span = ray_index / (tile_dim_x * parallel_samples);
- return y_span / get_local_size(1);
- }
-}
-
-uint get_total_work(uint tile_dim_x,
- uint tile_dim_y,
- uint grp_idx,
- uint grp_idy,
- uint num_samples)
-{
- uint threads_within_tile_border_x =
- (grp_idx == (get_num_groups(0) - 1)) ? tile_dim_x % get_local_size(0)
- : get_local_size(0);
- uint threads_within_tile_border_y =
- (grp_idy == (get_num_groups(1) - 1)) ? tile_dim_y % get_local_size(1)
- : get_local_size(1);
-
- threads_within_tile_border_x =
- (threads_within_tile_border_x == 0) ? get_local_size(0)
- : threads_within_tile_border_x;
- threads_within_tile_border_y =
- (threads_within_tile_border_y == 0) ? get_local_size(1)
- : threads_within_tile_border_y;
-
- return threads_within_tile_border_x *
- threads_within_tile_border_y *
- num_samples;
-}
-/* Returns 0 in case there is no next work available */
-/* Returns 1 in case work assigned is valid */
-int get_next_work(ccl_global uint *work_pool,
- ccl_private uint *my_work,
- uint tile_dim_x,
- uint tile_dim_y,
- uint num_samples,
- uint parallel_samples,
- uint ray_index)
-{
- uint grp_idx = get_group_id_with_ray_index(ray_index,
- tile_dim_x,
- tile_dim_y,
- parallel_samples,
- 0);
- uint grp_idy = get_group_id_with_ray_index(ray_index,
- tile_dim_x,
- tile_dim_y,
- parallel_samples,
- 1);
- uint total_work = get_total_work(tile_dim_x,
- tile_dim_y,
- grp_idx,
- grp_idy,
- num_samples);
- uint group_index = grp_idy * get_num_groups(0) + grp_idx;
- *my_work = atomic_inc(&work_pool[group_index]);
- return (*my_work < total_work) ? 1 : 0;
-}
+ /* Increase atomic work index counter in pool. */
+ uint pool = ray_index / WORK_POOL_SIZE;
+ uint work_index = atomic_fetch_and_inc_uint32(&work_pools[pool]);
-/* This function assumes that the passed my_work is valid. */
-/* Decode sample number w.r.t. assigned my_work. */
-uint get_my_sample(uint my_work,
- uint tile_dim_x,
- uint tile_dim_y,
- uint parallel_samples,
- uint ray_index)
-{
- uint grp_idx = get_group_id_with_ray_index(ray_index,
- tile_dim_x,
- tile_dim_y,
- parallel_samples,
- 0);
- uint grp_idy = get_group_id_with_ray_index(ray_index,
- tile_dim_x,
- tile_dim_y,
- parallel_samples,
- 1);
- uint threads_within_tile_border_x =
- (grp_idx == (get_num_groups(0) - 1)) ? tile_dim_x % get_local_size(0)
- : get_local_size(0);
- uint threads_within_tile_border_y =
- (grp_idy == (get_num_groups(1) - 1)) ? tile_dim_y % get_local_size(1)
- : get_local_size(1);
+ /* Map per-pool work index to a global work index. */
+ uint global_size = ccl_global_size(0) * ccl_global_size(1);
+ kernel_assert(global_size % WORK_POOL_SIZE == 0);
+ kernel_assert(ray_index < global_size);
- threads_within_tile_border_x =
- (threads_within_tile_border_x == 0) ? get_local_size(0)
- : threads_within_tile_border_x;
- threads_within_tile_border_y =
- (threads_within_tile_border_y == 0) ? get_local_size(1)
- : threads_within_tile_border_y;
+ *global_work_index = (work_index / WORK_POOL_SIZE) * global_size
+ + (pool * WORK_POOL_SIZE)
+ + (work_index % WORK_POOL_SIZE);
- return my_work /
- (threads_within_tile_border_x * threads_within_tile_border_y);
+ /* Test if all work for this pool is done. */
+ return (*global_work_index < total_work_size);
}
+#endif
-/* Decode pixel and tile position w.r.t. assigned my_work. */
-void get_pixel_tile_position(ccl_private uint *pixel_x,
- ccl_private uint *pixel_y,
- ccl_private uint *tile_x,
- ccl_private uint *tile_y,
- uint my_work,
- uint tile_dim_x,
- uint tile_dim_y,
- uint tile_offset_x,
- uint tile_offset_y,
- uint parallel_samples,
- uint ray_index)
+/* Map global work index to tile, pixel X/Y and sample. */
+ccl_device_inline void get_work_pixel(ccl_global const WorkTile *tile,
+ uint global_work_index,
+ ccl_private uint *x,
+ ccl_private uint *y,
+ ccl_private uint *sample)
{
- uint grp_idx = get_group_id_with_ray_index(ray_index,
- tile_dim_x,
- tile_dim_y,
- parallel_samples,
- 0);
- uint grp_idy = get_group_id_with_ray_index(ray_index,
- tile_dim_x,
- tile_dim_y,
- parallel_samples,
- 1);
- uint threads_within_tile_border_x =
- (grp_idx == (get_num_groups(0) - 1)) ? tile_dim_x % get_local_size(0)
- : get_local_size(0);
- uint threads_within_tile_border_y =
- (grp_idy == (get_num_groups(1) - 1)) ? tile_dim_y % get_local_size(1)
- : get_local_size(1);
-
- threads_within_tile_border_x =
- (threads_within_tile_border_x == 0) ? get_local_size(0)
- : threads_within_tile_border_x;
- threads_within_tile_border_y =
- (threads_within_tile_border_y == 0) ? get_local_size(1)
- : threads_within_tile_border_y;
-
- uint total_associated_pixels =
- threads_within_tile_border_x * threads_within_tile_border_y;
- uint work_group_pixel_index = my_work % total_associated_pixels;
- uint work_group_pixel_x =
- work_group_pixel_index % threads_within_tile_border_x;
- uint work_group_pixel_y =
- work_group_pixel_index / threads_within_tile_border_x;
-
- *pixel_x =
- tile_offset_x + (grp_idx * get_local_size(0)) + work_group_pixel_x;
- *pixel_y =
- tile_offset_y + (grp_idy * get_local_size(1)) + work_group_pixel_y;
- *tile_x = *pixel_x - tile_offset_x;
- *tile_y = *pixel_y - tile_offset_y;
+ uint tile_pixels = tile->w * tile->h;
+ uint sample_offset = global_work_index / tile_pixels;
+ uint pixel_offset = global_work_index - sample_offset * tile_pixels;
+ uint y_offset = pixel_offset / tile->w;
+ uint x_offset = pixel_offset - y_offset * tile->w;
+
+ *x = tile->x + x_offset;
+ *y = tile->y + y_offset;
+ *sample = tile->start_sample + sample_offset;
}
-#endif /* __WORK_STEALING__ */
+CCL_NAMESPACE_END
#endif /* __KERNEL_WORK_STEALING_H__ */
diff --git a/intern/cycles/kernel/kernels/cpu/filter.cpp b/intern/cycles/kernel/kernels/cpu/filter.cpp
new file mode 100644
index 00000000000..2ff1a392dc3
--- /dev/null
+++ b/intern/cycles/kernel/kernels/cpu/filter.cpp
@@ -0,0 +1,61 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* CPU kernel entry points */
+
+/* On x86-64, we can assume SSE2, so avoid the extra kernel and compile this
+ * one with SSE2 intrinsics.
+ */
+#if defined(__x86_64__) || defined(_M_X64)
+# define __KERNEL_SSE2__
+#endif
+
+/* When building kernel for native machine detect kernel features from the flags
+ * set by compiler.
+ */
+#ifdef WITH_KERNEL_NATIVE
+# ifdef __SSE2__
+# ifndef __KERNEL_SSE2__
+# define __KERNEL_SSE2__
+# endif
+# endif
+# ifdef __SSE3__
+# define __KERNEL_SSE3__
+# endif
+# ifdef __SSSE3__
+# define __KERNEL_SSSE3__
+# endif
+# ifdef __SSE4_1__
+# define __KERNEL_SSE41__
+# endif
+# ifdef __AVX__
+# define __KERNEL_SSE__
+# define __KERNEL_AVX__
+# endif
+# ifdef __AVX2__
+# define __KERNEL_SSE__
+# define __KERNEL_AVX2__
+# endif
+#endif
+
+/* quiet unused define warnings */
+#if defined(__KERNEL_SSE2__)
+ /* do nothing */
+#endif
+
+#include "kernel/filter/filter.h"
+#define KERNEL_ARCH cpu
+#include "kernel/kernels/cpu/filter_cpu_impl.h"
diff --git a/intern/cycles/kernel/kernels/cpu/filter_avx.cpp b/intern/cycles/kernel/kernels/cpu/filter_avx.cpp
new file mode 100644
index 00000000000..4a9e6047ecf
--- /dev/null
+++ b/intern/cycles/kernel/kernels/cpu/filter_avx.cpp
@@ -0,0 +1,39 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* Optimized CPU kernel entry points. This file is compiled with AVX
+ * optimization flags and nearly all functions inlined, while kernel.cpp
+ * is compiled without for other CPU's. */
+
+#include "util/util_optimization.h"
+
+#ifndef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
+# define KERNEL_STUB
+#else
+/* SSE optimization disabled for now on 32 bit, see bug #36316 */
+# if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
+# define __KERNEL_SSE__
+# define __KERNEL_SSE2__
+# define __KERNEL_SSE3__
+# define __KERNEL_SSSE3__
+# define __KERNEL_SSE41__
+# define __KERNEL_AVX__
+# endif
+#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_AVX */
+
+#include "kernel/filter/filter.h"
+#define KERNEL_ARCH cpu_avx
+#include "kernel/kernels/cpu/filter_cpu_impl.h"
diff --git a/intern/cycles/kernel/kernels/cpu/filter_avx2.cpp b/intern/cycles/kernel/kernels/cpu/filter_avx2.cpp
new file mode 100644
index 00000000000..c22ec576254
--- /dev/null
+++ b/intern/cycles/kernel/kernels/cpu/filter_avx2.cpp
@@ -0,0 +1,40 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* Optimized CPU kernel entry points. This file is compiled with AVX2
+ * optimization flags and nearly all functions inlined, while kernel.cpp
+ * is compiled without for other CPU's. */
+
+#include "util/util_optimization.h"
+
+#ifndef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
+# define KERNEL_STUB
+#else
+/* SSE optimization disabled for now on 32 bit, see bug #36316 */
+# if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
+# define __KERNEL_SSE__
+# define __KERNEL_SSE2__
+# define __KERNEL_SSE3__
+# define __KERNEL_SSSE3__
+# define __KERNEL_SSE41__
+# define __KERNEL_AVX__
+# define __KERNEL_AVX2__
+# endif
+#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_AVX2 */
+
+#include "kernel/filter/filter.h"
+#define KERNEL_ARCH cpu_avx2
+#include "kernel/kernels/cpu/filter_cpu_impl.h"
diff --git a/intern/cycles/kernel/kernels/cpu/filter_cpu.h b/intern/cycles/kernel/kernels/cpu/filter_cpu.h
new file mode 100644
index 00000000000..bf13ba62806
--- /dev/null
+++ b/intern/cycles/kernel/kernels/cpu/filter_cpu.h
@@ -0,0 +1,136 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* Templated common declaration part of all CPU kernels. */
+
+void KERNEL_FUNCTION_FULL_NAME(filter_divide_shadow)(int sample,
+ TilesInfo *tiles,
+ int x,
+ int y,
+ float *unfilteredA,
+ float *unfilteredB,
+ float *sampleV,
+ float *sampleVV,
+ float *bufferV,
+ int* prefilter_rect,
+ int buffer_pass_stride,
+ int buffer_denoising_offset);
+
+void KERNEL_FUNCTION_FULL_NAME(filter_get_feature)(int sample,
+ TilesInfo *tiles,
+ int m_offset,
+ int v_offset,
+ int x,
+ int y,
+ float *mean,
+ float *variance,
+ int* prefilter_rect,
+ int buffer_pass_stride,
+ int buffer_denoising_offset);
+
+void KERNEL_FUNCTION_FULL_NAME(filter_detect_outliers)(int x, int y,
+ ccl_global float *image,
+ ccl_global float *variance,
+ ccl_global float *depth,
+ ccl_global float *output,
+ int *rect,
+ int pass_stride);
+
+void KERNEL_FUNCTION_FULL_NAME(filter_combine_halves)(int x, int y,
+ float *mean,
+ float *variance,
+ float *a,
+ float *b,
+ int* prefilter_rect,
+ int r);
+
+void KERNEL_FUNCTION_FULL_NAME(filter_construct_transform)(float* buffer,
+ int x,
+ int y,
+ int storage_ofs,
+ float *transform,
+ int *rank,
+ int* rect,
+ int pass_stride,
+ int radius,
+ float pca_threshold);
+
+void KERNEL_FUNCTION_FULL_NAME(filter_nlm_calc_difference)(int dx,
+ int dy,
+ float *weight_image,
+ float *variance,
+ float *difference_image,
+ int* rect,
+ int w,
+ int channel_offset,
+ float a,
+ float k_2);
+
+void KERNEL_FUNCTION_FULL_NAME(filter_nlm_blur)(float *difference_image,
+ float *out_image,
+ int* rect,
+ int w,
+ int f);
+
+void KERNEL_FUNCTION_FULL_NAME(filter_nlm_calc_weight)(float *difference_image,
+ float *out_image,
+ int* rect,
+ int w,
+ int f);
+
+void KERNEL_FUNCTION_FULL_NAME(filter_nlm_update_output)(int dx,
+ int dy,
+ float *difference_image,
+ float *image,
+ float *out_image,
+ float *accum_image,
+ int* rect,
+ int w,
+ int f);
+
+void KERNEL_FUNCTION_FULL_NAME(filter_nlm_construct_gramian)(int dx,
+ int dy,
+ float *difference_image,
+ float *buffer,
+ float *transform,
+ int *rank,
+ float *XtWX,
+ float3 *XtWY,
+ int *rect,
+ int *filter_rect,
+ int w,
+ int h,
+ int f,
+ int pass_stride);
+
+void KERNEL_FUNCTION_FULL_NAME(filter_nlm_normalize)(float *out_image,
+ float *accum_image,
+ int* rect,
+ int w);
+
+void KERNEL_FUNCTION_FULL_NAME(filter_finalize)(int x,
+ int y,
+ int storage_ofs,
+ int w,
+ int h,
+ float *buffer,
+ int *rank,
+ float *XtWX,
+ float3 *XtWY,
+ int *buffer_params,
+ int sample);
+
+#undef KERNEL_ARCH
diff --git a/intern/cycles/kernel/kernels/cpu/filter_cpu_impl.h b/intern/cycles/kernel/kernels/cpu/filter_cpu_impl.h
new file mode 100644
index 00000000000..2fbb0ea2bdb
--- /dev/null
+++ b/intern/cycles/kernel/kernels/cpu/filter_cpu_impl.h
@@ -0,0 +1,268 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* Templated common implementation part of all CPU kernels.
+ *
+ * The idea is that particular .cpp files sets needed optimization flags and
+ * simply includes this file without worry of copying actual implementation over.
+ */
+
+#include "kernel/kernel_compat_cpu.h"
+
+#include "kernel/filter/filter_kernel.h"
+
+#ifdef KERNEL_STUB
+# include "util/util_debug.h"
+# define STUB_ASSERT(arch, name) assert(!(#name " kernel stub for architecture " #arch " was called!"))
+#endif
+
+CCL_NAMESPACE_BEGIN
+
+
+/* Denoise filter */
+
+void KERNEL_FUNCTION_FULL_NAME(filter_divide_shadow)(int sample,
+ TilesInfo *tiles,
+ int x,
+ int y,
+ float *unfilteredA,
+ float *unfilteredB,
+ float *sampleVariance,
+ float *sampleVarianceV,
+ float *bufferVariance,
+ int* prefilter_rect,
+ int buffer_pass_stride,
+ int buffer_denoising_offset)
+{
+#ifdef KERNEL_STUB
+ STUB_ASSERT(KERNEL_ARCH, filter_divide_shadow);
+#else
+ kernel_filter_divide_shadow(sample, tiles,
+ x, y,
+ unfilteredA,
+ unfilteredB,
+ sampleVariance,
+ sampleVarianceV,
+ bufferVariance,
+ load_int4(prefilter_rect),
+ buffer_pass_stride,
+ buffer_denoising_offset);
+#endif
+}
+
+void KERNEL_FUNCTION_FULL_NAME(filter_get_feature)(int sample,
+ TilesInfo *tiles,
+ int m_offset,
+ int v_offset,
+ int x,
+ int y,
+ float *mean, float *variance,
+ int* prefilter_rect,
+ int buffer_pass_stride,
+ int buffer_denoising_offset)
+{
+#ifdef KERNEL_STUB
+ STUB_ASSERT(KERNEL_ARCH, filter_get_feature);
+#else
+ kernel_filter_get_feature(sample, tiles,
+ m_offset, v_offset,
+ x, y,
+ mean, variance,
+ load_int4(prefilter_rect),
+ buffer_pass_stride,
+ buffer_denoising_offset);
+#endif
+}
+
+void KERNEL_FUNCTION_FULL_NAME(filter_detect_outliers)(int x, int y,
+ ccl_global float *image,
+ ccl_global float *variance,
+ ccl_global float *depth,
+ ccl_global float *output,
+ int *rect,
+ int pass_stride)
+{
+#ifdef KERNEL_STUB
+ STUB_ASSERT(KERNEL_ARCH, filter_detect_outliers);
+#else
+ kernel_filter_detect_outliers(x, y, image, variance, depth, output, load_int4(rect), pass_stride);
+#endif
+}
+
+void KERNEL_FUNCTION_FULL_NAME(filter_combine_halves)(int x, int y,
+ float *mean,
+ float *variance,
+ float *a,
+ float *b,
+ int* prefilter_rect,
+ int r)
+{
+#ifdef KERNEL_STUB
+ STUB_ASSERT(KERNEL_ARCH, filter_combine_halves);
+#else
+ kernel_filter_combine_halves(x, y, mean, variance, a, b, load_int4(prefilter_rect), r);
+#endif
+}
+
+void KERNEL_FUNCTION_FULL_NAME(filter_construct_transform)(float* buffer,
+ int x,
+ int y,
+ int storage_ofs,
+ float *transform,
+ int *rank,
+ int* prefilter_rect,
+ int pass_stride,
+ int radius,
+ float pca_threshold)
+{
+#ifdef KERNEL_STUB
+ STUB_ASSERT(KERNEL_ARCH, filter_construct_transform);
+#else
+ rank += storage_ofs;
+ transform += storage_ofs*TRANSFORM_SIZE;
+ kernel_filter_construct_transform(buffer,
+ x, y,
+ load_int4(prefilter_rect),
+ pass_stride,
+ transform,
+ rank,
+ radius,
+ pca_threshold);
+#endif
+}
+
+void KERNEL_FUNCTION_FULL_NAME(filter_nlm_calc_difference)(int dx,
+ int dy,
+ float *weight_image,
+ float *variance,
+ float *difference_image,
+ int *rect,
+ int w,
+ int channel_offset,
+ float a,
+ float k_2)
+{
+#ifdef KERNEL_STUB
+ STUB_ASSERT(KERNEL_ARCH, filter_nlm_calc_difference);
+#else
+ kernel_filter_nlm_calc_difference(dx, dy, weight_image, variance, difference_image, load_int4(rect), w, channel_offset, a, k_2);
+#endif
+}
+
+void KERNEL_FUNCTION_FULL_NAME(filter_nlm_blur)(float *difference_image,
+ float *out_image,
+ int *rect,
+ int w,
+ int f)
+{
+#ifdef KERNEL_STUB
+ STUB_ASSERT(KERNEL_ARCH, filter_nlm_blur);
+#else
+ kernel_filter_nlm_blur(difference_image, out_image, load_int4(rect), w, f);
+#endif
+}
+
+void KERNEL_FUNCTION_FULL_NAME(filter_nlm_calc_weight)(float *difference_image,
+ float *out_image,
+ int *rect,
+ int w,
+ int f)
+{
+#ifdef KERNEL_STUB
+ STUB_ASSERT(KERNEL_ARCH, filter_nlm_calc_weight);
+#else
+ kernel_filter_nlm_calc_weight(difference_image, out_image, load_int4(rect), w, f);
+#endif
+}
+
+void KERNEL_FUNCTION_FULL_NAME(filter_nlm_update_output)(int dx,
+ int dy,
+ float *difference_image,
+ float *image,
+ float *out_image,
+ float *accum_image,
+ int *rect,
+ int w,
+ int f)
+{
+#ifdef KERNEL_STUB
+ STUB_ASSERT(KERNEL_ARCH, filter_nlm_update_output);
+#else
+ kernel_filter_nlm_update_output(dx, dy, difference_image, image, out_image, accum_image, load_int4(rect), w, f);
+#endif
+}
+
+void KERNEL_FUNCTION_FULL_NAME(filter_nlm_construct_gramian)(int dx,
+ int dy,
+ float *difference_image,
+ float *buffer,
+ float *transform,
+ int *rank,
+ float *XtWX,
+ float3 *XtWY,
+ int *rect,
+ int *filter_rect,
+ int w,
+ int h,
+ int f,
+ int pass_stride)
+{
+#ifdef KERNEL_STUB
+ STUB_ASSERT(KERNEL_ARCH, filter_nlm_construct_gramian);
+#else
+ kernel_filter_nlm_construct_gramian(dx, dy, difference_image, buffer, transform, rank, XtWX, XtWY, load_int4(rect), load_int4(filter_rect), w, h, f, pass_stride);
+#endif
+}
+
+void KERNEL_FUNCTION_FULL_NAME(filter_nlm_normalize)(float *out_image,
+ float *accum_image,
+ int *rect,
+ int w)
+{
+#ifdef KERNEL_STUB
+ STUB_ASSERT(KERNEL_ARCH, filter_nlm_normalize);
+#else
+ kernel_filter_nlm_normalize(out_image, accum_image, load_int4(rect), w);
+#endif
+}
+
+void KERNEL_FUNCTION_FULL_NAME(filter_finalize)(int x,
+ int y,
+ int storage_ofs,
+ int w,
+ int h,
+ float *buffer,
+ int *rank,
+ float *XtWX,
+ float3 *XtWY,
+ int *buffer_params,
+ int sample)
+{
+#ifdef KERNEL_STUB
+ STUB_ASSERT(KERNEL_ARCH, filter_finalize);
+#else
+ XtWX += storage_ofs*XTWX_SIZE;
+ XtWY += storage_ofs*XTWY_SIZE;
+ rank += storage_ofs;
+ kernel_filter_finalize(x, y, w, h, buffer, rank, 1, XtWX, XtWY, load_int4(buffer_params), sample);
+#endif
+}
+
+#undef KERNEL_STUB
+#undef STUB_ASSERT
+#undef KERNEL_ARCH
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/kernels/cpu/filter_sse2.cpp b/intern/cycles/kernel/kernels/cpu/filter_sse2.cpp
new file mode 100644
index 00000000000..f7c9935f1d0
--- /dev/null
+++ b/intern/cycles/kernel/kernels/cpu/filter_sse2.cpp
@@ -0,0 +1,34 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* Optimized CPU kernel entry points. This file is compiled with SSE2
+ * optimization flags and nearly all functions inlined, while kernel.cpp
+ * is compiled without for other CPU's. */
+
+#include "util/util_optimization.h"
+
+#ifndef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
+# define KERNEL_STUB
+#else
+/* SSE optimization disabled for now on 32 bit, see bug #36316 */
+# if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
+# define __KERNEL_SSE2__
+# endif
+#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_SSE2 */
+
+#include "kernel/filter/filter.h"
+#define KERNEL_ARCH cpu_sse2
+#include "kernel/kernels/cpu/filter_cpu_impl.h"
diff --git a/intern/cycles/kernel/kernels/cpu/filter_sse3.cpp b/intern/cycles/kernel/kernels/cpu/filter_sse3.cpp
new file mode 100644
index 00000000000..070b95a3505
--- /dev/null
+++ b/intern/cycles/kernel/kernels/cpu/filter_sse3.cpp
@@ -0,0 +1,36 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* Optimized CPU kernel entry points. This file is compiled with SSE3/SSSE3
+ * optimization flags and nearly all functions inlined, while kernel.cpp
+ * is compiled without for other CPU's. */
+
+#include "util/util_optimization.h"
+
+#ifndef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
+# define KERNEL_STUB
+#else
+/* SSE optimization disabled for now on 32 bit, see bug #36316 */
+# if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
+# define __KERNEL_SSE2__
+# define __KERNEL_SSE3__
+# define __KERNEL_SSSE3__
+# endif
+#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_SSE3 */
+
+#include "kernel/filter/filter.h"
+#define KERNEL_ARCH cpu_sse3
+#include "kernel/kernels/cpu/filter_cpu_impl.h"
diff --git a/intern/cycles/kernel/kernels/cpu/filter_sse41.cpp b/intern/cycles/kernel/kernels/cpu/filter_sse41.cpp
new file mode 100644
index 00000000000..254025be4e2
--- /dev/null
+++ b/intern/cycles/kernel/kernels/cpu/filter_sse41.cpp
@@ -0,0 +1,38 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* Optimized CPU kernel entry points. This file is compiled with SSE3/SSSE3
+ * optimization flags and nearly all functions inlined, while kernel.cpp
+ * is compiled without for other CPU's. */
+
+#include "util/util_optimization.h"
+
+#ifndef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
+# define KERNEL_STUB
+#else
+/* SSE optimization disabled for now on 32 bit, see bug #36316 */
+# if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
+# define __KERNEL_SSE__
+# define __KERNEL_SSE2__
+# define __KERNEL_SSE3__
+# define __KERNEL_SSSE3__
+# define __KERNEL_SSE41__
+# endif
+#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_SSE41 */
+
+#include "kernel/filter/filter.h"
+#define KERNEL_ARCH cpu_sse41
+#include "kernel/kernels/cpu/filter_cpu_impl.h"
diff --git a/intern/cycles/kernel/kernels/cpu/kernel.cpp b/intern/cycles/kernel/kernels/cpu/kernel.cpp
index 72dbbd9a416..7679ab4f111 100644
--- a/intern/cycles/kernel/kernels/cpu/kernel.cpp
+++ b/intern/cycles/kernel/kernels/cpu/kernel.cpp
@@ -56,9 +56,9 @@
/* do nothing */
#endif
-#include "kernel.h"
+#include "kernel/kernel.h"
#define KERNEL_ARCH cpu
-#include "kernel_cpu_impl.h"
+#include "kernel/kernels/cpu/kernel_cpu_impl.h"
CCL_NAMESPACE_BEGIN
@@ -84,112 +84,16 @@ void kernel_tex_copy(KernelGlobals *kg,
if(0) {
}
-#define KERNEL_TEX(type, ttype, tname) \
+#define KERNEL_TEX(type, tname) \
else if(strcmp(name, #tname) == 0) { \
kg->tname.data = (type*)mem; \
kg->tname.width = width; \
}
-#define KERNEL_IMAGE_TEX(type, ttype, tname)
-#include "kernel_textures.h"
-
- else if(strstr(name, "__tex_image_float4")) {
- texture_image_float4 *tex = NULL;
- int id = atoi(name + strlen("__tex_image_float4_"));
- int array_index = id;
-
- if(array_index >= 0 && array_index < TEX_NUM_FLOAT4_CPU) {
- tex = &kg->texture_float4_images[array_index];
- }
-
- if(tex) {
- tex->data = (float4*)mem;
- tex->dimensions_set(width, height, depth);
- tex->interpolation = interpolation;
- tex->extension = extension;
- }
- }
- else if(strstr(name, "__tex_image_float")) {
- texture_image_float *tex = NULL;
- int id = atoi(name + strlen("__tex_image_float_"));
- int array_index = id - TEX_START_FLOAT_CPU;
-
- if(array_index >= 0 && array_index < TEX_NUM_FLOAT_CPU) {
- tex = &kg->texture_float_images[array_index];
- }
-
- if(tex) {
- tex->data = (float*)mem;
- tex->dimensions_set(width, height, depth);
- tex->interpolation = interpolation;
- tex->extension = extension;
- }
- }
- else if(strstr(name, "__tex_image_byte4")) {
- texture_image_uchar4 *tex = NULL;
- int id = atoi(name + strlen("__tex_image_byte4_"));
- int array_index = id - TEX_START_BYTE4_CPU;
-
- if(array_index >= 0 && array_index < TEX_NUM_BYTE4_CPU) {
- tex = &kg->texture_byte4_images[array_index];
- }
-
- if(tex) {
- tex->data = (uchar4*)mem;
- tex->dimensions_set(width, height, depth);
- tex->interpolation = interpolation;
- tex->extension = extension;
- }
- }
- else if(strstr(name, "__tex_image_byte")) {
- texture_image_uchar *tex = NULL;
- int id = atoi(name + strlen("__tex_image_byte_"));
- int array_index = id - TEX_START_BYTE_CPU;
-
- if(array_index >= 0 && array_index < TEX_NUM_BYTE_CPU) {
- tex = &kg->texture_byte_images[array_index];
- }
-
- if(tex) {
- tex->data = (uchar*)mem;
- tex->dimensions_set(width, height, depth);
- tex->interpolation = interpolation;
- tex->extension = extension;
- }
- }
- else if(strstr(name, "__tex_image_half4")) {
- texture_image_half4 *tex = NULL;
- int id = atoi(name + strlen("__tex_image_half4_"));
- int array_index = id - TEX_START_HALF4_CPU;
-
- if(array_index >= 0 && array_index < TEX_NUM_HALF4_CPU) {
- tex = &kg->texture_half4_images[array_index];
- }
-
- if(tex) {
- tex->data = (half4*)mem;
- tex->dimensions_set(width, height, depth);
- tex->interpolation = interpolation;
- tex->extension = extension;
- }
- }
- else if(strstr(name, "__tex_image_half")) {
- texture_image_half *tex = NULL;
- int id = atoi(name + strlen("__tex_image_half_"));
- int array_index = id - TEX_START_HALF_CPU;
-
- if(array_index >= 0 && array_index < TEX_NUM_HALF_CPU) {
- tex = &kg->texture_half_images[array_index];
- }
-
- if(tex) {
- tex->data = (half*)mem;
- tex->dimensions_set(width, height, depth);
- tex->interpolation = interpolation;
- tex->extension = extension;
- }
- }
- else
+#define KERNEL_IMAGE_TEX(type, tname)
+#include "kernel/kernel_textures.h"
+ else {
assert(0);
+ }
}
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/kernels/cpu/kernel_avx.cpp b/intern/cycles/kernel/kernels/cpu/kernel_avx.cpp
index 1350d9e5c2e..a645fb4d8dd 100644
--- a/intern/cycles/kernel/kernels/cpu/kernel_avx.cpp
+++ b/intern/cycles/kernel/kernels/cpu/kernel_avx.cpp
@@ -17,21 +17,23 @@
/* Optimized CPU kernel entry points. This file is compiled with AVX
* optimization flags and nearly all functions inlined, while kernel.cpp
* is compiled without for other CPU's. */
-
-/* SSE optimization disabled for now on 32 bit, see bug #36316 */
-#if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
-# define __KERNEL_SSE__
-# define __KERNEL_SSE2__
-# define __KERNEL_SSE3__
-# define __KERNEL_SSSE3__
-# define __KERNEL_SSE41__
-# define __KERNEL_AVX__
-#endif
-#include "util_optimization.h"
+#include "util/util_optimization.h"
-#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
-# include "kernel.h"
-# define KERNEL_ARCH cpu_avx
-# include "kernel_cpu_impl.h"
+#ifndef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
+# define KERNEL_STUB
+#else
+/* SSE optimization disabled for now on 32 bit, see bug #36316 */
+# if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
+# define __KERNEL_SSE__
+# define __KERNEL_SSE2__
+# define __KERNEL_SSE3__
+# define __KERNEL_SSSE3__
+# define __KERNEL_SSE41__
+# define __KERNEL_AVX__
+# endif
#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_AVX */
+
+#include "kernel/kernel.h"
+#define KERNEL_ARCH cpu_avx
+#include "kernel/kernels/cpu/kernel_cpu_impl.h"
diff --git a/intern/cycles/kernel/kernels/cpu/kernel_avx2.cpp b/intern/cycles/kernel/kernels/cpu/kernel_avx2.cpp
index 1a416e771ee..6bbb87727b9 100644
--- a/intern/cycles/kernel/kernels/cpu/kernel_avx2.cpp
+++ b/intern/cycles/kernel/kernels/cpu/kernel_avx2.cpp
@@ -18,21 +18,23 @@
* optimization flags and nearly all functions inlined, while kernel.cpp
* is compiled without for other CPU's. */
-/* SSE optimization disabled for now on 32 bit, see bug #36316 */
-#if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
-# define __KERNEL_SSE__
-# define __KERNEL_SSE2__
-# define __KERNEL_SSE3__
-# define __KERNEL_SSSE3__
-# define __KERNEL_SSE41__
-# define __KERNEL_AVX__
-# define __KERNEL_AVX2__
-#endif
-
-#include "util_optimization.h"
+#include "util/util_optimization.h"
-#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
-# include "kernel.h"
-# define KERNEL_ARCH cpu_avx2
-# include "kernel_cpu_impl.h"
+#ifndef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
+# define KERNEL_STUB
+#else
+/* SSE optimization disabled for now on 32 bit, see bug #36316 */
+# if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
+# define __KERNEL_SSE__
+# define __KERNEL_SSE2__
+# define __KERNEL_SSE3__
+# define __KERNEL_SSSE3__
+# define __KERNEL_SSE41__
+# define __KERNEL_AVX__
+# define __KERNEL_AVX2__
+# endif
#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_AVX2 */
+
+#include "kernel/kernel.h"
+#define KERNEL_ARCH cpu_avx2
+#include "kernel/kernels/cpu/kernel_cpu_impl.h"
diff --git a/intern/cycles/kernel/kernels/cpu/kernel_cpu.h b/intern/cycles/kernel/kernels/cpu/kernel_cpu.h
index 1a07c705f1c..6bdb8546a24 100644
--- a/intern/cycles/kernel/kernels/cpu/kernel_cpu.h
+++ b/intern/cycles/kernel/kernels/cpu/kernel_cpu.h
@@ -18,7 +18,6 @@
void KERNEL_FUNCTION_FULL_NAME(path_trace)(KernelGlobals *kg,
float *buffer,
- unsigned int *rng_state,
int sample,
int x, int y,
int offset,
@@ -42,11 +41,50 @@ void KERNEL_FUNCTION_FULL_NAME(convert_to_half_float)(KernelGlobals *kg,
void KERNEL_FUNCTION_FULL_NAME(shader)(KernelGlobals *kg,
uint4 *input,
float4 *output,
- float *output_luma,
int type,
int filter,
int i,
int offset,
int sample);
+/* Split kernels */
+
+void KERNEL_FUNCTION_FULL_NAME(data_init)(
+ KernelGlobals *kg,
+ ccl_constant KernelData *data,
+ ccl_global void *split_data_buffer,
+ int num_elements,
+ ccl_global char *ray_state,
+ int start_sample,
+ int end_sample,
+ int sx, int sy, int sw, int sh, int offset, int stride,
+ ccl_global int *Queue_index,
+ int queuesize,
+ ccl_global char *use_queues_flag,
+ ccl_global unsigned int *work_pool_wgs,
+ unsigned int num_samples,
+ ccl_global float *buffer);
+
+#define DECLARE_SPLIT_KERNEL_FUNCTION(name) \
+ void KERNEL_FUNCTION_FULL_NAME(name)(KernelGlobals *kg, KernelData *data);
+
+DECLARE_SPLIT_KERNEL_FUNCTION(path_init)
+DECLARE_SPLIT_KERNEL_FUNCTION(scene_intersect)
+DECLARE_SPLIT_KERNEL_FUNCTION(lamp_emission)
+DECLARE_SPLIT_KERNEL_FUNCTION(do_volume)
+DECLARE_SPLIT_KERNEL_FUNCTION(queue_enqueue)
+DECLARE_SPLIT_KERNEL_FUNCTION(indirect_background)
+DECLARE_SPLIT_KERNEL_FUNCTION(shader_setup)
+DECLARE_SPLIT_KERNEL_FUNCTION(shader_sort)
+DECLARE_SPLIT_KERNEL_FUNCTION(shader_eval)
+DECLARE_SPLIT_KERNEL_FUNCTION(holdout_emission_blurring_pathtermination_ao)
+DECLARE_SPLIT_KERNEL_FUNCTION(subsurface_scatter)
+DECLARE_SPLIT_KERNEL_FUNCTION(direct_lighting)
+DECLARE_SPLIT_KERNEL_FUNCTION(shadow_blocked_ao)
+DECLARE_SPLIT_KERNEL_FUNCTION(shadow_blocked_dl)
+DECLARE_SPLIT_KERNEL_FUNCTION(enqueue_inactive)
+DECLARE_SPLIT_KERNEL_FUNCTION(next_iteration_setup)
+DECLARE_SPLIT_KERNEL_FUNCTION(indirect_subsurface)
+DECLARE_SPLIT_KERNEL_FUNCTION(buffer_update)
+
#undef KERNEL_ARCH
diff --git a/intern/cycles/kernel/kernels/cpu/kernel_cpu_image.h b/intern/cycles/kernel/kernels/cpu/kernel_cpu_image.h
index af68907a5c2..37ba0f692be 100644
--- a/intern/cycles/kernel/kernels/cpu/kernel_cpu_image.h
+++ b/intern/cycles/kernel/kernels/cpu/kernel_cpu_image.h
@@ -17,62 +17,478 @@
#ifndef __KERNEL_CPU_IMAGE_H__
#define __KERNEL_CPU_IMAGE_H__
-#ifdef __KERNEL_CPU__
-
CCL_NAMESPACE_BEGIN
-ccl_device float4 kernel_tex_image_interp_impl(KernelGlobals *kg, int tex, float x, float y)
-{
- if(tex >= TEX_START_HALF_CPU)
- return kg->texture_half_images[tex - TEX_START_HALF_CPU].interp(x, y);
- else if(tex >= TEX_START_BYTE_CPU)
- return kg->texture_byte_images[tex - TEX_START_BYTE_CPU].interp(x, y);
- else if(tex >= TEX_START_FLOAT_CPU)
- return kg->texture_float_images[tex - TEX_START_FLOAT_CPU].interp(x, y);
- else if(tex >= TEX_START_HALF4_CPU)
- return kg->texture_half4_images[tex - TEX_START_HALF4_CPU].interp(x, y);
- else if(tex >= TEX_START_BYTE4_CPU)
- return kg->texture_byte4_images[tex - TEX_START_BYTE4_CPU].interp(x, y);
- else
- return kg->texture_float4_images[tex].interp(x, y);
-}
+template<typename T> struct TextureInterpolator {
+#define SET_CUBIC_SPLINE_WEIGHTS(u, t) \
+ { \
+ u[0] = (((-1.0f/6.0f)* t + 0.5f) * t - 0.5f) * t + (1.0f/6.0f); \
+ u[1] = (( 0.5f * t - 1.0f) * t ) * t + (2.0f/3.0f); \
+ u[2] = (( -0.5f * t + 0.5f) * t + 0.5f) * t + (1.0f/6.0f); \
+ u[3] = (1.0f / 6.0f) * t * t * t; \
+ } (void)0
+
+ static ccl_always_inline float4 read(float4 r)
+ {
+ return r;
+ }
+
+ static ccl_always_inline float4 read(uchar4 r)
+ {
+ float f = 1.0f/255.0f;
+ return make_float4(r.x*f, r.y*f, r.z*f, r.w*f);
+ }
+
+ static ccl_always_inline float4 read(uchar r)
+ {
+ float f = r*(1.0f/255.0f);
+ return make_float4(f, f, f, 1.0f);
+ }
+
+ static ccl_always_inline float4 read(float r)
+ {
+ /* TODO(dingto): Optimize this, so interpolation
+ * happens on float instead of float4 */
+ return make_float4(r, r, r, 1.0f);
+ }
+
+ static ccl_always_inline float4 read(half4 r)
+ {
+ return half4_to_float4(r);
+ }
+
+ static ccl_always_inline float4 read(half r)
+ {
+ float f = half_to_float(r);
+ return make_float4(f, f, f, 1.0f);
+ }
+
+ static ccl_always_inline int wrap_periodic(int x, int width)
+ {
+ x %= width;
+ if(x < 0)
+ x += width;
+ return x;
+ }
+
+ static ccl_always_inline int wrap_clamp(int x, int width)
+ {
+ return clamp(x, 0, width-1);
+ }
+
+ static ccl_always_inline float frac(float x, int *ix)
+ {
+ int i = float_to_int(x) - ((x < 0.0f)? 1: 0);
+ *ix = i;
+ return x - (float)i;
+ }
+
+ static ccl_always_inline float4 interp(const TextureInfo& info, float x, float y)
+ {
+ if(UNLIKELY(!info.data))
+ return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+
+ const T *data = (const T*)info.data;
+ int width = info.width;
+ int height = info.height;
+ int ix, iy, nix, niy;
+
+ if(info.interpolation == INTERPOLATION_CLOSEST) {
+ frac(x*(float)width, &ix);
+ frac(y*(float)height, &iy);
+ switch(info.extension) {
+ case EXTENSION_REPEAT:
+ ix = wrap_periodic(ix, width);
+ iy = wrap_periodic(iy, height);
+ break;
+ case EXTENSION_CLIP:
+ if(x < 0.0f || y < 0.0f || x > 1.0f || y > 1.0f) {
+ return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ }
+ ATTR_FALLTHROUGH;
+ case EXTENSION_EXTEND:
+ ix = wrap_clamp(ix, width);
+ iy = wrap_clamp(iy, height);
+ break;
+ default:
+ kernel_assert(0);
+ return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ }
+ return read(data[ix + iy*width]);
+ }
+ else if(info.interpolation == INTERPOLATION_LINEAR) {
+ float tx = frac(x*(float)width - 0.5f, &ix);
+ float ty = frac(y*(float)height - 0.5f, &iy);
+
+ switch(info.extension) {
+ case EXTENSION_REPEAT:
+ ix = wrap_periodic(ix, width);
+ iy = wrap_periodic(iy, height);
+
+ nix = wrap_periodic(ix+1, width);
+ niy = wrap_periodic(iy+1, height);
+ break;
+ case EXTENSION_CLIP:
+ if(x < 0.0f || y < 0.0f || x > 1.0f || y > 1.0f) {
+ return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ }
+ ATTR_FALLTHROUGH;
+ case EXTENSION_EXTEND:
+ nix = wrap_clamp(ix+1, width);
+ niy = wrap_clamp(iy+1, height);
+
+ ix = wrap_clamp(ix, width);
+ iy = wrap_clamp(iy, height);
+ break;
+ default:
+ kernel_assert(0);
+ return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ }
+
+ float4 r = (1.0f - ty)*(1.0f - tx)*read(data[ix + iy*width]);
+ r += (1.0f - ty)*tx*read(data[nix + iy*width]);
+ r += ty*(1.0f - tx)*read(data[ix + niy*width]);
+ r += ty*tx*read(data[nix + niy*width]);
+
+ return r;
+ }
+ else {
+ /* Bicubic b-spline interpolation. */
+ float tx = frac(x*(float)width - 0.5f, &ix);
+ float ty = frac(y*(float)height - 0.5f, &iy);
+ int pix, piy, nnix, nniy;
+ switch(info.extension) {
+ case EXTENSION_REPEAT:
+ ix = wrap_periodic(ix, width);
+ iy = wrap_periodic(iy, height);
+
+ pix = wrap_periodic(ix-1, width);
+ piy = wrap_periodic(iy-1, height);
+
+ nix = wrap_periodic(ix+1, width);
+ niy = wrap_periodic(iy+1, height);
+
+ nnix = wrap_periodic(ix+2, width);
+ nniy = wrap_periodic(iy+2, height);
+ break;
+ case EXTENSION_CLIP:
+ if(x < 0.0f || y < 0.0f || x > 1.0f || y > 1.0f) {
+ return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ }
+ ATTR_FALLTHROUGH;
+ case EXTENSION_EXTEND:
+ pix = wrap_clamp(ix-1, width);
+ piy = wrap_clamp(iy-1, height);
+
+ nix = wrap_clamp(ix+1, width);
+ niy = wrap_clamp(iy+1, height);
+
+ nnix = wrap_clamp(ix+2, width);
+ nniy = wrap_clamp(iy+2, height);
+
+ ix = wrap_clamp(ix, width);
+ iy = wrap_clamp(iy, height);
+ break;
+ default:
+ kernel_assert(0);
+ return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ }
+
+ const int xc[4] = {pix, ix, nix, nnix};
+ const int yc[4] = {width * piy,
+ width * iy,
+ width * niy,
+ width * nniy};
+ float u[4], v[4];
+ /* Some helper macro to keep code reasonable size,
+ * let compiler to inline all the matrix multiplications.
+ */
+#define DATA(x, y) (read(data[xc[x] + yc[y]]))
+#define TERM(col) \
+ (v[col] * (u[0] * DATA(0, col) + \
+ u[1] * DATA(1, col) + \
+ u[2] * DATA(2, col) + \
+ u[3] * DATA(3, col)))
+
+ SET_CUBIC_SPLINE_WEIGHTS(u, tx);
+ SET_CUBIC_SPLINE_WEIGHTS(v, ty);
+
+ /* Actual interpolation. */
+ return TERM(0) + TERM(1) + TERM(2) + TERM(3);
+
+#undef TERM
+#undef DATA
+ }
+ }
+
+ static ccl_always_inline float4 interp_3d_closest(const TextureInfo& info, float x, float y, float z)
+ {
+ int width = info.width;
+ int height = info.height;
+ int depth = info.depth;
+ int ix, iy, iz;
-ccl_device float4 kernel_tex_image_interp_3d_impl(KernelGlobals *kg, int tex, float x, float y, float z)
+ frac(x*(float)width, &ix);
+ frac(y*(float)height, &iy);
+ frac(z*(float)depth, &iz);
+
+ switch(info.extension) {
+ case EXTENSION_REPEAT:
+ ix = wrap_periodic(ix, width);
+ iy = wrap_periodic(iy, height);
+ iz = wrap_periodic(iz, depth);
+ break;
+ case EXTENSION_CLIP:
+ if(x < 0.0f || y < 0.0f || z < 0.0f ||
+ x > 1.0f || y > 1.0f || z > 1.0f)
+ {
+ return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ }
+ ATTR_FALLTHROUGH;
+ case EXTENSION_EXTEND:
+ ix = wrap_clamp(ix, width);
+ iy = wrap_clamp(iy, height);
+ iz = wrap_clamp(iz, depth);
+ break;
+ default:
+ kernel_assert(0);
+ return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ }
+
+ const T *data = (const T*)info.data;
+ return read(data[ix + iy*width + iz*width*height]);
+ }
+
+ static ccl_always_inline float4 interp_3d_linear(const TextureInfo& info, float x, float y, float z)
+ {
+ int width = info.width;
+ int height = info.height;
+ int depth = info.depth;
+ int ix, iy, iz;
+ int nix, niy, niz;
+
+ float tx = frac(x*(float)width - 0.5f, &ix);
+ float ty = frac(y*(float)height - 0.5f, &iy);
+ float tz = frac(z*(float)depth - 0.5f, &iz);
+
+ switch(info.extension) {
+ case EXTENSION_REPEAT:
+ ix = wrap_periodic(ix, width);
+ iy = wrap_periodic(iy, height);
+ iz = wrap_periodic(iz, depth);
+
+ nix = wrap_periodic(ix+1, width);
+ niy = wrap_periodic(iy+1, height);
+ niz = wrap_periodic(iz+1, depth);
+ break;
+ case EXTENSION_CLIP:
+ if(x < 0.0f || y < 0.0f || z < 0.0f ||
+ x > 1.0f || y > 1.0f || z > 1.0f)
+ {
+ return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ }
+ ATTR_FALLTHROUGH;
+ case EXTENSION_EXTEND:
+ nix = wrap_clamp(ix+1, width);
+ niy = wrap_clamp(iy+1, height);
+ niz = wrap_clamp(iz+1, depth);
+
+ ix = wrap_clamp(ix, width);
+ iy = wrap_clamp(iy, height);
+ iz = wrap_clamp(iz, depth);
+ break;
+ default:
+ kernel_assert(0);
+ return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ }
+
+ const T *data = (const T*)info.data;
+ float4 r;
+
+ r = (1.0f - tz)*(1.0f - ty)*(1.0f - tx)*read(data[ix + iy*width + iz*width*height]);
+ r += (1.0f - tz)*(1.0f - ty)*tx*read(data[nix + iy*width + iz*width*height]);
+ r += (1.0f - tz)*ty*(1.0f - tx)*read(data[ix + niy*width + iz*width*height]);
+ r += (1.0f - tz)*ty*tx*read(data[nix + niy*width + iz*width*height]);
+
+ r += tz*(1.0f - ty)*(1.0f - tx)*read(data[ix + iy*width + niz*width*height]);
+ r += tz*(1.0f - ty)*tx*read(data[nix + iy*width + niz*width*height]);
+ r += tz*ty*(1.0f - tx)*read(data[ix + niy*width + niz*width*height]);
+ r += tz*ty*tx*read(data[nix + niy*width + niz*width*height]);
+
+ return r;
+ }
+
+ /* TODO(sergey): For some unspeakable reason both GCC-6 and Clang-3.9 are
+ * causing stack overflow issue in this function unless it is inlined.
+ *
+ * Only happens for AVX2 kernel and global __KERNEL_SSE__ vectorization
+ * enabled.
+ */
+#ifdef __GNUC__
+ static ccl_always_inline
+#else
+ static ccl_never_inline
+#endif
+ float4 interp_3d_tricubic(const TextureInfo& info, float x, float y, float z)
+ {
+ int width = info.width;
+ int height = info.height;
+ int depth = info.depth;
+ int ix, iy, iz;
+ int nix, niy, niz;
+ /* Tricubic b-spline interpolation. */
+ const float tx = frac(x*(float)width - 0.5f, &ix);
+ const float ty = frac(y*(float)height - 0.5f, &iy);
+ const float tz = frac(z*(float)depth - 0.5f, &iz);
+ int pix, piy, piz, nnix, nniy, nniz;
+
+ switch(info.extension) {
+ case EXTENSION_REPEAT:
+ ix = wrap_periodic(ix, width);
+ iy = wrap_periodic(iy, height);
+ iz = wrap_periodic(iz, depth);
+
+ pix = wrap_periodic(ix-1, width);
+ piy = wrap_periodic(iy-1, height);
+ piz = wrap_periodic(iz-1, depth);
+
+ nix = wrap_periodic(ix+1, width);
+ niy = wrap_periodic(iy+1, height);
+ niz = wrap_periodic(iz+1, depth);
+
+ nnix = wrap_periodic(ix+2, width);
+ nniy = wrap_periodic(iy+2, height);
+ nniz = wrap_periodic(iz+2, depth);
+ break;
+ case EXTENSION_CLIP:
+ if(x < 0.0f || y < 0.0f || z < 0.0f ||
+ x > 1.0f || y > 1.0f || z > 1.0f)
+ {
+ return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ }
+ ATTR_FALLTHROUGH;
+ case EXTENSION_EXTEND:
+ pix = wrap_clamp(ix-1, width);
+ piy = wrap_clamp(iy-1, height);
+ piz = wrap_clamp(iz-1, depth);
+
+ nix = wrap_clamp(ix+1, width);
+ niy = wrap_clamp(iy+1, height);
+ niz = wrap_clamp(iz+1, depth);
+
+ nnix = wrap_clamp(ix+2, width);
+ nniy = wrap_clamp(iy+2, height);
+ nniz = wrap_clamp(iz+2, depth);
+
+ ix = wrap_clamp(ix, width);
+ iy = wrap_clamp(iy, height);
+ iz = wrap_clamp(iz, depth);
+ break;
+ default:
+ kernel_assert(0);
+ return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ }
+
+ const int xc[4] = {pix, ix, nix, nnix};
+ const int yc[4] = {width * piy,
+ width * iy,
+ width * niy,
+ width * nniy};
+ const int zc[4] = {width * height * piz,
+ width * height * iz,
+ width * height * niz,
+ width * height * nniz};
+ float u[4], v[4], w[4];
+
+ /* Some helper macro to keep code reasonable size,
+ * let compiler to inline all the matrix multiplications.
+ */
+#define DATA(x, y, z) (read(data[xc[x] + yc[y] + zc[z]]))
+#define COL_TERM(col, row) \
+ (v[col] * (u[0] * DATA(0, col, row) + \
+ u[1] * DATA(1, col, row) + \
+ u[2] * DATA(2, col, row) + \
+ u[3] * DATA(3, col, row)))
+#define ROW_TERM(row) \
+ (w[row] * (COL_TERM(0, row) + \
+ COL_TERM(1, row) + \
+ COL_TERM(2, row) + \
+ COL_TERM(3, row)))
+
+ SET_CUBIC_SPLINE_WEIGHTS(u, tx);
+ SET_CUBIC_SPLINE_WEIGHTS(v, ty);
+ SET_CUBIC_SPLINE_WEIGHTS(w, tz);
+
+ /* Actual interpolation. */
+ const T *data = (const T*)info.data;
+ return ROW_TERM(0) + ROW_TERM(1) + ROW_TERM(2) + ROW_TERM(3);
+
+#undef COL_TERM
+#undef ROW_TERM
+#undef DATA
+ }
+
+ static ccl_always_inline float4 interp_3d(const TextureInfo& info,
+ float x, float y, float z,
+ InterpolationType interp)
+ {
+ if(UNLIKELY(!info.data))
+ return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+
+ switch((interp == INTERPOLATION_NONE)? info.interpolation: interp) {
+ case INTERPOLATION_CLOSEST:
+ return interp_3d_closest(info, x, y, z);
+ case INTERPOLATION_LINEAR:
+ return interp_3d_linear(info, x, y, z);
+ default:
+ return interp_3d_tricubic(info, x, y, z);
+ }
+ }
+#undef SET_CUBIC_SPLINE_WEIGHTS
+};
+
+ccl_device float4 kernel_tex_image_interp(KernelGlobals *kg, int id, float x, float y)
{
- if(tex >= TEX_START_HALF_CPU)
- return kg->texture_half_images[tex - TEX_START_HALF_CPU].interp_3d(x, y, z);
- else if(tex >= TEX_START_BYTE_CPU)
- return kg->texture_byte_images[tex - TEX_START_BYTE_CPU].interp_3d(x, y, z);
- else if(tex >= TEX_START_FLOAT_CPU)
- return kg->texture_float_images[tex - TEX_START_FLOAT_CPU].interp_3d(x, y, z);
- else if(tex >= TEX_START_HALF4_CPU)
- return kg->texture_half4_images[tex - TEX_START_HALF4_CPU].interp_3d(x, y, z);
- else if(tex >= TEX_START_BYTE4_CPU)
- return kg->texture_byte4_images[tex - TEX_START_BYTE4_CPU].interp_3d(x, y, z);
- else
- return kg->texture_float4_images[tex].interp_3d(x, y, z);
+ const TextureInfo& info = kernel_tex_fetch(__texture_info, id);
+ switch(kernel_tex_type(id)) {
+ case IMAGE_DATA_TYPE_HALF:
+ return TextureInterpolator<half>::interp(info, x, y);
+ case IMAGE_DATA_TYPE_BYTE:
+ return TextureInterpolator<uchar>::interp(info, x, y);
+ case IMAGE_DATA_TYPE_FLOAT:
+ return TextureInterpolator<float>::interp(info, x, y);
+ case IMAGE_DATA_TYPE_HALF4:
+ return TextureInterpolator<half4>::interp(info, x, y);
+ case IMAGE_DATA_TYPE_BYTE4:
+ return TextureInterpolator<uchar4>::interp(info, x, y);
+ case IMAGE_DATA_TYPE_FLOAT4:
+ default:
+ return TextureInterpolator<float4>::interp(info, x, y);
+ }
}
-ccl_device float4 kernel_tex_image_interp_3d_ex_impl(KernelGlobals *kg, int tex, float x, float y, float z, int interpolation)
+ccl_device float4 kernel_tex_image_interp_3d(KernelGlobals *kg, int id, float x, float y, float z, InterpolationType interp)
{
- if(tex >= TEX_START_HALF_CPU)
- return kg->texture_half_images[tex - TEX_START_HALF_CPU].interp_3d_ex(x, y, z, interpolation);
- else if(tex >= TEX_START_BYTE_CPU)
- return kg->texture_byte_images[tex - TEX_START_BYTE_CPU].interp_3d_ex(x, y, z, interpolation);
- else if(tex >= TEX_START_FLOAT_CPU)
- return kg->texture_float_images[tex - TEX_START_FLOAT_CPU].interp_3d_ex(x, y, z, interpolation);
- else if(tex >= TEX_START_HALF4_CPU)
- return kg->texture_half4_images[tex - TEX_START_HALF4_CPU].interp_3d_ex(x, y, z, interpolation);
- else if(tex >= TEX_START_BYTE4_CPU)
- return kg->texture_byte4_images[tex - TEX_START_BYTE4_CPU].interp_3d_ex(x, y, z, interpolation);
- else
- return kg->texture_float4_images[tex].interp_3d_ex(x, y, z, interpolation);
+ const TextureInfo& info = kernel_tex_fetch(__texture_info, id);
+
+ switch(kernel_tex_type(id)) {
+ case IMAGE_DATA_TYPE_HALF:
+ return TextureInterpolator<half>::interp_3d(info, x, y, z, interp);
+ case IMAGE_DATA_TYPE_BYTE:
+ return TextureInterpolator<uchar>::interp_3d(info, x, y, z, interp);
+ case IMAGE_DATA_TYPE_FLOAT:
+ return TextureInterpolator<float>::interp_3d(info, x, y, z, interp);
+ case IMAGE_DATA_TYPE_HALF4:
+ return TextureInterpolator<half4>::interp_3d(info, x, y, z, interp);
+ case IMAGE_DATA_TYPE_BYTE4:
+ return TextureInterpolator<uchar4>::interp_3d(info, x, y, z, interp);
+ case IMAGE_DATA_TYPE_FLOAT4:
+ default:
+ return TextureInterpolator<float4>::interp_3d(info, x, y, z, interp);
+ }
}
CCL_NAMESPACE_END
-#endif // __KERNEL_CPU__
-
-
#endif // __KERNEL_CPU_IMAGE_H__
diff --git a/intern/cycles/kernel/kernels/cpu/kernel_cpu_impl.h b/intern/cycles/kernel/kernels/cpu/kernel_cpu_impl.h
index ec82d4b4c22..fdeb7dcd3e4 100644
--- a/intern/cycles/kernel/kernels/cpu/kernel_cpu_impl.h
+++ b/intern/cycles/kernel/kernels/cpu/kernel_cpu_impl.h
@@ -20,43 +20,84 @@
* simply includes this file without worry of copying actual implementation over.
*/
-#include "kernel_compat_cpu.h"
-#include "kernel_math.h"
-#include "kernel_types.h"
-#include "kernel_globals.h"
-#include "kernel_cpu_image.h"
-#include "kernel_film.h"
-#include "kernel_path.h"
-#include "kernel_path_branched.h"
-#include "kernel_bake.h"
+#include "kernel/kernel_compat_cpu.h"
+
+#ifndef KERNEL_STUB
+# ifndef __SPLIT_KERNEL__
+# include "kernel/kernel_math.h"
+# include "kernel/kernel_types.h"
+
+# include "kernel/split/kernel_split_data.h"
+# include "kernel/kernel_globals.h"
+
+# include "kernel/kernels/cpu/kernel_cpu_image.h"
+# include "kernel/kernel_film.h"
+# include "kernel/kernel_path.h"
+# include "kernel/kernel_path_branched.h"
+# include "kernel/kernel_bake.h"
+# else
+# include "kernel/split/kernel_split_common.h"
+
+# include "kernel/split/kernel_data_init.h"
+# include "kernel/split/kernel_path_init.h"
+# include "kernel/split/kernel_scene_intersect.h"
+# include "kernel/split/kernel_lamp_emission.h"
+# include "kernel/split/kernel_do_volume.h"
+# include "kernel/split/kernel_queue_enqueue.h"
+# include "kernel/split/kernel_indirect_background.h"
+# include "kernel/split/kernel_shader_setup.h"
+# include "kernel/split/kernel_shader_sort.h"
+# include "kernel/split/kernel_shader_eval.h"
+# include "kernel/split/kernel_holdout_emission_blurring_pathtermination_ao.h"
+# include "kernel/split/kernel_subsurface_scatter.h"
+# include "kernel/split/kernel_direct_lighting.h"
+# include "kernel/split/kernel_shadow_blocked_ao.h"
+# include "kernel/split/kernel_shadow_blocked_dl.h"
+# include "kernel/split/kernel_enqueue_inactive.h"
+# include "kernel/split/kernel_next_iteration_setup.h"
+# include "kernel/split/kernel_indirect_subsurface.h"
+# include "kernel/split/kernel_buffer_update.h"
+# endif /* __SPLIT_KERNEL__ */
+#else
+# include "util/util_debug.h"
+# define STUB_ASSERT(arch, name) assert(!(#name " kernel stub for architecture " #arch " was called!"))
+
+# ifdef __SPLIT_KERNEL__
+# include "kernel/split/kernel_data_init.h"
+# endif /* __SPLIT_KERNEL__ */
+#endif /* KERNEL_STUB */
CCL_NAMESPACE_BEGIN
+#ifndef __SPLIT_KERNEL__
+
/* Path Tracing */
void KERNEL_FUNCTION_FULL_NAME(path_trace)(KernelGlobals *kg,
float *buffer,
- unsigned int *rng_state,
int sample,
int x, int y,
int offset,
int stride)
{
-#ifdef __BRANCHED_PATH__
+#ifdef KERNEL_STUB
+ STUB_ASSERT(KERNEL_ARCH, path_trace);
+#else
+# ifdef __BRANCHED_PATH__
if(kernel_data.integrator.branched) {
kernel_branched_path_trace(kg,
buffer,
- rng_state,
sample,
x, y,
offset,
stride);
}
else
-#endif
+# endif
{
- kernel_path_trace(kg, buffer, rng_state, sample, x, y, offset, stride);
+ kernel_path_trace(kg, buffer, sample, x, y, offset, stride);
}
+#endif /* KERNEL_STUB */
}
/* Film */
@@ -69,6 +110,9 @@ void KERNEL_FUNCTION_FULL_NAME(convert_to_byte)(KernelGlobals *kg,
int offset,
int stride)
{
+#ifdef KERNEL_STUB
+ STUB_ASSERT(KERNEL_ARCH, convert_to_byte);
+#else
kernel_film_convert_to_byte(kg,
rgba,
buffer,
@@ -76,6 +120,7 @@ void KERNEL_FUNCTION_FULL_NAME(convert_to_byte)(KernelGlobals *kg,
x, y,
offset,
stride);
+#endif /* KERNEL_STUB */
}
void KERNEL_FUNCTION_FULL_NAME(convert_to_half_float)(KernelGlobals *kg,
@@ -86,6 +131,9 @@ void KERNEL_FUNCTION_FULL_NAME(convert_to_half_float)(KernelGlobals *kg,
int offset,
int stride)
{
+#ifdef KERNEL_STUB
+ STUB_ASSERT(KERNEL_ARCH, convert_to_half_float);
+#else
kernel_film_convert_to_half_float(kg,
rgba,
buffer,
@@ -93,6 +141,7 @@ void KERNEL_FUNCTION_FULL_NAME(convert_to_half_float)(KernelGlobals *kg,
x, y,
offset,
stride);
+#endif /* KERNEL_STUB */
}
/* Shader Evaluate */
@@ -100,16 +149,17 @@ void KERNEL_FUNCTION_FULL_NAME(convert_to_half_float)(KernelGlobals *kg,
void KERNEL_FUNCTION_FULL_NAME(shader)(KernelGlobals *kg,
uint4 *input,
float4 *output,
- float *output_luma,
int type,
int filter,
int i,
int offset,
int sample)
{
+#ifdef KERNEL_STUB
+ STUB_ASSERT(KERNEL_ARCH, shader);
+#else
if(type >= SHADER_EVAL_BAKE) {
- kernel_assert(output_luma == NULL);
-#ifdef __BAKING__
+# ifdef __BAKING__
kernel_bake_evaluate(kg,
input,
output,
@@ -118,17 +168,70 @@ void KERNEL_FUNCTION_FULL_NAME(shader)(KernelGlobals *kg,
i,
offset,
sample);
-#endif
+# endif
+ }
+ else if(type == SHADER_EVAL_DISPLACE) {
+ kernel_displace_evaluate(kg, input, output, i);
}
else {
- kernel_shader_evaluate(kg,
- input,
- output,
- output_luma,
- (ShaderEvalType)type,
- i,
- sample);
+ kernel_background_evaluate(kg, input, output, i);
}
+#endif /* KERNEL_STUB */
}
+#else /* __SPLIT_KERNEL__ */
+
+/* Split Kernel Path Tracing */
+
+#ifdef KERNEL_STUB
+# define DEFINE_SPLIT_KERNEL_FUNCTION(name) \
+ void KERNEL_FUNCTION_FULL_NAME(name)(KernelGlobals *kg, KernelData* /*data*/) \
+ { \
+ STUB_ASSERT(KERNEL_ARCH, name); \
+ }
+
+# define DEFINE_SPLIT_KERNEL_FUNCTION_LOCALS(name, type) \
+ void KERNEL_FUNCTION_FULL_NAME(name)(KernelGlobals *kg, KernelData* /*data*/) \
+ { \
+ STUB_ASSERT(KERNEL_ARCH, name); \
+ }
+#else
+# define DEFINE_SPLIT_KERNEL_FUNCTION(name) \
+ void KERNEL_FUNCTION_FULL_NAME(name)(KernelGlobals *kg, KernelData* /*data*/) \
+ { \
+ kernel_##name(kg); \
+ }
+
+# define DEFINE_SPLIT_KERNEL_FUNCTION_LOCALS(name, type) \
+ void KERNEL_FUNCTION_FULL_NAME(name)(KernelGlobals *kg, KernelData* /*data*/) \
+ { \
+ ccl_local type locals; \
+ kernel_##name(kg, &locals); \
+ }
+#endif /* KERNEL_STUB */
+
+DEFINE_SPLIT_KERNEL_FUNCTION(path_init)
+DEFINE_SPLIT_KERNEL_FUNCTION(scene_intersect)
+DEFINE_SPLIT_KERNEL_FUNCTION(lamp_emission)
+DEFINE_SPLIT_KERNEL_FUNCTION(do_volume)
+DEFINE_SPLIT_KERNEL_FUNCTION_LOCALS(queue_enqueue, QueueEnqueueLocals)
+DEFINE_SPLIT_KERNEL_FUNCTION(indirect_background)
+DEFINE_SPLIT_KERNEL_FUNCTION_LOCALS(shader_setup, uint)
+DEFINE_SPLIT_KERNEL_FUNCTION_LOCALS(shader_sort, ShaderSortLocals)
+DEFINE_SPLIT_KERNEL_FUNCTION(shader_eval)
+DEFINE_SPLIT_KERNEL_FUNCTION_LOCALS(holdout_emission_blurring_pathtermination_ao, BackgroundAOLocals)
+DEFINE_SPLIT_KERNEL_FUNCTION(subsurface_scatter)
+DEFINE_SPLIT_KERNEL_FUNCTION_LOCALS(direct_lighting, uint)
+DEFINE_SPLIT_KERNEL_FUNCTION(shadow_blocked_ao)
+DEFINE_SPLIT_KERNEL_FUNCTION(shadow_blocked_dl)
+DEFINE_SPLIT_KERNEL_FUNCTION_LOCALS(enqueue_inactive, uint)
+DEFINE_SPLIT_KERNEL_FUNCTION_LOCALS(next_iteration_setup, uint)
+DEFINE_SPLIT_KERNEL_FUNCTION(indirect_subsurface)
+DEFINE_SPLIT_KERNEL_FUNCTION_LOCALS(buffer_update, uint)
+#endif /* __SPLIT_KERNEL__ */
+
+#undef KERNEL_STUB
+#undef STUB_ASSERT
+#undef KERNEL_ARCH
+
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/kernels/cpu/kernel_split.cpp b/intern/cycles/kernel/kernels/cpu/kernel_split.cpp
new file mode 100644
index 00000000000..ca750e5a00d
--- /dev/null
+++ b/intern/cycles/kernel/kernels/cpu/kernel_split.cpp
@@ -0,0 +1,63 @@
+/*
+ * Copyright 2011-2013 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* CPU kernel entry points */
+
+/* On x86-64, we can assume SSE2, so avoid the extra kernel and compile this
+ * one with SSE2 intrinsics.
+ */
+#if defined(__x86_64__) || defined(_M_X64)
+# define __KERNEL_SSE2__
+#endif
+
+#define __SPLIT_KERNEL__
+
+/* When building kernel for native machine detect kernel features from the flags
+ * set by compiler.
+ */
+#ifdef WITH_KERNEL_NATIVE
+# ifdef __SSE2__
+# ifndef __KERNEL_SSE2__
+# define __KERNEL_SSE2__
+# endif
+# endif
+# ifdef __SSE3__
+# define __KERNEL_SSE3__
+# endif
+# ifdef __SSSE3__
+# define __KERNEL_SSSE3__
+# endif
+# ifdef __SSE4_1__
+# define __KERNEL_SSE41__
+# endif
+# ifdef __AVX__
+# define __KERNEL_AVX__
+# endif
+# ifdef __AVX2__
+# define __KERNEL_SSE__
+# define __KERNEL_AVX2__
+# endif
+#endif
+
+/* quiet unused define warnings */
+#if defined(__KERNEL_SSE2__)
+ /* do nothing */
+#endif
+
+#include "kernel/kernel.h"
+#define KERNEL_ARCH cpu
+#include "kernel/kernels/cpu/kernel_cpu_impl.h"
+
diff --git a/intern/cycles/kernel/kernels/cpu/kernel_split_avx.cpp b/intern/cycles/kernel/kernels/cpu/kernel_split_avx.cpp
new file mode 100644
index 00000000000..6ba3425a343
--- /dev/null
+++ b/intern/cycles/kernel/kernels/cpu/kernel_split_avx.cpp
@@ -0,0 +1,41 @@
+/*
+ * Copyright 2011-2013 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* Optimized CPU kernel entry points. This file is compiled with AVX
+ * optimization flags and nearly all functions inlined, while kernel.cpp
+ * is compiled without for other CPU's. */
+
+#define __SPLIT_KERNEL__
+
+#include "util/util_optimization.h"
+
+#ifndef WITH_CYCLES_OPTIMIZED_KERNEL_AVX
+# define KERNEL_STUB
+#else
+/* SSE optimization disabled for now on 32 bit, see bug #36316 */
+# if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
+# define __KERNEL_SSE__
+# define __KERNEL_SSE2__
+# define __KERNEL_SSE3__
+# define __KERNEL_SSSE3__
+# define __KERNEL_SSE41__
+# define __KERNEL_AVX__
+# endif
+#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_AVX */
+
+#include "kernel/kernel.h"
+#define KERNEL_ARCH cpu_avx
+#include "kernel/kernels/cpu/kernel_cpu_impl.h"
diff --git a/intern/cycles/kernel/kernels/cpu/kernel_split_avx2.cpp b/intern/cycles/kernel/kernels/cpu/kernel_split_avx2.cpp
new file mode 100644
index 00000000000..76b2d77ebb8
--- /dev/null
+++ b/intern/cycles/kernel/kernels/cpu/kernel_split_avx2.cpp
@@ -0,0 +1,42 @@
+/*
+ * Copyright 2011-2014 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* Optimized CPU kernel entry points. This file is compiled with AVX2
+ * optimization flags and nearly all functions inlined, while kernel.cpp
+ * is compiled without for other CPU's. */
+
+#define __SPLIT_KERNEL__
+
+#include "util/util_optimization.h"
+
+#ifndef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
+# define KERNEL_STUB
+#else
+/* SSE optimization disabled for now on 32 bit, see bug #36316 */
+# if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
+# define __KERNEL_SSE__
+# define __KERNEL_SSE2__
+# define __KERNEL_SSE3__
+# define __KERNEL_SSSE3__
+# define __KERNEL_SSE41__
+# define __KERNEL_AVX__
+# define __KERNEL_AVX2__
+# endif
+#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_AVX2 */
+
+#include "kernel/kernel.h"
+#define KERNEL_ARCH cpu_avx2
+#include "kernel/kernels/cpu/kernel_cpu_impl.h"
diff --git a/intern/cycles/kernel/kernels/cpu/kernel_split_sse2.cpp b/intern/cycles/kernel/kernels/cpu/kernel_split_sse2.cpp
new file mode 100644
index 00000000000..b468b6f44c8
--- /dev/null
+++ b/intern/cycles/kernel/kernels/cpu/kernel_split_sse2.cpp
@@ -0,0 +1,36 @@
+/*
+ * Copyright 2011-2013 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* Optimized CPU kernel entry points. This file is compiled with SSE2
+ * optimization flags and nearly all functions inlined, while kernel.cpp
+ * is compiled without for other CPU's. */
+
+#define __SPLIT_KERNEL__
+
+#include "util/util_optimization.h"
+
+#ifndef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
+# define KERNEL_STUB
+#else
+/* SSE optimization disabled for now on 32 bit, see bug #36316 */
+# if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
+# define __KERNEL_SSE2__
+# endif
+#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_SSE2 */
+
+#include "kernel/kernel.h"
+#define KERNEL_ARCH cpu_sse2
+#include "kernel/kernels/cpu/kernel_cpu_impl.h"
diff --git a/intern/cycles/kernel/kernels/cpu/kernel_split_sse3.cpp b/intern/cycles/kernel/kernels/cpu/kernel_split_sse3.cpp
new file mode 100644
index 00000000000..3e5792d0b17
--- /dev/null
+++ b/intern/cycles/kernel/kernels/cpu/kernel_split_sse3.cpp
@@ -0,0 +1,38 @@
+/*
+ * Copyright 2011-2013 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* Optimized CPU kernel entry points. This file is compiled with SSE3/SSSE3
+ * optimization flags and nearly all functions inlined, while kernel.cpp
+ * is compiled without for other CPU's. */
+
+#define __SPLIT_KERNEL__
+
+#include "util/util_optimization.h"
+
+#ifndef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
+# define KERNEL_STUB
+#else
+/* SSE optimization disabled for now on 32 bit, see bug #36316 */
+# if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
+# define __KERNEL_SSE2__
+# define __KERNEL_SSE3__
+# define __KERNEL_SSSE3__
+# endif
+#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_SSE3 */
+
+#include "kernel/kernel.h"
+#define KERNEL_ARCH cpu_sse3
+#include "kernel/kernels/cpu/kernel_cpu_impl.h"
diff --git a/intern/cycles/kernel/kernels/cpu/kernel_split_sse41.cpp b/intern/cycles/kernel/kernels/cpu/kernel_split_sse41.cpp
new file mode 100644
index 00000000000..3629f21cd29
--- /dev/null
+++ b/intern/cycles/kernel/kernels/cpu/kernel_split_sse41.cpp
@@ -0,0 +1,39 @@
+/*
+ * Copyright 2011-2013 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* Optimized CPU kernel entry points. This file is compiled with SSE3/SSSE3
+ * optimization flags and nearly all functions inlined, while kernel.cpp
+ * is compiled without for other CPU's. */
+
+#define __SPLIT_KERNEL__
+
+#include "util/util_optimization.h"
+
+#ifndef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
+# define KERNEL_STUB
+#else
+/* SSE optimization disabled for now on 32 bit, see bug #36316 */
+# if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
+# define __KERNEL_SSE2__
+# define __KERNEL_SSE3__
+# define __KERNEL_SSSE3__
+# define __KERNEL_SSE41__
+# endif
+#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_SSE41 */
+
+#include "kernel/kernel.h"
+#define KERNEL_ARCH cpu_sse41
+#include "kernel/kernels/cpu/kernel_cpu_impl.h"
diff --git a/intern/cycles/kernel/kernels/cpu/kernel_sse2.cpp b/intern/cycles/kernel/kernels/cpu/kernel_sse2.cpp
index a5f2d6e7294..57530c88710 100644
--- a/intern/cycles/kernel/kernels/cpu/kernel_sse2.cpp
+++ b/intern/cycles/kernel/kernels/cpu/kernel_sse2.cpp
@@ -18,15 +18,17 @@
* optimization flags and nearly all functions inlined, while kernel.cpp
* is compiled without for other CPU's. */
-/* SSE optimization disabled for now on 32 bit, see bug #36316 */
-#if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
-# define __KERNEL_SSE2__
-#endif
-
-#include "util_optimization.h"
+#include "util/util_optimization.h"
-#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
-# include "kernel.h"
-# define KERNEL_ARCH cpu_sse2
-# include "kernel_cpu_impl.h"
+#ifndef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
+# define KERNEL_STUB
+#else
+/* SSE optimization disabled for now on 32 bit, see bug #36316 */
+# if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
+# define __KERNEL_SSE2__
+# endif
#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_SSE2 */
+
+#include "kernel/kernel.h"
+#define KERNEL_ARCH cpu_sse2
+#include "kernel/kernels/cpu/kernel_cpu_impl.h"
diff --git a/intern/cycles/kernel/kernels/cpu/kernel_sse3.cpp b/intern/cycles/kernel/kernels/cpu/kernel_sse3.cpp
index 86f9ce991f8..c607753bc4b 100644
--- a/intern/cycles/kernel/kernels/cpu/kernel_sse3.cpp
+++ b/intern/cycles/kernel/kernels/cpu/kernel_sse3.cpp
@@ -18,17 +18,19 @@
* optimization flags and nearly all functions inlined, while kernel.cpp
* is compiled without for other CPU's. */
-/* SSE optimization disabled for now on 32 bit, see bug #36316 */
-#if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
-# define __KERNEL_SSE2__
-# define __KERNEL_SSE3__
-# define __KERNEL_SSSE3__
-#endif
-
-#include "util_optimization.h"
+#include "util/util_optimization.h"
-#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
-# include "kernel.h"
-# define KERNEL_ARCH cpu_sse3
-# include "kernel_cpu_impl.h"
+#ifndef WITH_CYCLES_OPTIMIZED_KERNEL_SSE3
+# define KERNEL_STUB
+#else
+/* SSE optimization disabled for now on 32 bit, see bug #36316 */
+# if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
+# define __KERNEL_SSE2__
+# define __KERNEL_SSE3__
+# define __KERNEL_SSSE3__
+# endif
#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_SSE3 */
+
+#include "kernel/kernel.h"
+#define KERNEL_ARCH cpu_sse3
+#include "kernel/kernels/cpu/kernel_cpu_impl.h"
diff --git a/intern/cycles/kernel/kernels/cpu/kernel_sse41.cpp b/intern/cycles/kernel/kernels/cpu/kernel_sse41.cpp
index c174406047d..a278554731c 100644
--- a/intern/cycles/kernel/kernels/cpu/kernel_sse41.cpp
+++ b/intern/cycles/kernel/kernels/cpu/kernel_sse41.cpp
@@ -18,18 +18,20 @@
* optimization flags and nearly all functions inlined, while kernel.cpp
* is compiled without for other CPU's. */
-/* SSE optimization disabled for now on 32 bit, see bug #36316 */
-#if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
-# define __KERNEL_SSE2__
-# define __KERNEL_SSE3__
-# define __KERNEL_SSSE3__
-# define __KERNEL_SSE41__
-#endif
-
-#include "util_optimization.h"
+#include "util/util_optimization.h"
-#ifdef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
-# include "kernel.h"
-# define KERNEL_ARCH cpu_sse41
-# include "kernel_cpu_impl.h"
+#ifndef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
+# define KERNEL_STUB
+#else
+/* SSE optimization disabled for now on 32 bit, see bug #36316 */
+# if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
+# define __KERNEL_SSE2__
+# define __KERNEL_SSE3__
+# define __KERNEL_SSSE3__
+# define __KERNEL_SSE41__
+# endif
#endif /* WITH_CYCLES_OPTIMIZED_KERNEL_SSE41 */
+
+#include "kernel/kernel.h"
+#define KERNEL_ARCH cpu_sse41
+#include "kernel/kernels/cpu/kernel_cpu_impl.h"
diff --git a/intern/cycles/kernel/kernels/cuda/filter.cu b/intern/cycles/kernel/kernels/cuda/filter.cu
new file mode 100644
index 00000000000..c8172355a7f
--- /dev/null
+++ b/intern/cycles/kernel/kernels/cuda/filter.cu
@@ -0,0 +1,251 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* CUDA kernel entry points */
+
+#ifdef __CUDA_ARCH__
+
+#include "kernel_config.h"
+
+#include "kernel/kernel_compat_cuda.h"
+
+#include "kernel/filter/filter_kernel.h"
+
+/* kernels */
+
+extern "C" __global__ void
+CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
+kernel_cuda_filter_divide_shadow(int sample,
+ TilesInfo *tiles,
+ float *unfilteredA,
+ float *unfilteredB,
+ float *sampleVariance,
+ float *sampleVarianceV,
+ float *bufferVariance,
+ int4 prefilter_rect,
+ int buffer_pass_stride,
+ int buffer_denoising_offset)
+{
+ int x = prefilter_rect.x + blockDim.x*blockIdx.x + threadIdx.x;
+ int y = prefilter_rect.y + blockDim.y*blockIdx.y + threadIdx.y;
+ if(x < prefilter_rect.z && y < prefilter_rect.w) {
+ kernel_filter_divide_shadow(sample,
+ tiles,
+ x, y,
+ unfilteredA,
+ unfilteredB,
+ sampleVariance,
+ sampleVarianceV,
+ bufferVariance,
+ prefilter_rect,
+ buffer_pass_stride,
+ buffer_denoising_offset);
+ }
+}
+
+extern "C" __global__ void
+CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
+kernel_cuda_filter_get_feature(int sample,
+ TilesInfo *tiles,
+ int m_offset,
+ int v_offset,
+ float *mean,
+ float *variance,
+ int4 prefilter_rect,
+ int buffer_pass_stride,
+ int buffer_denoising_offset)
+{
+ int x = prefilter_rect.x + blockDim.x*blockIdx.x + threadIdx.x;
+ int y = prefilter_rect.y + blockDim.y*blockIdx.y + threadIdx.y;
+ if(x < prefilter_rect.z && y < prefilter_rect.w) {
+ kernel_filter_get_feature(sample,
+ tiles,
+ m_offset, v_offset,
+ x, y,
+ mean, variance,
+ prefilter_rect,
+ buffer_pass_stride,
+ buffer_denoising_offset);
+ }
+}
+
+extern "C" __global__ void
+CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
+kernel_cuda_filter_detect_outliers(float *image,
+ float *variance,
+ float *depth,
+ float *output,
+ int4 prefilter_rect,
+ int pass_stride)
+{
+ int x = prefilter_rect.x + blockDim.x*blockIdx.x + threadIdx.x;
+ int y = prefilter_rect.y + blockDim.y*blockIdx.y + threadIdx.y;
+ if(x < prefilter_rect.z && y < prefilter_rect.w) {
+ kernel_filter_detect_outliers(x, y, image, variance, depth, output, prefilter_rect, pass_stride);
+ }
+}
+
+extern "C" __global__ void
+CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
+kernel_cuda_filter_combine_halves(float *mean, float *variance, float *a, float *b, int4 prefilter_rect, int r)
+{
+ int x = prefilter_rect.x + blockDim.x*blockIdx.x + threadIdx.x;
+ int y = prefilter_rect.y + blockDim.y*blockIdx.y + threadIdx.y;
+ if(x < prefilter_rect.z && y < prefilter_rect.w) {
+ kernel_filter_combine_halves(x, y, mean, variance, a, b, prefilter_rect, r);
+ }
+}
+
+extern "C" __global__ void
+CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
+kernel_cuda_filter_construct_transform(float const* __restrict__ buffer,
+ float *transform, int *rank,
+ int4 filter_area, int4 rect,
+ int radius, float pca_threshold,
+ int pass_stride)
+{
+ int x = blockDim.x*blockIdx.x + threadIdx.x;
+ int y = blockDim.y*blockIdx.y + threadIdx.y;
+ if(x < filter_area.z && y < filter_area.w) {
+ int *l_rank = rank + y*filter_area.z + x;
+ float *l_transform = transform + y*filter_area.z + x;
+ kernel_filter_construct_transform(buffer,
+ x + filter_area.x, y + filter_area.y,
+ rect, pass_stride,
+ l_transform, l_rank,
+ radius, pca_threshold,
+ filter_area.z*filter_area.w,
+ threadIdx.y*blockDim.x + threadIdx.x);
+ }
+}
+
+extern "C" __global__ void
+CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
+kernel_cuda_filter_nlm_calc_difference(int dx, int dy,
+ const float *ccl_restrict weight_image,
+ const float *ccl_restrict variance_image,
+ float *difference_image,
+ int4 rect, int w,
+ int channel_offset,
+ float a, float k_2)
+{
+ int x = blockDim.x*blockIdx.x + threadIdx.x + rect.x;
+ int y = blockDim.y*blockIdx.y + threadIdx.y + rect.y;
+ if(x < rect.z && y < rect.w) {
+ kernel_filter_nlm_calc_difference(x, y, dx, dy, weight_image, variance_image, difference_image, rect, w, channel_offset, a, k_2);
+ }
+}
+
+extern "C" __global__ void
+CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
+kernel_cuda_filter_nlm_blur(const float *ccl_restrict difference_image, float *out_image, int4 rect, int w, int f)
+{
+ int x = blockDim.x*blockIdx.x + threadIdx.x + rect.x;
+ int y = blockDim.y*blockIdx.y + threadIdx.y + rect.y;
+ if(x < rect.z && y < rect.w) {
+ kernel_filter_nlm_blur(x, y, difference_image, out_image, rect, w, f);
+ }
+}
+
+extern "C" __global__ void
+CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
+kernel_cuda_filter_nlm_calc_weight(const float *ccl_restrict difference_image, float *out_image, int4 rect, int w, int f)
+{
+ int x = blockDim.x*blockIdx.x + threadIdx.x + rect.x;
+ int y = blockDim.y*blockIdx.y + threadIdx.y + rect.y;
+ if(x < rect.z && y < rect.w) {
+ kernel_filter_nlm_calc_weight(x, y, difference_image, out_image, rect, w, f);
+ }
+}
+
+extern "C" __global__ void
+CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
+kernel_cuda_filter_nlm_update_output(int dx, int dy,
+ const float *ccl_restrict difference_image,
+ const float *ccl_restrict image,
+ float *out_image, float *accum_image,
+ int4 rect, int w,
+ int f)
+{
+ int x = blockDim.x*blockIdx.x + threadIdx.x + rect.x;
+ int y = blockDim.y*blockIdx.y + threadIdx.y + rect.y;
+ if(x < rect.z && y < rect.w) {
+ kernel_filter_nlm_update_output(x, y, dx, dy, difference_image, image, out_image, accum_image, rect, w, f);
+ }
+}
+
+extern "C" __global__ void
+CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
+kernel_cuda_filter_nlm_normalize(float *out_image, const float *ccl_restrict accum_image, int4 rect, int w)
+{
+ int x = blockDim.x*blockIdx.x + threadIdx.x + rect.x;
+ int y = blockDim.y*blockIdx.y + threadIdx.y + rect.y;
+ if(x < rect.z && y < rect.w) {
+ kernel_filter_nlm_normalize(x, y, out_image, accum_image, rect, w);
+ }
+}
+
+extern "C" __global__ void
+CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
+kernel_cuda_filter_nlm_construct_gramian(int dx, int dy,
+ const float *ccl_restrict difference_image,
+ const float *ccl_restrict buffer,
+ float const* __restrict__ transform,
+ int *rank,
+ float *XtWX,
+ float3 *XtWY,
+ int4 rect,
+ int4 filter_rect,
+ int w, int h, int f,
+ int pass_stride)
+{
+ int x = blockDim.x*blockIdx.x + threadIdx.x + max(0, rect.x-filter_rect.x);
+ int y = blockDim.y*blockIdx.y + threadIdx.y + max(0, rect.y-filter_rect.y);
+ if(x < min(filter_rect.z, rect.z-filter_rect.x) && y < min(filter_rect.w, rect.w-filter_rect.y)) {
+ kernel_filter_nlm_construct_gramian(x, y,
+ dx, dy,
+ difference_image,
+ buffer,
+ transform, rank,
+ XtWX, XtWY,
+ rect, filter_rect,
+ w, h, f,
+ pass_stride,
+ threadIdx.y*blockDim.x + threadIdx.x);
+ }
+}
+
+extern "C" __global__ void
+CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
+kernel_cuda_filter_finalize(int w, int h,
+ float *buffer, int *rank,
+ float *XtWX, float3 *XtWY,
+ int4 filter_area, int4 buffer_params,
+ int sample)
+{
+ int x = blockDim.x*blockIdx.x + threadIdx.x;
+ int y = blockDim.y*blockIdx.y + threadIdx.y;
+ if(x < filter_area.z && y < filter_area.w) {
+ int storage_ofs = y*filter_area.z+x;
+ rank += storage_ofs;
+ XtWX += storage_ofs;
+ XtWY += storage_ofs;
+ kernel_filter_finalize(x, y, w, h, buffer, rank, filter_area.z*filter_area.w, XtWX, XtWY, buffer_params, sample);
+ }
+}
+
+#endif
+
diff --git a/intern/cycles/kernel/kernels/cuda/kernel.cu b/intern/cycles/kernel/kernels/cuda/kernel.cu
index eb2b6ea5414..3c93e00ccf1 100644
--- a/intern/cycles/kernel/kernels/cuda/kernel.cu
+++ b/intern/cycles/kernel/kernels/cuda/kernel.cu
@@ -16,134 +16,53 @@
/* CUDA kernel entry points */
-#include "../../kernel_compat_cuda.h"
-#include "../../kernel_math.h"
-#include "../../kernel_types.h"
-#include "../../kernel_globals.h"
-#include "../../kernel_film.h"
-#include "../../kernel_path.h"
-#include "../../kernel_path_branched.h"
-#include "../../kernel_bake.h"
-
-/* device data taken from CUDA occupancy calculator */
-
#ifdef __CUDA_ARCH__
-/* 2.0 and 2.1 */
-#if __CUDA_ARCH__ == 200 || __CUDA_ARCH__ == 210
-# define CUDA_MULTIPRESSOR_MAX_REGISTERS 32768
-# define CUDA_MULTIPROCESSOR_MAX_BLOCKS 8
-# define CUDA_BLOCK_MAX_THREADS 1024
-# define CUDA_THREAD_MAX_REGISTERS 63
-
-/* tunable parameters */
-# define CUDA_THREADS_BLOCK_WIDTH 16
-# define CUDA_KERNEL_MAX_REGISTERS 32
-# define CUDA_KERNEL_BRANCHED_MAX_REGISTERS 40
-
-/* 3.0 and 3.5 */
-#elif __CUDA_ARCH__ == 300 || __CUDA_ARCH__ == 350
-# define CUDA_MULTIPRESSOR_MAX_REGISTERS 65536
-# define CUDA_MULTIPROCESSOR_MAX_BLOCKS 16
-# define CUDA_BLOCK_MAX_THREADS 1024
-# define CUDA_THREAD_MAX_REGISTERS 63
-
-/* tunable parameters */
-# define CUDA_THREADS_BLOCK_WIDTH 16
-# define CUDA_KERNEL_MAX_REGISTERS 63
-# define CUDA_KERNEL_BRANCHED_MAX_REGISTERS 63
-
-/* 3.2 */
-#elif __CUDA_ARCH__ == 320
-# define CUDA_MULTIPRESSOR_MAX_REGISTERS 32768
-# define CUDA_MULTIPROCESSOR_MAX_BLOCKS 16
-# define CUDA_BLOCK_MAX_THREADS 1024
-# define CUDA_THREAD_MAX_REGISTERS 63
-
-/* tunable parameters */
-# define CUDA_THREADS_BLOCK_WIDTH 16
-# define CUDA_KERNEL_MAX_REGISTERS 63
-# define CUDA_KERNEL_BRANCHED_MAX_REGISTERS 63
-
-/* 3.7 */
-#elif __CUDA_ARCH__ == 370
-# define CUDA_MULTIPRESSOR_MAX_REGISTERS 65536
-# define CUDA_MULTIPROCESSOR_MAX_BLOCKS 16
-# define CUDA_BLOCK_MAX_THREADS 1024
-# define CUDA_THREAD_MAX_REGISTERS 255
-
-/* tunable parameters */
-# define CUDA_THREADS_BLOCK_WIDTH 16
-# define CUDA_KERNEL_MAX_REGISTERS 63
-# define CUDA_KERNEL_BRANCHED_MAX_REGISTERS 63
-
-/* 5.0, 5.2, 5.3, 6.0, 6.1 */
-#elif __CUDA_ARCH__ >= 500
-# define CUDA_MULTIPRESSOR_MAX_REGISTERS 65536
-# define CUDA_MULTIPROCESSOR_MAX_BLOCKS 32
-# define CUDA_BLOCK_MAX_THREADS 1024
-# define CUDA_THREAD_MAX_REGISTERS 255
-
-/* tunable parameters */
-# define CUDA_THREADS_BLOCK_WIDTH 16
-# define CUDA_KERNEL_MAX_REGISTERS 48
-# define CUDA_KERNEL_BRANCHED_MAX_REGISTERS 63
-
-/* unknown architecture */
-#else
-# error "Unknown or unsupported CUDA architecture, can't determine launch bounds"
-#endif
+#include "kernel/kernel_compat_cuda.h"
+#include "kernel_config.h"
-/* compute number of threads per block and minimum blocks per multiprocessor
- * given the maximum number of registers per thread */
+#include "util/util_atomic.h"
-#define CUDA_LAUNCH_BOUNDS(threads_block_width, thread_num_registers) \
- __launch_bounds__( \
- threads_block_width*threads_block_width, \
- CUDA_MULTIPRESSOR_MAX_REGISTERS/(threads_block_width*threads_block_width*thread_num_registers) \
- )
-
-/* sanity checks */
-
-#if CUDA_THREADS_BLOCK_WIDTH*CUDA_THREADS_BLOCK_WIDTH > CUDA_BLOCK_MAX_THREADS
-# error "Maximum number of threads per block exceeded"
-#endif
-
-#if CUDA_MULTIPRESSOR_MAX_REGISTERS/(CUDA_THREADS_BLOCK_WIDTH*CUDA_THREADS_BLOCK_WIDTH*CUDA_KERNEL_MAX_REGISTERS) > CUDA_MULTIPROCESSOR_MAX_BLOCKS
-# error "Maximum number of blocks per multiprocessor exceeded"
-#endif
-
-#if CUDA_KERNEL_MAX_REGISTERS > CUDA_THREAD_MAX_REGISTERS
-# error "Maximum number of registers per thread exceeded"
-#endif
-
-#if CUDA_KERNEL_BRANCHED_MAX_REGISTERS > CUDA_THREAD_MAX_REGISTERS
-# error "Maximum number of registers per thread exceeded"
-#endif
+#include "kernel/kernel_math.h"
+#include "kernel/kernel_types.h"
+#include "kernel/kernel_globals.h"
+#include "kernel/kernels/cuda/kernel_cuda_image.h"
+#include "kernel/kernel_film.h"
+#include "kernel/kernel_path.h"
+#include "kernel/kernel_path_branched.h"
+#include "kernel/kernel_bake.h"
+#include "kernel/kernel_work_stealing.h"
/* kernels */
-
extern "C" __global__ void
CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
-kernel_cuda_path_trace(float *buffer, uint *rng_state, int sample, int sx, int sy, int sw, int sh, int offset, int stride)
+kernel_cuda_path_trace(WorkTile *tile, uint total_work_size)
{
- int x = sx + blockDim.x*blockIdx.x + threadIdx.x;
- int y = sy + blockDim.y*blockIdx.y + threadIdx.y;
+ int work_index = ccl_global_id(0);
- if(x < sx + sw && y < sy + sh)
- kernel_path_trace(NULL, buffer, rng_state, sample, x, y, offset, stride);
+ if(work_index < total_work_size) {
+ uint x, y, sample;
+ get_work_pixel(tile, work_index, &x, &y, &sample);
+
+ KernelGlobals kg;
+ kernel_path_trace(&kg, tile->buffer, sample, x, y, tile->offset, tile->stride);
+ }
}
#ifdef __BRANCHED_PATH__
extern "C" __global__ void
CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_BRANCHED_MAX_REGISTERS)
-kernel_cuda_branched_path_trace(float *buffer, uint *rng_state, int sample, int sx, int sy, int sw, int sh, int offset, int stride)
+kernel_cuda_branched_path_trace(WorkTile *tile, uint total_work_size)
{
- int x = sx + blockDim.x*blockIdx.x + threadIdx.x;
- int y = sy + blockDim.y*blockIdx.y + threadIdx.y;
+ int work_index = ccl_global_id(0);
+
+ if(work_index < total_work_size) {
+ uint x, y, sample;
+ get_work_pixel(tile, work_index, &x, &y, &sample);
- if(x < sx + sw && y < sy + sh)
- kernel_branched_path_trace(NULL, buffer, rng_state, sample, x, y, offset, stride);
+ KernelGlobals kg;
+ kernel_branched_path_trace(&kg, tile->buffer, sample, x, y, tile->offset, tile->stride);
+ }
}
#endif
@@ -154,8 +73,9 @@ kernel_cuda_convert_to_byte(uchar4 *rgba, float *buffer, float sample_scale, int
int x = sx + blockDim.x*blockIdx.x + threadIdx.x;
int y = sy + blockDim.y*blockIdx.y + threadIdx.y;
- if(x < sx + sw && y < sy + sh)
+ if(x < sx + sw && y < sy + sh) {
kernel_film_convert_to_byte(NULL, rgba, buffer, sample_scale, x, y, offset, stride);
+ }
}
extern "C" __global__ void
@@ -165,31 +85,44 @@ kernel_cuda_convert_to_half_float(uchar4 *rgba, float *buffer, float sample_scal
int x = sx + blockDim.x*blockIdx.x + threadIdx.x;
int y = sy + blockDim.y*blockIdx.y + threadIdx.y;
- if(x < sx + sw && y < sy + sh)
+ if(x < sx + sw && y < sy + sh) {
kernel_film_convert_to_half_float(NULL, rgba, buffer, sample_scale, x, y, offset, stride);
+ }
}
extern "C" __global__ void
CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
-kernel_cuda_shader(uint4 *input,
- float4 *output,
- float *output_luma,
- int type,
- int sx,
- int sw,
- int offset,
- int sample)
+kernel_cuda_displace(uint4 *input,
+ float4 *output,
+ int type,
+ int sx,
+ int sw,
+ int offset,
+ int sample)
{
int x = sx + blockDim.x*blockIdx.x + threadIdx.x;
if(x < sx + sw) {
- kernel_shader_evaluate(NULL,
- input,
- output,
- output_luma,
- (ShaderEvalType)type,
- x,
- sample);
+ KernelGlobals kg;
+ kernel_displace_evaluate(&kg, input, output, x);
+ }
+}
+
+extern "C" __global__ void
+CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
+kernel_cuda_background(uint4 *input,
+ float4 *output,
+ int type,
+ int sx,
+ int sw,
+ int offset,
+ int sample)
+{
+ int x = sx + blockDim.x*blockIdx.x + threadIdx.x;
+
+ if(x < sx + sw) {
+ KernelGlobals kg;
+ kernel_background_evaluate(&kg, input, output, x);
}
}
@@ -200,8 +133,10 @@ kernel_cuda_bake(uint4 *input, float4 *output, int type, int filter, int sx, int
{
int x = sx + blockDim.x*blockIdx.x + threadIdx.x;
- if(x < sx + sw)
- kernel_bake_evaluate(NULL, input, output, (ShaderEvalType)type, filter, x, offset, sample);
+ if(x < sx + sw) {
+ KernelGlobals kg;
+ kernel_bake_evaluate(&kg, input, output, (ShaderEvalType)type, filter, x, offset, sample);
+ }
}
#endif
diff --git a/intern/cycles/kernel/kernels/cuda/kernel_config.h b/intern/cycles/kernel/kernels/cuda/kernel_config.h
new file mode 100644
index 00000000000..7ae205b7e14
--- /dev/null
+++ b/intern/cycles/kernel/kernels/cuda/kernel_config.h
@@ -0,0 +1,115 @@
+/*
+ * Copyright 2011-2013 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* device data taken from CUDA occupancy calculator */
+
+/* 2.0 and 2.1 */
+#if __CUDA_ARCH__ == 200 || __CUDA_ARCH__ == 210
+# define CUDA_MULTIPRESSOR_MAX_REGISTERS 32768
+# define CUDA_MULTIPROCESSOR_MAX_BLOCKS 8
+# define CUDA_BLOCK_MAX_THREADS 1024
+# define CUDA_THREAD_MAX_REGISTERS 63
+
+/* tunable parameters */
+# define CUDA_THREADS_BLOCK_WIDTH 16
+# define CUDA_KERNEL_MAX_REGISTERS 32
+# define CUDA_KERNEL_BRANCHED_MAX_REGISTERS 40
+
+/* 3.0 and 3.5 */
+#elif __CUDA_ARCH__ == 300 || __CUDA_ARCH__ == 350
+# define CUDA_MULTIPRESSOR_MAX_REGISTERS 65536
+# define CUDA_MULTIPROCESSOR_MAX_BLOCKS 16
+# define CUDA_BLOCK_MAX_THREADS 1024
+# define CUDA_THREAD_MAX_REGISTERS 63
+
+/* tunable parameters */
+# define CUDA_THREADS_BLOCK_WIDTH 16
+# define CUDA_KERNEL_MAX_REGISTERS 63
+# define CUDA_KERNEL_BRANCHED_MAX_REGISTERS 63
+
+/* 3.2 */
+#elif __CUDA_ARCH__ == 320
+# define CUDA_MULTIPRESSOR_MAX_REGISTERS 32768
+# define CUDA_MULTIPROCESSOR_MAX_BLOCKS 16
+# define CUDA_BLOCK_MAX_THREADS 1024
+# define CUDA_THREAD_MAX_REGISTERS 63
+
+/* tunable parameters */
+# define CUDA_THREADS_BLOCK_WIDTH 16
+# define CUDA_KERNEL_MAX_REGISTERS 63
+# define CUDA_KERNEL_BRANCHED_MAX_REGISTERS 63
+
+/* 3.7 */
+#elif __CUDA_ARCH__ == 370
+# define CUDA_MULTIPRESSOR_MAX_REGISTERS 65536
+# define CUDA_MULTIPROCESSOR_MAX_BLOCKS 16
+# define CUDA_BLOCK_MAX_THREADS 1024
+# define CUDA_THREAD_MAX_REGISTERS 255
+
+/* tunable parameters */
+# define CUDA_THREADS_BLOCK_WIDTH 16
+# define CUDA_KERNEL_MAX_REGISTERS 63
+# define CUDA_KERNEL_BRANCHED_MAX_REGISTERS 63
+
+/* 5.0, 5.2, 5.3, 6.0, 6.1 */
+#elif __CUDA_ARCH__ >= 500
+# define CUDA_MULTIPRESSOR_MAX_REGISTERS 65536
+# define CUDA_MULTIPROCESSOR_MAX_BLOCKS 32
+# define CUDA_BLOCK_MAX_THREADS 1024
+# define CUDA_THREAD_MAX_REGISTERS 255
+
+/* tunable parameters */
+# define CUDA_THREADS_BLOCK_WIDTH 16
+# define CUDA_KERNEL_MAX_REGISTERS 48
+# define CUDA_KERNEL_BRANCHED_MAX_REGISTERS 63
+
+/* unknown architecture */
+#else
+# error "Unknown or unsupported CUDA architecture, can't determine launch bounds"
+#endif
+
+/* For split kernel using all registers seems fastest for now, but this
+ * is unlikely to be optimal once we resolve other bottlenecks. */
+
+#define CUDA_KERNEL_SPLIT_MAX_REGISTERS CUDA_THREAD_MAX_REGISTERS
+
+/* Compute number of threads per block and minimum blocks per multiprocessor
+ * given the maximum number of registers per thread. */
+
+#define CUDA_LAUNCH_BOUNDS(threads_block_width, thread_num_registers) \
+ __launch_bounds__( \
+ threads_block_width*threads_block_width, \
+ CUDA_MULTIPRESSOR_MAX_REGISTERS/(threads_block_width*threads_block_width*thread_num_registers) \
+ )
+
+/* sanity checks */
+
+#if CUDA_THREADS_BLOCK_WIDTH*CUDA_THREADS_BLOCK_WIDTH > CUDA_BLOCK_MAX_THREADS
+# error "Maximum number of threads per block exceeded"
+#endif
+
+#if CUDA_MULTIPRESSOR_MAX_REGISTERS/(CUDA_THREADS_BLOCK_WIDTH*CUDA_THREADS_BLOCK_WIDTH*CUDA_KERNEL_MAX_REGISTERS) > CUDA_MULTIPROCESSOR_MAX_BLOCKS
+# error "Maximum number of blocks per multiprocessor exceeded"
+#endif
+
+#if CUDA_KERNEL_MAX_REGISTERS > CUDA_THREAD_MAX_REGISTERS
+# error "Maximum number of registers per thread exceeded"
+#endif
+
+#if CUDA_KERNEL_BRANCHED_MAX_REGISTERS > CUDA_THREAD_MAX_REGISTERS
+# error "Maximum number of registers per thread exceeded"
+#endif
+
diff --git a/intern/cycles/kernel/kernels/cuda/kernel_cuda_image.h b/intern/cycles/kernel/kernels/cuda/kernel_cuda_image.h
new file mode 100644
index 00000000000..b7be4fe4409
--- /dev/null
+++ b/intern/cycles/kernel/kernels/cuda/kernel_cuda_image.h
@@ -0,0 +1,310 @@
+/*
+ * Copyright 2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#if __CUDA_ARCH__ >= 300
+
+/* Kepler */
+
+/* w0, w1, w2, and w3 are the four cubic B-spline basis functions. */
+ccl_device float cubic_w0(float a)
+{
+ return (1.0f/6.0f)*(a*(a*(-a + 3.0f) - 3.0f) + 1.0f);
+}
+
+ccl_device float cubic_w1(float a)
+{
+ return (1.0f/6.0f)*(a*a*(3.0f*a - 6.0f) + 4.0f);
+}
+
+ccl_device float cubic_w2(float a)
+{
+ return (1.0f/6.0f)*(a*(a*(-3.0f*a + 3.0f) + 3.0f) + 1.0f);
+}
+
+ccl_device float cubic_w3(float a)
+{
+ return (1.0f/6.0f)*(a*a*a);
+}
+
+/* g0 and g1 are the two amplitude functions. */
+ccl_device float cubic_g0(float a)
+{
+ return cubic_w0(a) + cubic_w1(a);
+}
+
+ccl_device float cubic_g1(float a)
+{
+ return cubic_w2(a) + cubic_w3(a);
+}
+
+/* h0 and h1 are the two offset functions */
+ccl_device float cubic_h0(float a)
+{
+ /* Note +0.5 offset to compensate for CUDA linear filtering convention. */
+ return -1.0f + cubic_w1(a) / (cubic_w0(a) + cubic_w1(a)) + 0.5f;
+}
+
+ccl_device float cubic_h1(float a)
+{
+ return 1.0f + cubic_w3(a) / (cubic_w2(a) + cubic_w3(a)) + 0.5f;
+}
+
+/* Fast bicubic texture lookup using 4 bilinear lookups, adapted from CUDA samples. */
+template<typename T>
+ccl_device T kernel_tex_image_interp_bicubic(const TextureInfo& info, CUtexObject tex, float x, float y)
+{
+ x = (x * info.width) - 0.5f;
+ y = (y * info.height) - 0.5f;
+
+ float px = floor(x);
+ float py = floor(y);
+ float fx = x - px;
+ float fy = y - py;
+
+ float g0x = cubic_g0(fx);
+ float g1x = cubic_g1(fx);
+ float x0 = (px + cubic_h0(fx)) / info.width;
+ float x1 = (px + cubic_h1(fx)) / info.width;
+ float y0 = (py + cubic_h0(fy)) / info.height;
+ float y1 = (py + cubic_h1(fy)) / info.height;
+
+ return cubic_g0(fy) * (g0x * tex2D<T>(tex, x0, y0) +
+ g1x * tex2D<T>(tex, x1, y0)) +
+ cubic_g1(fy) * (g0x * tex2D<T>(tex, x0, y1) +
+ g1x * tex2D<T>(tex, x1, y1));
+}
+
+/* Fast tricubic texture lookup using 8 bilinear lookups. */
+template<typename T>
+ccl_device T kernel_tex_image_interp_bicubic_3d(const TextureInfo& info, CUtexObject tex, float x, float y, float z)
+{
+ x = (x * info.width) - 0.5f;
+ y = (y * info.height) - 0.5f;
+ z = (z * info.depth) - 0.5f;
+
+ float px = floor(x);
+ float py = floor(y);
+ float pz = floor(z);
+ float fx = x - px;
+ float fy = y - py;
+ float fz = z - pz;
+
+ float g0x = cubic_g0(fx);
+ float g1x = cubic_g1(fx);
+ float g0y = cubic_g0(fy);
+ float g1y = cubic_g1(fy);
+ float g0z = cubic_g0(fz);
+ float g1z = cubic_g1(fz);
+
+ float x0 = (px + cubic_h0(fx)) / info.width;
+ float x1 = (px + cubic_h1(fx)) / info.width;
+ float y0 = (py + cubic_h0(fy)) / info.height;
+ float y1 = (py + cubic_h1(fy)) / info.height;
+ float z0 = (pz + cubic_h0(fz)) / info.depth;
+ float z1 = (pz + cubic_h1(fz)) / info.depth;
+
+ return g0z * (g0y * (g0x * tex3D<T>(tex, x0, y0, z0) +
+ g1x * tex3D<T>(tex, x1, y0, z0)) +
+ g1y * (g0x * tex3D<T>(tex, x0, y1, z0) +
+ g1x * tex3D<T>(tex, x1, y1, z0))) +
+ g1z * (g0y * (g0x * tex3D<T>(tex, x0, y0, z1) +
+ g1x * tex3D<T>(tex, x1, y0, z1)) +
+ g1y * (g0x * tex3D<T>(tex, x0, y1, z1) +
+ g1x * tex3D<T>(tex, x1, y1, z1)));
+}
+
+ccl_device float4 kernel_tex_image_interp(KernelGlobals *kg, int id, float x, float y)
+{
+ const TextureInfo& info = kernel_tex_fetch(__texture_info, id);
+ CUtexObject tex = (CUtexObject)info.data;
+
+ /* float4, byte4 and half4 */
+ const int texture_type = kernel_tex_type(id);
+ if(texture_type == IMAGE_DATA_TYPE_FLOAT4 ||
+ texture_type == IMAGE_DATA_TYPE_BYTE4 ||
+ texture_type == IMAGE_DATA_TYPE_HALF4)
+ {
+ if(info.interpolation == INTERPOLATION_CUBIC) {
+ return kernel_tex_image_interp_bicubic<float4>(info, tex, x, y);
+ }
+ else {
+ return tex2D<float4>(tex, x, y);
+ }
+ }
+ /* float, byte and half */
+ else {
+ float f;
+
+ if(info.interpolation == INTERPOLATION_CUBIC) {
+ f = kernel_tex_image_interp_bicubic<float>(info, tex, x, y);
+ }
+ else {
+ f = tex2D<float>(tex, x, y);
+ }
+
+ return make_float4(f, f, f, 1.0f);
+ }
+}
+
+ccl_device float4 kernel_tex_image_interp_3d(KernelGlobals *kg, int id, float x, float y, float z, InterpolationType interp)
+{
+ const TextureInfo& info = kernel_tex_fetch(__texture_info, id);
+ CUtexObject tex = (CUtexObject)info.data;
+ uint interpolation = (interp == INTERPOLATION_NONE)? info.interpolation: interp;
+
+ const int texture_type = kernel_tex_type(id);
+ if(texture_type == IMAGE_DATA_TYPE_FLOAT4 ||
+ texture_type == IMAGE_DATA_TYPE_BYTE4 ||
+ texture_type == IMAGE_DATA_TYPE_HALF4)
+ {
+ if(interpolation == INTERPOLATION_CUBIC) {
+ return kernel_tex_image_interp_bicubic_3d<float4>(info, tex, x, y, z);
+ }
+ else {
+ return tex3D<float4>(tex, x, y, z);
+ }
+ }
+ else {
+ float f;
+
+ if(interpolation == INTERPOLATION_CUBIC) {
+ f = kernel_tex_image_interp_bicubic_3d<float>(info, tex, x, y, z);
+ }
+ else {
+ f = tex3D<float>(tex, x, y, z);
+ }
+
+ return make_float4(f, f, f, 1.0f);
+ }
+}
+
+#else
+
+/* Fermi */
+
+ccl_device float4 kernel_tex_image_interp(KernelGlobals *kg, int id, float x, float y)
+{
+ float4 r;
+ switch(id) {
+ case 0: r = tex2D(__tex_image_float4_000, x, y); break;
+ case 8: r = tex2D(__tex_image_float4_008, x, y); break;
+ case 16: r = tex2D(__tex_image_float4_016, x, y); break;
+ case 24: r = tex2D(__tex_image_float4_024, x, y); break;
+ case 32: r = tex2D(__tex_image_float4_032, x, y); break;
+ case 1: r = tex2D(__tex_image_byte4_001, x, y); break;
+ case 9: r = tex2D(__tex_image_byte4_009, x, y); break;
+ case 17: r = tex2D(__tex_image_byte4_017, x, y); break;
+ case 25: r = tex2D(__tex_image_byte4_025, x, y); break;
+ case 33: r = tex2D(__tex_image_byte4_033, x, y); break;
+ case 41: r = tex2D(__tex_image_byte4_041, x, y); break;
+ case 49: r = tex2D(__tex_image_byte4_049, x, y); break;
+ case 57: r = tex2D(__tex_image_byte4_057, x, y); break;
+ case 65: r = tex2D(__tex_image_byte4_065, x, y); break;
+ case 73: r = tex2D(__tex_image_byte4_073, x, y); break;
+ case 81: r = tex2D(__tex_image_byte4_081, x, y); break;
+ case 89: r = tex2D(__tex_image_byte4_089, x, y); break;
+ case 97: r = tex2D(__tex_image_byte4_097, x, y); break;
+ case 105: r = tex2D(__tex_image_byte4_105, x, y); break;
+ case 113: r = tex2D(__tex_image_byte4_113, x, y); break;
+ case 121: r = tex2D(__tex_image_byte4_121, x, y); break;
+ case 129: r = tex2D(__tex_image_byte4_129, x, y); break;
+ case 137: r = tex2D(__tex_image_byte4_137, x, y); break;
+ case 145: r = tex2D(__tex_image_byte4_145, x, y); break;
+ case 153: r = tex2D(__tex_image_byte4_153, x, y); break;
+ case 161: r = tex2D(__tex_image_byte4_161, x, y); break;
+ case 169: r = tex2D(__tex_image_byte4_169, x, y); break;
+ case 177: r = tex2D(__tex_image_byte4_177, x, y); break;
+ case 185: r = tex2D(__tex_image_byte4_185, x, y); break;
+ case 193: r = tex2D(__tex_image_byte4_193, x, y); break;
+ case 201: r = tex2D(__tex_image_byte4_201, x, y); break;
+ case 209: r = tex2D(__tex_image_byte4_209, x, y); break;
+ case 217: r = tex2D(__tex_image_byte4_217, x, y); break;
+ case 225: r = tex2D(__tex_image_byte4_225, x, y); break;
+ case 233: r = tex2D(__tex_image_byte4_233, x, y); break;
+ case 241: r = tex2D(__tex_image_byte4_241, x, y); break;
+ case 249: r = tex2D(__tex_image_byte4_249, x, y); break;
+ case 257: r = tex2D(__tex_image_byte4_257, x, y); break;
+ case 265: r = tex2D(__tex_image_byte4_265, x, y); break;
+ case 273: r = tex2D(__tex_image_byte4_273, x, y); break;
+ case 281: r = tex2D(__tex_image_byte4_281, x, y); break;
+ case 289: r = tex2D(__tex_image_byte4_289, x, y); break;
+ case 297: r = tex2D(__tex_image_byte4_297, x, y); break;
+ case 305: r = tex2D(__tex_image_byte4_305, x, y); break;
+ case 313: r = tex2D(__tex_image_byte4_313, x, y); break;
+ case 321: r = tex2D(__tex_image_byte4_321, x, y); break;
+ case 329: r = tex2D(__tex_image_byte4_329, x, y); break;
+ case 337: r = tex2D(__tex_image_byte4_337, x, y); break;
+ case 345: r = tex2D(__tex_image_byte4_345, x, y); break;
+ case 353: r = tex2D(__tex_image_byte4_353, x, y); break;
+ case 361: r = tex2D(__tex_image_byte4_361, x, y); break;
+ case 369: r = tex2D(__tex_image_byte4_369, x, y); break;
+ case 377: r = tex2D(__tex_image_byte4_377, x, y); break;
+ case 385: r = tex2D(__tex_image_byte4_385, x, y); break;
+ case 393: r = tex2D(__tex_image_byte4_393, x, y); break;
+ case 401: r = tex2D(__tex_image_byte4_401, x, y); break;
+ case 409: r = tex2D(__tex_image_byte4_409, x, y); break;
+ case 417: r = tex2D(__tex_image_byte4_417, x, y); break;
+ case 425: r = tex2D(__tex_image_byte4_425, x, y); break;
+ case 433: r = tex2D(__tex_image_byte4_433, x, y); break;
+ case 441: r = tex2D(__tex_image_byte4_441, x, y); break;
+ case 449: r = tex2D(__tex_image_byte4_449, x, y); break;
+ case 457: r = tex2D(__tex_image_byte4_457, x, y); break;
+ case 465: r = tex2D(__tex_image_byte4_465, x, y); break;
+ case 473: r = tex2D(__tex_image_byte4_473, x, y); break;
+ case 481: r = tex2D(__tex_image_byte4_481, x, y); break;
+ case 489: r = tex2D(__tex_image_byte4_489, x, y); break;
+ case 497: r = tex2D(__tex_image_byte4_497, x, y); break;
+ case 505: r = tex2D(__tex_image_byte4_505, x, y); break;
+ case 513: r = tex2D(__tex_image_byte4_513, x, y); break;
+ case 521: r = tex2D(__tex_image_byte4_521, x, y); break;
+ case 529: r = tex2D(__tex_image_byte4_529, x, y); break;
+ case 537: r = tex2D(__tex_image_byte4_537, x, y); break;
+ case 545: r = tex2D(__tex_image_byte4_545, x, y); break;
+ case 553: r = tex2D(__tex_image_byte4_553, x, y); break;
+ case 561: r = tex2D(__tex_image_byte4_561, x, y); break;
+ case 569: r = tex2D(__tex_image_byte4_569, x, y); break;
+ case 577: r = tex2D(__tex_image_byte4_577, x, y); break;
+ case 585: r = tex2D(__tex_image_byte4_585, x, y); break;
+ case 593: r = tex2D(__tex_image_byte4_593, x, y); break;
+ case 601: r = tex2D(__tex_image_byte4_601, x, y); break;
+ case 609: r = tex2D(__tex_image_byte4_609, x, y); break;
+ case 617: r = tex2D(__tex_image_byte4_617, x, y); break;
+ case 625: r = tex2D(__tex_image_byte4_625, x, y); break;
+ case 633: r = tex2D(__tex_image_byte4_633, x, y); break;
+ case 641: r = tex2D(__tex_image_byte4_641, x, y); break;
+ case 649: r = tex2D(__tex_image_byte4_649, x, y); break;
+ case 657: r = tex2D(__tex_image_byte4_657, x, y); break;
+ case 665: r = tex2D(__tex_image_byte4_665, x, y); break;
+ default: r = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ }
+ return r;
+}
+
+ccl_device float4 kernel_tex_image_interp_3d(KernelGlobals *kg, int id, float x, float y, float z, InterpolationType interp)
+{
+ float4 r;
+ switch(id) {
+ case 0: r = tex3D(__tex_image_float4_3d_000, x, y, z); break;
+ case 8: r = tex3D(__tex_image_float4_3d_008, x, y, z); break;
+ case 16: r = tex3D(__tex_image_float4_3d_016, x, y, z); break;
+ case 24: r = tex3D(__tex_image_float4_3d_024, x, y, z); break;
+ case 32: r = tex3D(__tex_image_float4_3d_032, x, y, z); break;
+ }
+ return r;
+}
+
+#endif
+
diff --git a/intern/cycles/kernel/kernels/cuda/kernel_split.cu b/intern/cycles/kernel/kernels/cuda/kernel_split.cu
new file mode 100644
index 00000000000..43b3d0aa0e6
--- /dev/null
+++ b/intern/cycles/kernel/kernels/cuda/kernel_split.cu
@@ -0,0 +1,148 @@
+/*
+ * Copyright 2011-2016 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* CUDA split kernel entry points */
+
+#ifdef __CUDA_ARCH__
+
+#define __SPLIT_KERNEL__
+
+#include "kernel/kernel_compat_cuda.h"
+#include "kernel_config.h"
+
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_data_init.h"
+#include "kernel/split/kernel_path_init.h"
+#include "kernel/split/kernel_scene_intersect.h"
+#include "kernel/split/kernel_lamp_emission.h"
+#include "kernel/split/kernel_do_volume.h"
+#include "kernel/split/kernel_queue_enqueue.h"
+#include "kernel/split/kernel_indirect_background.h"
+#include "kernel/split/kernel_shader_setup.h"
+#include "kernel/split/kernel_shader_sort.h"
+#include "kernel/split/kernel_shader_eval.h"
+#include "kernel/split/kernel_holdout_emission_blurring_pathtermination_ao.h"
+#include "kernel/split/kernel_subsurface_scatter.h"
+#include "kernel/split/kernel_direct_lighting.h"
+#include "kernel/split/kernel_shadow_blocked_ao.h"
+#include "kernel/split/kernel_shadow_blocked_dl.h"
+#include "kernel/split/kernel_enqueue_inactive.h"
+#include "kernel/split/kernel_next_iteration_setup.h"
+#include "kernel/split/kernel_indirect_subsurface.h"
+#include "kernel/split/kernel_buffer_update.h"
+
+#include "kernel/kernel_film.h"
+
+/* kernels */
+extern "C" __global__ void
+CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
+kernel_cuda_state_buffer_size(uint num_threads, uint64_t *size)
+{
+ *size = split_data_buffer_size(NULL, num_threads);
+}
+
+extern "C" __global__ void
+CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
+kernel_cuda_path_trace_data_init(
+ ccl_global void *split_data_buffer,
+ int num_elements,
+ ccl_global char *ray_state,
+ int start_sample,
+ int end_sample,
+ int sx, int sy, int sw, int sh, int offset, int stride,
+ ccl_global int *Queue_index,
+ int queuesize,
+ ccl_global char *use_queues_flag,
+ ccl_global unsigned int *work_pool_wgs,
+ unsigned int num_samples,
+ ccl_global float *buffer)
+{
+ kernel_data_init(NULL,
+ NULL,
+ split_data_buffer,
+ num_elements,
+ ray_state,
+ start_sample,
+ end_sample,
+ sx, sy, sw, sh, offset, stride,
+ Queue_index,
+ queuesize,
+ use_queues_flag,
+ work_pool_wgs,
+ num_samples,
+ buffer);
+}
+
+#define DEFINE_SPLIT_KERNEL_FUNCTION(name) \
+ extern "C" __global__ void \
+ CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_SPLIT_MAX_REGISTERS) \
+ kernel_cuda_##name() \
+ { \
+ kernel_##name(NULL); \
+ }
+
+#define DEFINE_SPLIT_KERNEL_FUNCTION_LOCALS(name, type) \
+ extern "C" __global__ void \
+ CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_SPLIT_MAX_REGISTERS) \
+ kernel_cuda_##name() \
+ { \
+ ccl_local type locals; \
+ kernel_##name(NULL, &locals); \
+ }
+
+DEFINE_SPLIT_KERNEL_FUNCTION(path_init)
+DEFINE_SPLIT_KERNEL_FUNCTION(scene_intersect)
+DEFINE_SPLIT_KERNEL_FUNCTION(lamp_emission)
+DEFINE_SPLIT_KERNEL_FUNCTION(do_volume)
+DEFINE_SPLIT_KERNEL_FUNCTION_LOCALS(queue_enqueue, QueueEnqueueLocals)
+DEFINE_SPLIT_KERNEL_FUNCTION(indirect_background)
+DEFINE_SPLIT_KERNEL_FUNCTION_LOCALS(shader_setup, uint)
+DEFINE_SPLIT_KERNEL_FUNCTION_LOCALS(shader_sort, ShaderSortLocals)
+DEFINE_SPLIT_KERNEL_FUNCTION(shader_eval)
+DEFINE_SPLIT_KERNEL_FUNCTION_LOCALS(holdout_emission_blurring_pathtermination_ao, BackgroundAOLocals)
+DEFINE_SPLIT_KERNEL_FUNCTION(subsurface_scatter)
+DEFINE_SPLIT_KERNEL_FUNCTION_LOCALS(direct_lighting, uint)
+DEFINE_SPLIT_KERNEL_FUNCTION(shadow_blocked_ao)
+DEFINE_SPLIT_KERNEL_FUNCTION(shadow_blocked_dl)
+DEFINE_SPLIT_KERNEL_FUNCTION_LOCALS(enqueue_inactive, uint)
+DEFINE_SPLIT_KERNEL_FUNCTION_LOCALS(next_iteration_setup, uint)
+DEFINE_SPLIT_KERNEL_FUNCTION(indirect_subsurface)
+DEFINE_SPLIT_KERNEL_FUNCTION_LOCALS(buffer_update, uint)
+
+extern "C" __global__ void
+CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
+kernel_cuda_convert_to_byte(uchar4 *rgba, float *buffer, float sample_scale, int sx, int sy, int sw, int sh, int offset, int stride)
+{
+ int x = sx + blockDim.x*blockIdx.x + threadIdx.x;
+ int y = sy + blockDim.y*blockIdx.y + threadIdx.y;
+
+ if(x < sx + sw && y < sy + sh)
+ kernel_film_convert_to_byte(NULL, rgba, buffer, sample_scale, x, y, offset, stride);
+}
+
+extern "C" __global__ void
+CUDA_LAUNCH_BOUNDS(CUDA_THREADS_BLOCK_WIDTH, CUDA_KERNEL_MAX_REGISTERS)
+kernel_cuda_convert_to_half_float(uchar4 *rgba, float *buffer, float sample_scale, int sx, int sy, int sw, int sh, int offset, int stride)
+{
+ int x = sx + blockDim.x*blockIdx.x + threadIdx.x;
+ int y = sy + blockDim.y*blockIdx.y + threadIdx.y;
+
+ if(x < sx + sw && y < sy + sh)
+ kernel_film_convert_to_half_float(NULL, rgba, buffer, sample_scale, x, y, offset, stride);
+}
+
+#endif
+
diff --git a/intern/cycles/kernel/kernels/opencl/filter.cl b/intern/cycles/kernel/kernels/opencl/filter.cl
new file mode 100644
index 00000000000..7a7b596a350
--- /dev/null
+++ b/intern/cycles/kernel/kernels/opencl/filter.cl
@@ -0,0 +1,276 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* OpenCL kernel entry points */
+
+#include "kernel/kernel_compat_opencl.h"
+
+#include "kernel/filter/filter_kernel.h"
+
+/* kernels */
+
+__kernel void kernel_ocl_filter_divide_shadow(int sample,
+ ccl_global TilesInfo *tiles,
+ ccl_global float *unfilteredA,
+ ccl_global float *unfilteredB,
+ ccl_global float *sampleVariance,
+ ccl_global float *sampleVarianceV,
+ ccl_global float *bufferVariance,
+ int4 prefilter_rect,
+ int buffer_pass_stride,
+ int buffer_denoising_offset)
+{
+ int x = prefilter_rect.x + get_global_id(0);
+ int y = prefilter_rect.y + get_global_id(1);
+ if(x < prefilter_rect.z && y < prefilter_rect.w) {
+ kernel_filter_divide_shadow(sample,
+ tiles,
+ x, y,
+ unfilteredA,
+ unfilteredB,
+ sampleVariance,
+ sampleVarianceV,
+ bufferVariance,
+ prefilter_rect,
+ buffer_pass_stride,
+ buffer_denoising_offset);
+ }
+}
+
+__kernel void kernel_ocl_filter_get_feature(int sample,
+ ccl_global TilesInfo *tiles,
+ int m_offset,
+ int v_offset,
+ ccl_global float *mean,
+ ccl_global float *variance,
+ int4 prefilter_rect,
+ int buffer_pass_stride,
+ int buffer_denoising_offset)
+{
+ int x = prefilter_rect.x + get_global_id(0);
+ int y = prefilter_rect.y + get_global_id(1);
+ if(x < prefilter_rect.z && y < prefilter_rect.w) {
+ kernel_filter_get_feature(sample,
+ tiles,
+ m_offset, v_offset,
+ x, y,
+ mean, variance,
+ prefilter_rect,
+ buffer_pass_stride,
+ buffer_denoising_offset);
+ }
+}
+
+__kernel void kernel_ocl_filter_detect_outliers(ccl_global float *image,
+ ccl_global float *variance,
+ ccl_global float *depth,
+ ccl_global float *output,
+ int4 prefilter_rect,
+ int pass_stride)
+{
+ int x = prefilter_rect.x + get_global_id(0);
+ int y = prefilter_rect.y + get_global_id(1);
+ if(x < prefilter_rect.z && y < prefilter_rect.w) {
+ kernel_filter_detect_outliers(x, y, image, variance, depth, output, prefilter_rect, pass_stride);
+ }
+}
+
+__kernel void kernel_ocl_filter_combine_halves(ccl_global float *mean,
+ ccl_global float *variance,
+ ccl_global float *a,
+ ccl_global float *b,
+ int4 prefilter_rect,
+ int r)
+{
+ int x = prefilter_rect.x + get_global_id(0);
+ int y = prefilter_rect.y + get_global_id(1);
+ if(x < prefilter_rect.z && y < prefilter_rect.w) {
+ kernel_filter_combine_halves(x, y, mean, variance, a, b, prefilter_rect, r);
+ }
+}
+
+__kernel void kernel_ocl_filter_construct_transform(const ccl_global float *ccl_restrict buffer,
+ ccl_global float *transform,
+ ccl_global int *rank,
+ int4 filter_area,
+ int4 rect,
+ int pass_stride,
+ int radius,
+ float pca_threshold)
+{
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+ if(x < filter_area.z && y < filter_area.w) {
+ ccl_global int *l_rank = rank + y*filter_area.z + x;
+ ccl_global float *l_transform = transform + y*filter_area.z + x;
+ kernel_filter_construct_transform(buffer,
+ x + filter_area.x, y + filter_area.y,
+ rect, pass_stride,
+ l_transform, l_rank,
+ radius, pca_threshold,
+ filter_area.z*filter_area.w,
+ get_local_id(1)*get_local_size(0) + get_local_id(0));
+ }
+}
+
+__kernel void kernel_ocl_filter_nlm_calc_difference(int dx,
+ int dy,
+ const ccl_global float *ccl_restrict weight_image,
+ const ccl_global float *ccl_restrict variance_image,
+ ccl_global float *difference_image,
+ int4 rect,
+ int w,
+ int channel_offset,
+ float a,
+ float k_2)
+{
+ int x = get_global_id(0) + rect.x;
+ int y = get_global_id(1) + rect.y;
+ if(x < rect.z && y < rect.w) {
+ kernel_filter_nlm_calc_difference(x, y, dx, dy, weight_image, variance_image, difference_image, rect, w, channel_offset, a, k_2);
+ }
+}
+
+__kernel void kernel_ocl_filter_nlm_blur(const ccl_global float *ccl_restrict difference_image,
+ ccl_global float *out_image,
+ int4 rect,
+ int w,
+ int f)
+{
+ int x = get_global_id(0) + rect.x;
+ int y = get_global_id(1) + rect.y;
+ if(x < rect.z && y < rect.w) {
+ kernel_filter_nlm_blur(x, y, difference_image, out_image, rect, w, f);
+ }
+}
+
+__kernel void kernel_ocl_filter_nlm_calc_weight(const ccl_global float *ccl_restrict difference_image,
+ ccl_global float *out_image,
+ int4 rect,
+ int w,
+ int f)
+{
+ int x = get_global_id(0) + rect.x;
+ int y = get_global_id(1) + rect.y;
+ if(x < rect.z && y < rect.w) {
+ kernel_filter_nlm_calc_weight(x, y, difference_image, out_image, rect, w, f);
+ }
+}
+
+__kernel void kernel_ocl_filter_nlm_update_output(int dx,
+ int dy,
+ const ccl_global float *ccl_restrict difference_image,
+ const ccl_global float *ccl_restrict image,
+ ccl_global float *out_image,
+ ccl_global float *accum_image,
+ int4 rect,
+ int w,
+ int f)
+{
+ int x = get_global_id(0) + rect.x;
+ int y = get_global_id(1) + rect.y;
+ if(x < rect.z && y < rect.w) {
+ kernel_filter_nlm_update_output(x, y, dx, dy, difference_image, image, out_image, accum_image, rect, w, f);
+ }
+}
+
+__kernel void kernel_ocl_filter_nlm_normalize(ccl_global float *out_image,
+ const ccl_global float *ccl_restrict accum_image,
+ int4 rect,
+ int w)
+{
+ int x = get_global_id(0) + rect.x;
+ int y = get_global_id(1) + rect.y;
+ if(x < rect.z && y < rect.w) {
+ kernel_filter_nlm_normalize(x, y, out_image, accum_image, rect, w);
+ }
+}
+
+__kernel void kernel_ocl_filter_nlm_construct_gramian(int dx,
+ int dy,
+ const ccl_global float *ccl_restrict difference_image,
+ const ccl_global float *ccl_restrict buffer,
+ const ccl_global float *ccl_restrict transform,
+ ccl_global int *rank,
+ ccl_global float *XtWX,
+ ccl_global float3 *XtWY,
+ int4 rect,
+ int4 filter_rect,
+ int w,
+ int h,
+ int f,
+ int pass_stride)
+{
+ int x = get_global_id(0) + max(0, rect.x-filter_rect.x);
+ int y = get_global_id(1) + max(0, rect.y-filter_rect.y);
+ if(x < min(filter_rect.z, rect.z-filter_rect.x) && y < min(filter_rect.w, rect.w-filter_rect.y)) {
+ kernel_filter_nlm_construct_gramian(x, y,
+ dx, dy,
+ difference_image,
+ buffer,
+ transform, rank,
+ XtWX, XtWY,
+ rect, filter_rect,
+ w, h, f,
+ pass_stride,
+ get_local_id(1)*get_local_size(0) + get_local_id(0));
+ }
+}
+
+__kernel void kernel_ocl_filter_finalize(int w,
+ int h,
+ ccl_global float *buffer,
+ ccl_global int *rank,
+ ccl_global float *XtWX,
+ ccl_global float3 *XtWY,
+ int4 filter_area,
+ int4 buffer_params,
+ int sample)
+{
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+ if(x < filter_area.z && y < filter_area.w) {
+ int storage_ofs = y*filter_area.z+x;
+ rank += storage_ofs;
+ XtWX += storage_ofs;
+ XtWY += storage_ofs;
+ kernel_filter_finalize(x, y, w, h, buffer, rank, filter_area.z*filter_area.w, XtWX, XtWY, buffer_params, sample);
+ }
+}
+
+__kernel void kernel_ocl_filter_set_tiles(ccl_global TilesInfo* tiles,
+ ccl_global float *buffer_1,
+ ccl_global float *buffer_2,
+ ccl_global float *buffer_3,
+ ccl_global float *buffer_4,
+ ccl_global float *buffer_5,
+ ccl_global float *buffer_6,
+ ccl_global float *buffer_7,
+ ccl_global float *buffer_8,
+ ccl_global float *buffer_9)
+{
+ if((get_global_id(0) == 0) && (get_global_id(1) == 0)) {
+ tiles->buffers[0] = buffer_1;
+ tiles->buffers[1] = buffer_2;
+ tiles->buffers[2] = buffer_3;
+ tiles->buffers[3] = buffer_4;
+ tiles->buffers[4] = buffer_5;
+ tiles->buffers[5] = buffer_6;
+ tiles->buffers[6] = buffer_7;
+ tiles->buffers[7] = buffer_8;
+ tiles->buffers[8] = buffer_9;
+ }
+}
diff --git a/intern/cycles/kernel/kernels/opencl/kernel.cl b/intern/cycles/kernel/kernels/opencl/kernel.cl
index a68f97857b6..9d5d784e140 100644
--- a/intern/cycles/kernel/kernels/opencl/kernel.cl
+++ b/intern/cycles/kernel/kernels/opencl/kernel.cl
@@ -16,45 +16,42 @@
/* OpenCL kernel entry points - unfinished */
-#include "../../kernel_compat_opencl.h"
-#include "../../kernel_math.h"
-#include "../../kernel_types.h"
-#include "../../kernel_globals.h"
-#include "../../kernel_image_opencl.h"
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/kernel_math.h"
+#include "kernel/kernel_types.h"
+#include "kernel/kernel_globals.h"
+#include "kernel/kernels/opencl/kernel_opencl_image.h"
-#include "../../kernel_film.h"
+#include "kernel/kernel_film.h"
#if defined(__COMPILE_ONLY_MEGAKERNEL__) || !defined(__NO_BAKING__)
-# include "../../kernel_path.h"
-# include "../../kernel_path_branched.h"
+# include "kernel/kernel_path.h"
+# include "kernel/kernel_path_branched.h"
#else /* __COMPILE_ONLY_MEGAKERNEL__ */
/* Include only actually used headers for the case
* when path tracing kernels are not needed.
*/
-# include "../../kernel_random.h"
-# include "../../kernel_differential.h"
-# include "../../kernel_montecarlo.h"
-# include "../../kernel_projection.h"
-# include "../../geom/geom.h"
-# include "../../bvh/bvh.h"
-
-# include "../../kernel_accumulate.h"
-# include "../../kernel_camera.h"
-# include "../../kernel_shader.h"
+# include "kernel/kernel_random.h"
+# include "kernel/kernel_differential.h"
+# include "kernel/kernel_montecarlo.h"
+# include "kernel/kernel_projection.h"
+# include "kernel/geom/geom.h"
+# include "kernel/bvh/bvh.h"
+
+# include "kernel/kernel_accumulate.h"
+# include "kernel/kernel_camera.h"
+# include "kernel/kernel_shader.h"
#endif /* defined(__COMPILE_ONLY_MEGAKERNEL__) || !defined(__NO_BAKING__) */
-#include "../../kernel_bake.h"
+#include "kernel/kernel_bake.h"
#ifdef __COMPILE_ONLY_MEGAKERNEL__
__kernel void kernel_ocl_path_trace(
ccl_constant KernelData *data,
ccl_global float *buffer,
- ccl_global uint *rng_state,
-#define KERNEL_TEX(type, ttype, name) \
- ccl_global type *name,
-#include "../../kernel_textures.h"
+ KERNEL_BUFFER_PARAMS,
int sample,
int sx, int sy, int sw, int sh, int offset, int stride)
@@ -63,28 +60,24 @@ __kernel void kernel_ocl_path_trace(
kg->data = data;
-#define KERNEL_TEX(type, ttype, name) \
- kg->name = name;
-#include "../../kernel_textures.h"
+ kernel_set_buffer_pointers(kg, KERNEL_BUFFER_ARGS);
+ kernel_set_buffer_info(kg);
- int x = sx + get_global_id(0);
- int y = sy + get_global_id(1);
+ int x = sx + ccl_global_id(0);
+ int y = sy + ccl_global_id(1);
if(x < sx + sw && y < sy + sh)
- kernel_path_trace(kg, buffer, rng_state, sample, x, y, offset, stride);
+ kernel_path_trace(kg, buffer, sample, x, y, offset, stride);
}
#else /* __COMPILE_ONLY_MEGAKERNEL__ */
-__kernel void kernel_ocl_shader(
+__kernel void kernel_ocl_displace(
ccl_constant KernelData *data,
ccl_global uint4 *input,
ccl_global float4 *output,
- ccl_global float *output_luma,
-#define KERNEL_TEX(type, ttype, name) \
- ccl_global type *name,
-#include "../../kernel_textures.h"
+ KERNEL_BUFFER_PARAMS,
int type, int sx, int sw, int offset, int sample)
{
@@ -92,20 +85,35 @@ __kernel void kernel_ocl_shader(
kg->data = data;
-#define KERNEL_TEX(type, ttype, name) \
- kg->name = name;
-#include "../../kernel_textures.h"
+ kernel_set_buffer_pointers(kg, KERNEL_BUFFER_ARGS);
+ kernel_set_buffer_info(kg);
- int x = sx + get_global_id(0);
+ int x = sx + ccl_global_id(0);
if(x < sx + sw) {
- kernel_shader_evaluate(kg,
- input,
- output,
- output_luma,
- (ShaderEvalType)type,
- x,
- sample);
+ kernel_displace_evaluate(kg, input, output, x);
+ }
+}
+__kernel void kernel_ocl_background(
+ ccl_constant KernelData *data,
+ ccl_global uint4 *input,
+ ccl_global float4 *output,
+
+ KERNEL_BUFFER_PARAMS,
+
+ int type, int sx, int sw, int offset, int sample)
+{
+ KernelGlobals kglobals, *kg = &kglobals;
+
+ kg->data = data;
+
+ kernel_set_buffer_pointers(kg, KERNEL_BUFFER_ARGS);
+ kernel_set_buffer_info(kg);
+
+ int x = sx + ccl_global_id(0);
+
+ if(x < sx + sw) {
+ kernel_background_evaluate(kg, input, output, x);
}
}
@@ -114,9 +122,7 @@ __kernel void kernel_ocl_bake(
ccl_global uint4 *input,
ccl_global float4 *output,
-#define KERNEL_TEX(type, ttype, name) \
- ccl_global type *name,
-#include "../../kernel_textures.h"
+ KERNEL_BUFFER_PARAMS,
int type, int filter, int sx, int sw, int offset, int sample)
{
@@ -124,11 +130,10 @@ __kernel void kernel_ocl_bake(
kg->data = data;
-#define KERNEL_TEX(type, ttype, name) \
- kg->name = name;
-#include "../../kernel_textures.h"
+ kernel_set_buffer_pointers(kg, KERNEL_BUFFER_ARGS);
+ kernel_set_buffer_info(kg);
- int x = sx + get_global_id(0);
+ int x = sx + ccl_global_id(0);
if(x < sx + sw) {
#ifdef __NO_BAKING__
@@ -144,9 +149,7 @@ __kernel void kernel_ocl_convert_to_byte(
ccl_global uchar4 *rgba,
ccl_global float *buffer,
-#define KERNEL_TEX(type, ttype, name) \
- ccl_global type *name,
-#include "../../kernel_textures.h"
+ KERNEL_BUFFER_PARAMS,
float sample_scale,
int sx, int sy, int sw, int sh, int offset, int stride)
@@ -155,12 +158,11 @@ __kernel void kernel_ocl_convert_to_byte(
kg->data = data;
-#define KERNEL_TEX(type, ttype, name) \
- kg->name = name;
-#include "../../kernel_textures.h"
+ kernel_set_buffer_pointers(kg, KERNEL_BUFFER_ARGS);
+ kernel_set_buffer_info(kg);
- int x = sx + get_global_id(0);
- int y = sy + get_global_id(1);
+ int x = sx + ccl_global_id(0);
+ int y = sy + ccl_global_id(1);
if(x < sx + sw && y < sy + sh)
kernel_film_convert_to_byte(kg, rgba, buffer, sample_scale, x, y, offset, stride);
@@ -171,9 +173,7 @@ __kernel void kernel_ocl_convert_to_half_float(
ccl_global uchar4 *rgba,
ccl_global float *buffer,
-#define KERNEL_TEX(type, ttype, name) \
- ccl_global type *name,
-#include "../../kernel_textures.h"
+ KERNEL_BUFFER_PARAMS,
float sample_scale,
int sx, int sy, int sw, int sh, int offset, int stride)
@@ -182,15 +182,30 @@ __kernel void kernel_ocl_convert_to_half_float(
kg->data = data;
-#define KERNEL_TEX(type, ttype, name) \
- kg->name = name;
-#include "../../kernel_textures.h"
+ kernel_set_buffer_pointers(kg, KERNEL_BUFFER_ARGS);
+ kernel_set_buffer_info(kg);
- int x = sx + get_global_id(0);
- int y = sy + get_global_id(1);
+ int x = sx + ccl_global_id(0);
+ int y = sy + ccl_global_id(1);
if(x < sx + sw && y < sy + sh)
kernel_film_convert_to_half_float(kg, rgba, buffer, sample_scale, x, y, offset, stride);
}
+__kernel void kernel_ocl_zero_buffer(ccl_global float4 *buffer, uint64_t size, uint64_t offset)
+{
+ size_t i = ccl_global_id(0) + ccl_global_id(1) * ccl_global_size(0);
+
+ if(i < size / sizeof(float4)) {
+ buffer[i+offset/sizeof(float4)] = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ }
+ else if(i == size / sizeof(float4)) {
+ ccl_global uchar *b = (ccl_global uchar*)&buffer[i+offset/sizeof(float4)];
+
+ for(i = 0; i < size % sizeof(float4); i++) {
+ *(b++) = 0;
+ }
+ }
+}
+
#endif /* __COMPILE_ONLY_MEGAKERNEL__ */
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_background_buffer_update.cl b/intern/cycles/kernel/kernels/opencl/kernel_background_buffer_update.cl
deleted file mode 100644
index 1914d241eb1..00000000000
--- a/intern/cycles/kernel/kernels/opencl/kernel_background_buffer_update.cl
+++ /dev/null
@@ -1,125 +0,0 @@
-/*
- * Copyright 2011-2015 Blender Foundation
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "split/kernel_background_buffer_update.h"
-
-__kernel void kernel_ocl_path_trace_background_buffer_update(
- ccl_global char *kg,
- ccl_constant KernelData *data,
- ccl_global float *per_sample_output_buffers,
- ccl_global uint *rng_state,
- ccl_global uint *rng_coop, /* Required for buffer Update */
- ccl_global float3 *throughput_coop, /* Required for background hit processing */
- PathRadiance *PathRadiance_coop, /* Required for background hit processing and buffer Update */
- ccl_global Ray *Ray_coop, /* Required for background hit processing */
- ccl_global PathState *PathState_coop, /* Required for background hit processing */
- ccl_global float *L_transparent_coop, /* Required for background hit processing and buffer Update */
- ccl_global char *ray_state, /* Stores information on the current state of a ray */
- int sw, int sh, int sx, int sy, int stride,
- int rng_state_offset_x,
- int rng_state_offset_y,
- int rng_state_stride,
- ccl_global unsigned int *work_array, /* Denotes work of each ray */
- ccl_global int *Queue_data, /* Queues memory */
- ccl_global int *Queue_index, /* Tracks the number of elements in each queue */
- int queuesize, /* Size (capacity) of each queue */
- int end_sample,
- int start_sample,
-#ifdef __WORK_STEALING__
- ccl_global unsigned int *work_pool_wgs,
- unsigned int num_samples,
-#endif
-#ifdef __KERNEL_DEBUG__
- DebugData *debugdata_coop,
-#endif
- int parallel_samples) /* Number of samples to be processed in parallel */
-{
- ccl_local unsigned int local_queue_atomics;
- if(get_local_id(0) == 0 && get_local_id(1) == 0) {
- local_queue_atomics = 0;
- }
- barrier(CLK_LOCAL_MEM_FENCE);
-
- int ray_index = get_global_id(1) * get_global_size(0) + get_global_id(0);
- if(ray_index == 0) {
- /* We will empty this queue in this kernel. */
- Queue_index[QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS] = 0;
- }
- char enqueue_flag = 0;
- ray_index = get_ray_index(ray_index,
- QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS,
- Queue_data,
- queuesize,
- 1);
-
-#ifdef __COMPUTE_DEVICE_GPU__
- /* If we are executing on a GPU device, we exit all threads that are not
- * required.
- *
- * If we are executing on a CPU device, then we need to keep all threads
- * active since we have barrier() calls later in the kernel. CPU devices,
- * expect all threads to execute barrier statement.
- */
- if(ray_index == QUEUE_EMPTY_SLOT) {
- return;
- }
-#endif
-
-#ifndef __COMPUTE_DEVICE_GPU__
- if(ray_index != QUEUE_EMPTY_SLOT) {
-#endif
- enqueue_flag =
- kernel_background_buffer_update((KernelGlobals *)kg,
- per_sample_output_buffers,
- rng_state,
- rng_coop,
- throughput_coop,
- PathRadiance_coop,
- Ray_coop,
- PathState_coop,
- L_transparent_coop,
- ray_state,
- sw, sh, sx, sy, stride,
- rng_state_offset_x,
- rng_state_offset_y,
- rng_state_stride,
- work_array,
- end_sample,
- start_sample,
-#ifdef __WORK_STEALING__
- work_pool_wgs,
- num_samples,
-#endif
-#ifdef __KERNEL_DEBUG__
- debugdata_coop,
-#endif
- parallel_samples,
- ray_index);
-#ifndef __COMPUTE_DEVICE_GPU__
- }
-#endif
-
- /* Enqueue RAY_REGENERATED rays into QUEUE_ACTIVE_AND_REGENERATED_RAYS;
- * These rays will be made active during next SceneIntersectkernel.
- */
- enqueue_ray_index_local(ray_index,
- QUEUE_ACTIVE_AND_REGENERATED_RAYS,
- enqueue_flag,
- queuesize,
- &local_queue_atomics,
- Queue_data,
- Queue_index);
-}
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_buffer_update.cl b/intern/cycles/kernel/kernels/opencl/kernel_buffer_update.cl
new file mode 100644
index 00000000000..dcea2630aef
--- /dev/null
+++ b/intern/cycles/kernel/kernels/opencl/kernel_buffer_update.cl
@@ -0,0 +1,26 @@
+/*
+ * Copyright 2011-2015 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_buffer_update.h"
+
+#define KERNEL_NAME buffer_update
+#define LOCALS_TYPE unsigned int
+#include "kernel/kernels/opencl/kernel_split_function.h"
+#undef KERNEL_NAME
+#undef LOCALS_TYPE
+
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_data_init.cl b/intern/cycles/kernel/kernels/opencl/kernel_data_init.cl
index 18139687eab..7125348a49f 100644
--- a/intern/cycles/kernel/kernels/opencl/kernel_data_init.cl
+++ b/intern/cycles/kernel/kernels/opencl/kernel_data_init.cl
@@ -14,77 +14,40 @@
* limitations under the License.
*/
-#include "split/kernel_data_init.h"
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_data_init.h"
__kernel void kernel_ocl_path_trace_data_init(
- ccl_global char *globals,
- ccl_global char *sd_DL_shadow,
+ ccl_global char *kg,
ccl_constant KernelData *data,
- ccl_global float *per_sample_output_buffers,
- ccl_global uint *rng_state,
- ccl_global uint *rng_coop, /* rng array to store rng values for all rays */
- ccl_global float3 *throughput_coop, /* throughput array to store throughput values for all rays */
- ccl_global float *L_transparent_coop, /* L_transparent array to store L_transparent values for all rays */
- PathRadiance *PathRadiance_coop, /* PathRadiance array to store PathRadiance values for all rays */
- ccl_global Ray *Ray_coop, /* Ray array to store Ray information for all rays */
- ccl_global PathState *PathState_coop, /* PathState array to store PathState information for all rays */
- Intersection *Intersection_coop_shadow,
- ccl_global char *ray_state, /* Stores information on current state of a ray */
-
-#define KERNEL_TEX(type, ttype, name) \
- ccl_global type *name,
-#include "../../kernel_textures.h"
-
- int start_sample, int sx, int sy, int sw, int sh, int offset, int stride,
- int rng_state_offset_x,
- int rng_state_offset_y,
- int rng_state_stride,
- ccl_global int *Queue_data, /* Memory for queues */
+ ccl_global void *split_data_buffer,
+ int num_elements,
+ ccl_global char *ray_state,
+ KERNEL_BUFFER_PARAMS,
+ int start_sample,
+ int end_sample,
+ int sx, int sy, int sw, int sh, int offset, int stride,
ccl_global int *Queue_index, /* Tracks the number of elements in queues */
int queuesize, /* size (capacity) of the queue */
ccl_global char *use_queues_flag, /* flag to decide if scene-intersect kernel should use queues to fetch ray index */
- ccl_global unsigned int *work_array, /* work array to store which work each ray belongs to */
-#ifdef __WORK_STEALING__
ccl_global unsigned int *work_pool_wgs, /* Work pool for each work group */
unsigned int num_samples, /* Total number of samples per pixel */
-#endif
-#ifdef __KERNEL_DEBUG__
- DebugData *debugdata_coop,
-#endif
- int parallel_samples) /* Number of samples to be processed in parallel */
+ ccl_global float *buffer)
{
- kernel_data_init((KernelGlobals *)globals,
- (ShaderData *)sd_DL_shadow,
+ kernel_data_init((KernelGlobals*)kg,
data,
- per_sample_output_buffers,
- rng_state,
- rng_coop,
- throughput_coop,
- L_transparent_coop,
- PathRadiance_coop,
- Ray_coop,
- PathState_coop,
- Intersection_coop_shadow,
+ split_data_buffer,
+ num_elements,
ray_state,
-
-#define KERNEL_TEX(type, ttype, name) name,
-#include "../../kernel_textures.h"
-
- start_sample, sx, sy, sw, sh, offset, stride,
- rng_state_offset_x,
- rng_state_offset_y,
- rng_state_stride,
- Queue_data,
+ KERNEL_BUFFER_ARGS,
+ start_sample,
+ end_sample,
+ sx, sy, sw, sh, offset, stride,
Queue_index,
queuesize,
use_queues_flag,
- work_array,
-#ifdef __WORK_STEALING__
work_pool_wgs,
num_samples,
-#endif
-#ifdef __KERNEL_DEBUG__
- debugdata_coop,
-#endif
- parallel_samples);
+ buffer);
}
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_direct_lighting.cl b/intern/cycles/kernel/kernels/opencl/kernel_direct_lighting.cl
index c6a2c8d050c..ed64ae01aae 100644
--- a/intern/cycles/kernel/kernels/opencl/kernel_direct_lighting.cl
+++ b/intern/cycles/kernel/kernels/opencl/kernel_direct_lighting.cl
@@ -14,74 +14,13 @@
* limitations under the License.
*/
-#include "split/kernel_direct_lighting.h"
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_direct_lighting.h"
-__kernel void kernel_ocl_path_trace_direct_lighting(
- ccl_global char *kg,
- ccl_constant KernelData *data,
- ccl_global char *sd, /* Required for direct lighting */
- ccl_global uint *rng_coop, /* Required for direct lighting */
- ccl_global PathState *PathState_coop, /* Required for direct lighting */
- ccl_global int *ISLamp_coop, /* Required for direct lighting */
- ccl_global Ray *LightRay_coop, /* Required for direct lighting */
- ccl_global BsdfEval *BSDFEval_coop, /* Required for direct lighting */
- ccl_global char *ray_state, /* Denotes the state of each ray */
- ccl_global int *Queue_data, /* Queue memory */
- ccl_global int *Queue_index, /* Tracks the number of elements in each queue */
- int queuesize) /* Size (capacity) of each queue */
-{
- ccl_local unsigned int local_queue_atomics;
- if(get_local_id(0) == 0 && get_local_id(1) == 0) {
- local_queue_atomics = 0;
- }
- barrier(CLK_LOCAL_MEM_FENCE);
+#define KERNEL_NAME direct_lighting
+#define LOCALS_TYPE unsigned int
+#include "kernel/kernels/opencl/kernel_split_function.h"
+#undef KERNEL_NAME
+#undef LOCALS_TYPE
- char enqueue_flag = 0;
- int ray_index = get_global_id(1) * get_global_size(0) + get_global_id(0);
- ray_index = get_ray_index(ray_index,
- QUEUE_ACTIVE_AND_REGENERATED_RAYS,
- Queue_data,
- queuesize,
- 0);
-
-#ifdef __COMPUTE_DEVICE_GPU__
- /* If we are executing on a GPU device, we exit all threads that are not
- * required.
- *
- * If we are executing on a CPU device, then we need to keep all threads
- * active since we have barrier() calls later in the kernel. CPU devices,
- * expect all threads to execute barrier statement.
- */
- if(ray_index == QUEUE_EMPTY_SLOT) {
- return;
- }
-#endif
-
-#ifndef __COMPUTE_DEVICE_GPU__
- if(ray_index != QUEUE_EMPTY_SLOT) {
-#endif
- enqueue_flag = kernel_direct_lighting((KernelGlobals *)kg,
- (ShaderData *)sd,
- rng_coop,
- PathState_coop,
- ISLamp_coop,
- LightRay_coop,
- BSDFEval_coop,
- ray_state,
- ray_index);
-
-#ifndef __COMPUTE_DEVICE_GPU__
- }
-#endif
-
-#ifdef __EMISSION__
- /* Enqueue RAY_SHADOW_RAY_CAST_DL rays. */
- enqueue_ray_index_local(ray_index,
- QUEUE_SHADOW_RAY_CAST_DL_RAYS,
- enqueue_flag,
- queuesize,
- &local_queue_atomics,
- Queue_data,
- Queue_index);
-#endif
-}
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_do_volume.cl b/intern/cycles/kernel/kernels/opencl/kernel_do_volume.cl
new file mode 100644
index 00000000000..8afaa686e28
--- /dev/null
+++ b/intern/cycles/kernel/kernels/opencl/kernel_do_volume.cl
@@ -0,0 +1,24 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_do_volume.h"
+
+#define KERNEL_NAME do_volume
+#include "kernel/kernels/opencl/kernel_split_function.h"
+#undef KERNEL_NAME
+
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_enqueue_inactive.cl b/intern/cycles/kernel/kernels/opencl/kernel_enqueue_inactive.cl
new file mode 100644
index 00000000000..e68d4104a91
--- /dev/null
+++ b/intern/cycles/kernel/kernels/opencl/kernel_enqueue_inactive.cl
@@ -0,0 +1,26 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_enqueue_inactive.h"
+
+#define KERNEL_NAME enqueue_inactive
+#define LOCALS_TYPE unsigned int
+#include "kernel/kernels/opencl/kernel_split_function.h"
+#undef KERNEL_NAME
+#undef LOCALS_TYPE
+
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_holdout_emission_blurring_pathtermination_ao.cl b/intern/cycles/kernel/kernels/opencl/kernel_holdout_emission_blurring_pathtermination_ao.cl
index e063614da1a..9e1e57beba6 100644
--- a/intern/cycles/kernel/kernels/opencl/kernel_holdout_emission_blurring_pathtermination_ao.cl
+++ b/intern/cycles/kernel/kernels/opencl/kernel_holdout_emission_blurring_pathtermination_ao.cl
@@ -14,110 +14,13 @@
* limitations under the License.
*/
-#include "split/kernel_holdout_emission_blurring_pathtermination_ao.h"
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_holdout_emission_blurring_pathtermination_ao.h"
-__kernel void kernel_ocl_path_trace_holdout_emission_blurring_pathtermination_ao(
- ccl_global char *kg,
- ccl_constant KernelData *data,
- ccl_global char *sd, /* Required throughout the kernel except probabilistic path termination and AO */
- ccl_global float *per_sample_output_buffers,
- ccl_global uint *rng_coop, /* Required for "kernel_write_data_passes" and AO */
- ccl_global float3 *throughput_coop, /* Required for handling holdout material and AO */
- ccl_global float *L_transparent_coop, /* Required for handling holdout material */
- PathRadiance *PathRadiance_coop, /* Required for "kernel_write_data_passes" and indirect primitive emission */
- ccl_global PathState *PathState_coop, /* Required throughout the kernel and AO */
- Intersection *Intersection_coop, /* Required for indirect primitive emission */
- ccl_global float3 *AOAlpha_coop, /* Required for AO */
- ccl_global float3 *AOBSDF_coop, /* Required for AO */
- ccl_global Ray *AOLightRay_coop, /* Required for AO */
- int sw, int sh, int sx, int sy, int stride,
- ccl_global char *ray_state, /* Denotes the state of each ray */
- ccl_global unsigned int *work_array, /* Denotes the work that each ray belongs to */
- ccl_global int *Queue_data, /* Queue memory */
- ccl_global int *Queue_index, /* Tracks the number of elements in each queue */
- int queuesize, /* Size (capacity) of each queue */
-#ifdef __WORK_STEALING__
- unsigned int start_sample,
-#endif
- int parallel_samples) /* Number of samples to be processed in parallel */
-{
- ccl_local unsigned int local_queue_atomics_bg;
- ccl_local unsigned int local_queue_atomics_ao;
- if(get_local_id(0) == 0 && get_local_id(1) == 0) {
- local_queue_atomics_bg = 0;
- local_queue_atomics_ao = 0;
- }
- barrier(CLK_LOCAL_MEM_FENCE);
+#define KERNEL_NAME holdout_emission_blurring_pathtermination_ao
+#define LOCALS_TYPE BackgroundAOLocals
+#include "kernel/kernels/opencl/kernel_split_function.h"
+#undef KERNEL_NAME
+#undef LOCALS_TYPE
- char enqueue_flag = 0;
- char enqueue_flag_AO_SHADOW_RAY_CAST = 0;
- int ray_index = get_global_id(1) * get_global_size(0) + get_global_id(0);
- ray_index = get_ray_index(ray_index,
- QUEUE_ACTIVE_AND_REGENERATED_RAYS,
- Queue_data,
- queuesize,
- 0);
-
-#ifdef __COMPUTE_DEVICE_GPU__
- /* If we are executing on a GPU device, we exit all threads that are not
- * required.
- *
- * If we are executing on a CPU device, then we need to keep all threads
- * active since we have barrier() calls later in the kernel. CPU devices,
- * expect all threads to execute barrier statement.
- */
- if(ray_index == QUEUE_EMPTY_SLOT) {
- return;
- }
-#endif /* __COMPUTE_DEVICE_GPU__ */
-
-#ifndef __COMPUTE_DEVICE_GPU__
- if(ray_index != QUEUE_EMPTY_SLOT) {
-#endif
- kernel_holdout_emission_blurring_pathtermination_ao(
- (KernelGlobals *)kg,
- (ShaderData *)sd,
- per_sample_output_buffers,
- rng_coop,
- throughput_coop,
- L_transparent_coop,
- PathRadiance_coop,
- PathState_coop,
- Intersection_coop,
- AOAlpha_coop,
- AOBSDF_coop,
- AOLightRay_coop,
- sw, sh, sx, sy, stride,
- ray_state,
- work_array,
-#ifdef __WORK_STEALING__
- start_sample,
-#endif
- parallel_samples,
- ray_index,
- &enqueue_flag,
- &enqueue_flag_AO_SHADOW_RAY_CAST);
-#ifndef __COMPUTE_DEVICE_GPU__
- }
-#endif
-
- /* Enqueue RAY_UPDATE_BUFFER rays. */
- enqueue_ray_index_local(ray_index,
- QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS,
- enqueue_flag,
- queuesize,
- &local_queue_atomics_bg,
- Queue_data,
- Queue_index);
-
-#ifdef __AO__
- /* Enqueue to-shadow-ray-cast rays. */
- enqueue_ray_index_local(ray_index,
- QUEUE_SHADOW_RAY_CAST_AO_RAYS,
- enqueue_flag_AO_SHADOW_RAY_CAST,
- queuesize,
- &local_queue_atomics_ao,
- Queue_data,
- Queue_index);
-#endif
-}
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_indirect_background.cl b/intern/cycles/kernel/kernels/opencl/kernel_indirect_background.cl
new file mode 100644
index 00000000000..192d01444ba
--- /dev/null
+++ b/intern/cycles/kernel/kernels/opencl/kernel_indirect_background.cl
@@ -0,0 +1,24 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_indirect_background.h"
+
+#define KERNEL_NAME indirect_background
+#include "kernel/kernels/opencl/kernel_split_function.h"
+#undef KERNEL_NAME
+
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_indirect_subsurface.cl b/intern/cycles/kernel/kernels/opencl/kernel_indirect_subsurface.cl
new file mode 100644
index 00000000000..84938b889e5
--- /dev/null
+++ b/intern/cycles/kernel/kernels/opencl/kernel_indirect_subsurface.cl
@@ -0,0 +1,24 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_indirect_subsurface.h"
+
+#define KERNEL_NAME indirect_subsurface
+#include "kernel/kernels/opencl/kernel_split_function.h"
+#undef KERNEL_NAME
+
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_lamp_emission.cl b/intern/cycles/kernel/kernels/opencl/kernel_lamp_emission.cl
index 267bddc2ffc..c314dc96c33 100644
--- a/intern/cycles/kernel/kernels/opencl/kernel_lamp_emission.cl
+++ b/intern/cycles/kernel/kernels/opencl/kernel_lamp_emission.cl
@@ -14,67 +14,11 @@
* limitations under the License.
*/
-#include "split/kernel_lamp_emission.h"
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_lamp_emission.h"
-__kernel void kernel_ocl_path_trace_lamp_emission(
- ccl_global char *kg,
- ccl_constant KernelData *data,
- ccl_global float3 *throughput_coop, /* Required for lamp emission */
- PathRadiance *PathRadiance_coop, /* Required for lamp emission */
- ccl_global Ray *Ray_coop, /* Required for lamp emission */
- ccl_global PathState *PathState_coop, /* Required for lamp emission */
- Intersection *Intersection_coop, /* Required for lamp emission */
- ccl_global char *ray_state, /* Denotes the state of each ray */
- int sw, int sh,
- ccl_global int *Queue_data, /* Memory for queues */
- ccl_global int *Queue_index, /* Tracks the number of elements in queues */
- int queuesize, /* Size (capacity) of queues */
- ccl_global char *use_queues_flag, /* Used to decide if this kernel should use
- * queues to fetch ray index
- */
- int parallel_samples) /* Number of samples to be processed in parallel */
-{
- int x = get_global_id(0);
- int y = get_global_id(1);
+#define KERNEL_NAME lamp_emission
+#include "kernel/kernels/opencl/kernel_split_function.h"
+#undef KERNEL_NAME
- /* We will empty this queue in this kernel. */
- if(get_global_id(0) == 0 && get_global_id(1) == 0) {
- Queue_index[QUEUE_ACTIVE_AND_REGENERATED_RAYS] = 0;
- }
- /* Fetch use_queues_flag. */
- ccl_local char local_use_queues_flag;
- if(get_local_id(0) == 0 && get_local_id(1) == 0) {
- local_use_queues_flag = use_queues_flag[0];
- }
- barrier(CLK_LOCAL_MEM_FENCE);
-
- int ray_index;
- if(local_use_queues_flag) {
- int thread_index = get_global_id(1) * get_global_size(0) + get_global_id(0);
- ray_index = get_ray_index(thread_index,
- QUEUE_ACTIVE_AND_REGENERATED_RAYS,
- Queue_data,
- queuesize,
- 1);
- if(ray_index == QUEUE_EMPTY_SLOT) {
- return;
- }
- } else {
- if(x < (sw * parallel_samples) && y < sh) {
- ray_index = x + y * (sw * parallel_samples);
- } else {
- return;
- }
- }
-
- kernel_lamp_emission((KernelGlobals *)kg,
- throughput_coop,
- PathRadiance_coop,
- Ray_coop,
- PathState_coop,
- Intersection_coop,
- ray_state,
- sw, sh,
- use_queues_flag,
- ray_index);
-}
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_next_iteration_setup.cl b/intern/cycles/kernel/kernels/opencl/kernel_next_iteration_setup.cl
index 6d49b6294a8..8b1332bf013 100644
--- a/intern/cycles/kernel/kernels/opencl/kernel_next_iteration_setup.cl
+++ b/intern/cycles/kernel/kernels/opencl/kernel_next_iteration_setup.cl
@@ -14,101 +14,13 @@
* limitations under the License.
*/
-#include "split/kernel_next_iteration_setup.h"
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_next_iteration_setup.h"
-__kernel void kernel_ocl_path_trace_next_iteration_setup(
- ccl_global char *kg,
- ccl_constant KernelData *data,
- ccl_global char *sd, /* Required for setting up ray for next iteration */
- ccl_global uint *rng_coop, /* Required for setting up ray for next iteration */
- ccl_global float3 *throughput_coop, /* Required for setting up ray for next iteration */
- PathRadiance *PathRadiance_coop, /* Required for setting up ray for next iteration */
- ccl_global Ray *Ray_coop, /* Required for setting up ray for next iteration */
- ccl_global PathState *PathState_coop, /* Required for setting up ray for next iteration */
- ccl_global Ray *LightRay_dl_coop, /* Required for radiance update - direct lighting */
- ccl_global int *ISLamp_coop, /* Required for radiance update - direct lighting */
- ccl_global BsdfEval *BSDFEval_coop, /* Required for radiance update - direct lighting */
- ccl_global Ray *LightRay_ao_coop, /* Required for radiance update - AO */
- ccl_global float3 *AOBSDF_coop, /* Required for radiance update - AO */
- ccl_global float3 *AOAlpha_coop, /* Required for radiance update - AO */
- ccl_global char *ray_state, /* Denotes the state of each ray */
- ccl_global int *Queue_data, /* Queue memory */
- ccl_global int *Queue_index, /* Tracks the number of elements in each queue */
- int queuesize, /* Size (capacity) of each queue */
- ccl_global char *use_queues_flag) /* flag to decide if scene_intersect kernel should
- * use queues to fetch ray index */
-{
- ccl_local unsigned int local_queue_atomics;
- if(get_local_id(0) == 0 && get_local_id(1) == 0) {
- local_queue_atomics = 0;
- }
- barrier(CLK_LOCAL_MEM_FENCE);
+#define KERNEL_NAME next_iteration_setup
+#define LOCALS_TYPE unsigned int
+#include "kernel/kernels/opencl/kernel_split_function.h"
+#undef KERNEL_NAME
+#undef LOCALS_TYPE
- if(get_global_id(0) == 0 && get_global_id(1) == 0) {
- /* If we are here, then it means that scene-intersect kernel
- * has already been executed atleast once. From the next time,
- * scene-intersect kernel may operate on queues to fetch ray index
- */
- use_queues_flag[0] = 1;
-
- /* Mark queue indices of QUEUE_SHADOW_RAY_CAST_AO_RAYS and
- * QUEUE_SHADOW_RAY_CAST_DL_RAYS queues that were made empty during the
- * previous kernel.
- */
- Queue_index[QUEUE_SHADOW_RAY_CAST_AO_RAYS] = 0;
- Queue_index[QUEUE_SHADOW_RAY_CAST_DL_RAYS] = 0;
- }
-
- char enqueue_flag = 0;
- int ray_index = get_global_id(1) * get_global_size(0) + get_global_id(0);
- ray_index = get_ray_index(ray_index,
- QUEUE_ACTIVE_AND_REGENERATED_RAYS,
- Queue_data,
- queuesize,
- 0);
-
-#ifdef __COMPUTE_DEVICE_GPU__
- /* If we are executing on a GPU device, we exit all threads that are not
- * required.
- *
- * If we are executing on a CPU device, then we need to keep all threads
- * active since we have barrier() calls later in the kernel. CPU devices,
- * expect all threads to execute barrier statement.
- */
- if(ray_index == QUEUE_EMPTY_SLOT) {
- return;
- }
-#endif
-
-#ifndef __COMPUTE_DEVICE_GPU__
- if(ray_index != QUEUE_EMPTY_SLOT) {
-#endif
- enqueue_flag = kernel_next_iteration_setup((KernelGlobals *)kg,
- (ShaderData *)sd,
- rng_coop,
- throughput_coop,
- PathRadiance_coop,
- Ray_coop,
- PathState_coop,
- LightRay_dl_coop,
- ISLamp_coop,
- BSDFEval_coop,
- LightRay_ao_coop,
- AOBSDF_coop,
- AOAlpha_coop,
- ray_state,
- use_queues_flag,
- ray_index);
-#ifndef __COMPUTE_DEVICE_GPU__
- }
-#endif
-
- /* Enqueue RAY_UPDATE_BUFFER rays. */
- enqueue_ray_index_local(ray_index,
- QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS,
- enqueue_flag,
- queuesize,
- &local_queue_atomics,
- Queue_data,
- Queue_index);
-}
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_opencl_image.h b/intern/cycles/kernel/kernels/opencl/kernel_opencl_image.h
new file mode 100644
index 00000000000..d908af78c7a
--- /dev/null
+++ b/intern/cycles/kernel/kernels/opencl/kernel_opencl_image.h
@@ -0,0 +1,341 @@
+/*
+ * Copyright 2016 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* For OpenCL we do manual lookup and interpolation. */
+
+ccl_device_inline ccl_global TextureInfo* kernel_tex_info(KernelGlobals *kg, uint id) {
+ const uint tex_offset = id
+#define KERNEL_TEX(type, name) + 1
+#include "kernel/kernel_textures.h"
+ ;
+
+ return &((ccl_global TextureInfo*)kg->buffers[0])[tex_offset];
+}
+
+#define tex_fetch(type, info, index) ((ccl_global type*)(kg->buffers[info->cl_buffer] + info->data))[(index)]
+
+ccl_device_inline float4 svm_image_texture_read(KernelGlobals *kg, int id, int offset)
+{
+ const ccl_global TextureInfo *info = kernel_tex_info(kg, id);
+ const int texture_type = kernel_tex_type(id);
+
+ /* Float4 */
+ if(texture_type == IMAGE_DATA_TYPE_FLOAT4) {
+ return tex_fetch(float4, info, offset);
+ }
+ /* Byte4 */
+ else if(texture_type == IMAGE_DATA_TYPE_BYTE4) {
+ uchar4 r = tex_fetch(uchar4, info, offset);
+ float f = 1.0f/255.0f;
+ return make_float4(r.x*f, r.y*f, r.z*f, r.w*f);
+ }
+ /* Float */
+ else if(texture_type == IMAGE_DATA_TYPE_FLOAT) {
+ float f = tex_fetch(float, info, offset);
+ return make_float4(f, f, f, 1.0f);
+ }
+ /* Byte */
+ else {
+ uchar r = tex_fetch(uchar, info, offset);
+ float f = r * (1.0f/255.0f);
+ return make_float4(f, f, f, 1.0f);
+ }
+}
+
+ccl_device_inline int svm_image_texture_wrap_periodic(int x, int width)
+{
+ x %= width;
+ if(x < 0)
+ x += width;
+ return x;
+}
+
+ccl_device_inline int svm_image_texture_wrap_clamp(int x, int width)
+{
+ return clamp(x, 0, width-1);
+}
+
+ccl_device_inline float svm_image_texture_frac(float x, int *ix)
+{
+ int i = float_to_int(x) - ((x < 0.0f)? 1: 0);
+ *ix = i;
+ return x - (float)i;
+}
+
+#define SET_CUBIC_SPLINE_WEIGHTS(u, t) \
+ { \
+ u[0] = (((-1.0f/6.0f)* t + 0.5f) * t - 0.5f) * t + (1.0f/6.0f); \
+ u[1] = (( 0.5f * t - 1.0f) * t ) * t + (2.0f/3.0f); \
+ u[2] = (( -0.5f * t + 0.5f) * t + 0.5f) * t + (1.0f/6.0f); \
+ u[3] = (1.0f / 6.0f) * t * t * t; \
+ } (void)0
+
+ccl_device float4 kernel_tex_image_interp(KernelGlobals *kg, int id, float x, float y)
+{
+ const ccl_global TextureInfo *info = kernel_tex_info(kg, id);
+
+ uint width = info->width;
+ uint height = info->height;
+ uint interpolation = info->interpolation;
+ uint extension = info->extension;
+
+ /* Actual sampling. */
+ if(interpolation == INTERPOLATION_CLOSEST) {
+ int ix, iy;
+ svm_image_texture_frac(x*width, &ix);
+ svm_image_texture_frac(y*height, &iy);
+
+ if(extension == EXTENSION_REPEAT) {
+ ix = svm_image_texture_wrap_periodic(ix, width);
+ iy = svm_image_texture_wrap_periodic(iy, height);
+ }
+ else {
+ if(extension == EXTENSION_CLIP) {
+ if(x < 0.0f || y < 0.0f || x > 1.0f || y > 1.0f) {
+ return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ }
+ }
+ /* Fall through. */
+ /* EXTENSION_EXTEND */
+ ix = svm_image_texture_wrap_clamp(ix, width);
+ iy = svm_image_texture_wrap_clamp(iy, height);
+ }
+
+ return svm_image_texture_read(kg, id, ix + iy*width);
+ }
+ else {
+ /* Bilinear or bicubic interpolation. */
+ int ix, iy, nix, niy;
+ float tx = svm_image_texture_frac(x*width - 0.5f, &ix);
+ float ty = svm_image_texture_frac(y*height - 0.5f, &iy);
+
+ if(extension == EXTENSION_REPEAT) {
+ ix = svm_image_texture_wrap_periodic(ix, width);
+ iy = svm_image_texture_wrap_periodic(iy, height);
+ nix = svm_image_texture_wrap_periodic(ix+1, width);
+ niy = svm_image_texture_wrap_periodic(iy+1, height);
+ }
+ else {
+ if(extension == EXTENSION_CLIP) {
+ if(x < 0.0f || y < 0.0f || x > 1.0f || y > 1.0f) {
+ return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ }
+ }
+ ix = svm_image_texture_wrap_clamp(ix, width);
+ iy = svm_image_texture_wrap_clamp(iy, height);
+ nix = svm_image_texture_wrap_clamp(ix+1, width);
+ niy = svm_image_texture_wrap_clamp(iy+1, height);
+ }
+
+ if(interpolation == INTERPOLATION_LINEAR) {
+ /* Bilinear interpolation. */
+ float4 r;
+ r = (1.0f - ty)*(1.0f - tx)*svm_image_texture_read(kg, id, ix + iy*width);
+ r += (1.0f - ty)*tx*svm_image_texture_read(kg, id, nix + iy*width);
+ r += ty*(1.0f - tx)*svm_image_texture_read(kg, id, ix + niy*width);
+ r += ty*tx*svm_image_texture_read(kg, id, nix + niy*width);
+ return r;
+ }
+
+ /* Bicubic interpolation. */
+ int pix, piy, nnix, nniy;
+ if(extension == EXTENSION_REPEAT) {
+ pix = svm_image_texture_wrap_periodic(ix-1, width);
+ piy = svm_image_texture_wrap_periodic(iy-1, height);
+ nnix = svm_image_texture_wrap_periodic(ix+2, width);
+ nniy = svm_image_texture_wrap_periodic(iy+2, height);
+ }
+ else {
+ pix = svm_image_texture_wrap_clamp(ix-1, width);
+ piy = svm_image_texture_wrap_clamp(iy-1, height);
+ nnix = svm_image_texture_wrap_clamp(ix+2, width);
+ nniy = svm_image_texture_wrap_clamp(iy+2, height);
+ }
+
+ const int xc[4] = {pix, ix, nix, nnix};
+ const int yc[4] = {width * piy,
+ width * iy,
+ width * niy,
+ width * nniy};
+ float u[4], v[4];
+ /* Some helper macro to keep code reasonable size,
+ * let compiler to inline all the matrix multiplications.
+ */
+#define DATA(x, y) (svm_image_texture_read(kg, id, xc[x] + yc[y]))
+#define TERM(col) \
+ (v[col] * (u[0] * DATA(0, col) + \
+ u[1] * DATA(1, col) + \
+ u[2] * DATA(2, col) + \
+ u[3] * DATA(3, col)))
+
+ SET_CUBIC_SPLINE_WEIGHTS(u, tx);
+ SET_CUBIC_SPLINE_WEIGHTS(v, ty);
+
+ /* Actual interpolation. */
+ return TERM(0) + TERM(1) + TERM(2) + TERM(3);
+#undef TERM
+#undef DATA
+ }
+}
+
+
+ccl_device float4 kernel_tex_image_interp_3d(KernelGlobals *kg, int id, float x, float y, float z, int interp)
+{
+ const ccl_global TextureInfo *info = kernel_tex_info(kg, id);
+
+ uint width = info->width;
+ uint height = info->height;
+ uint depth = info->depth;
+ uint interpolation = (interp == INTERPOLATION_NONE)? info->interpolation: interp;
+ uint extension = info->extension;
+
+ /* Actual sampling. */
+ if(interpolation == INTERPOLATION_CLOSEST) {
+ int ix, iy, iz;
+ svm_image_texture_frac(x*width, &ix);
+ svm_image_texture_frac(y*height, &iy);
+ svm_image_texture_frac(z*depth, &iz);
+
+ if(extension == EXTENSION_REPEAT) {
+ ix = svm_image_texture_wrap_periodic(ix, width);
+ iy = svm_image_texture_wrap_periodic(iy, height);
+ iz = svm_image_texture_wrap_periodic(iz, depth);
+ }
+ else {
+ if(extension == EXTENSION_CLIP) {
+ if(x < 0.0f || y < 0.0f || z < 0.0f ||
+ x > 1.0f || y > 1.0f || z > 1.0f)
+ {
+ return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ }
+ }
+ /* Fall through. */
+ /* EXTENSION_EXTEND */
+ ix = svm_image_texture_wrap_clamp(ix, width);
+ iy = svm_image_texture_wrap_clamp(iy, height);
+ iz = svm_image_texture_wrap_clamp(iz, depth);
+ }
+ return svm_image_texture_read(kg, id, ix + iy*width + iz*width*height);
+ }
+ else {
+ /* Bilinear or bicubic interpolation. */
+ int ix, iy, iz, nix, niy, niz;
+ float tx = svm_image_texture_frac(x*(float)width - 0.5f, &ix);
+ float ty = svm_image_texture_frac(y*(float)height - 0.5f, &iy);
+ float tz = svm_image_texture_frac(z*(float)depth - 0.5f, &iz);
+
+ if(extension == EXTENSION_REPEAT) {
+ ix = svm_image_texture_wrap_periodic(ix, width);
+ iy = svm_image_texture_wrap_periodic(iy, height);
+ iz = svm_image_texture_wrap_periodic(iz, depth);
+
+ nix = svm_image_texture_wrap_periodic(ix+1, width);
+ niy = svm_image_texture_wrap_periodic(iy+1, height);
+ niz = svm_image_texture_wrap_periodic(iz+1, depth);
+ }
+ else {
+ if(extension == EXTENSION_CLIP) {
+ if(x < 0.0f || y < 0.0f || z < 0.0f ||
+ x > 1.0f || y > 1.0f || z > 1.0f)
+ {
+ return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
+ }
+ }
+ /* Fall through. */
+ /* EXTENSION_EXTEND */
+ nix = svm_image_texture_wrap_clamp(ix+1, width);
+ niy = svm_image_texture_wrap_clamp(iy+1, height);
+ niz = svm_image_texture_wrap_clamp(iz+1, depth);
+
+ ix = svm_image_texture_wrap_clamp(ix, width);
+ iy = svm_image_texture_wrap_clamp(iy, height);
+ iz = svm_image_texture_wrap_clamp(iz, depth);
+ }
+
+ if(interpolation == INTERPOLATION_LINEAR) {
+ /* Bilinear interpolation. */
+ float4 r;
+ r = (1.0f - tz)*(1.0f - ty)*(1.0f - tx)*svm_image_texture_read(kg, id, ix + iy*width + iz*width*height);
+ r += (1.0f - tz)*(1.0f - ty)*tx*svm_image_texture_read(kg, id, nix + iy*width + iz*width*height);
+ r += (1.0f - tz)*ty*(1.0f - tx)*svm_image_texture_read(kg, id, ix + niy*width + iz*width*height);
+ r += (1.0f - tz)*ty*tx*svm_image_texture_read(kg, id, nix + niy*width + iz*width*height);
+
+ r += tz*(1.0f - ty)*(1.0f - tx)*svm_image_texture_read(kg, id, ix + iy*width + niz*width*height);
+ r += tz*(1.0f - ty)*tx*svm_image_texture_read(kg, id, nix + iy*width + niz*width*height);
+ r += tz*ty*(1.0f - tx)*svm_image_texture_read(kg, id, ix + niy*width + niz*width*height);
+ r += tz*ty*tx*svm_image_texture_read(kg, id, nix + niy*width + niz*width*height);
+ return r;
+ }
+
+ /* Bicubic interpolation. */
+ int pix, piy, piz, nnix, nniy, nniz;
+ if(extension == EXTENSION_REPEAT) {
+ pix = svm_image_texture_wrap_periodic(ix-1, width);
+ piy = svm_image_texture_wrap_periodic(iy-1, height);
+ piz = svm_image_texture_wrap_periodic(iz-1, depth);
+ nnix = svm_image_texture_wrap_periodic(ix+2, width);
+ nniy = svm_image_texture_wrap_periodic(iy+2, height);
+ nniz = svm_image_texture_wrap_periodic(iz+2, depth);
+ }
+ else {
+ pix = svm_image_texture_wrap_clamp(ix-1, width);
+ piy = svm_image_texture_wrap_clamp(iy-1, height);
+ piz = svm_image_texture_wrap_clamp(iz-1, depth);
+ nnix = svm_image_texture_wrap_clamp(ix+2, width);
+ nniy = svm_image_texture_wrap_clamp(iy+2, height);
+ nniz = svm_image_texture_wrap_clamp(iz+2, depth);
+ }
+
+ const int xc[4] = {pix, ix, nix, nnix};
+ const int yc[4] = {width * piy,
+ width * iy,
+ width * niy,
+ width * nniy};
+ const int zc[4] = {width * height * piz,
+ width * height * iz,
+ width * height * niz,
+ width * height * nniz};
+ float u[4], v[4], w[4];
+
+ /* Some helper macro to keep code reasonable size,
+ * let compiler to inline all the matrix multiplications.
+ */
+#define DATA(x, y, z) (svm_image_texture_read(kg, id, xc[x] + yc[y] + zc[z]))
+#define COL_TERM(col, row) \
+ (v[col] * (u[0] * DATA(0, col, row) + \
+ u[1] * DATA(1, col, row) + \
+ u[2] * DATA(2, col, row) + \
+ u[3] * DATA(3, col, row)))
+#define ROW_TERM(row) \
+ (w[row] * (COL_TERM(0, row) + \
+ COL_TERM(1, row) + \
+ COL_TERM(2, row) + \
+ COL_TERM(3, row)))
+
+ SET_CUBIC_SPLINE_WEIGHTS(u, tx);
+ SET_CUBIC_SPLINE_WEIGHTS(v, ty);
+ SET_CUBIC_SPLINE_WEIGHTS(w, tz);
+
+ /* Actual interpolation. */
+ return ROW_TERM(0) + ROW_TERM(1) + ROW_TERM(2) + ROW_TERM(3);
+
+#undef COL_TERM
+#undef ROW_TERM
+#undef DATA
+ }
+}
+
+#undef SET_CUBIC_SPLINE_WEIGHTS
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_path_init.cl b/intern/cycles/kernel/kernels/opencl/kernel_path_init.cl
new file mode 100644
index 00000000000..fa210e747c0
--- /dev/null
+++ b/intern/cycles/kernel/kernels/opencl/kernel_path_init.cl
@@ -0,0 +1,24 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_path_init.h"
+
+#define KERNEL_NAME path_init
+#include "kernel/kernels/opencl/kernel_split_function.h"
+#undef KERNEL_NAME
+
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_queue_enqueue.cl b/intern/cycles/kernel/kernels/opencl/kernel_queue_enqueue.cl
index 3156dc255fb..68ee6f1d536 100644
--- a/intern/cycles/kernel/kernels/opencl/kernel_queue_enqueue.cl
+++ b/intern/cycles/kernel/kernels/opencl/kernel_queue_enqueue.cl
@@ -14,93 +14,13 @@
* limitations under the License.
*/
-#include "../../kernel_compat_opencl.h"
-#include "../../kernel_math.h"
-#include "../../kernel_types.h"
-#include "../../kernel_globals.h"
-#include "../../kernel_queues.h"
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_queue_enqueue.h"
-/*
- * The kernel "kernel_queue_enqueue" enqueues rays of
- * different ray state into their appropriate Queues;
- * 1. Rays that have been determined to hit the background from the
- * "kernel_scene_intersect" kernel
- * are enqueued in QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS;
- * 2. Rays that have been determined to be actively participating in path-iteration will be enqueued into QUEUE_ACTIVE_AND_REGENERATED_RAYS.
- *
- * The input and output of the kernel is as follows,
- *
- * ray_state -------------------------------------------|--- kernel_queue_enqueue --|--- Queue_data (QUEUE_ACTIVE_AND_REGENERATED_RAYS & QUEUE_HITBF_BUFF_UPDATE_TOREGEN_RAYS)
- * Queue_index(QUEUE_ACTIVE_AND_REGENERATED_RAYS) ------| |--- Queue_index (QUEUE_ACTIVE_AND_REGENERATED_RAYS & QUEUE_HITBF_BUFF_UPDATE_TOREGEN_RAYS)
- * Queue_index(QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS) ---| |
- * queuesize -------------------------------------------| |
- *
- * Note on Queues :
- * State of queues during the first time this kernel is called :
- * At entry,
- * Both QUEUE_ACTIVE_AND_REGENERATED_RAYS and QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be empty.
- * At exit,
- * QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE rays
- * QUEUE_HITBF_BUFF_UPDATE_TOREGEN_RAYS will be filled with RAY_HIT_BACKGROUND rays.
- *
- * State of queue during other times this kernel is called :
- * At entry,
- * QUEUE_ACTIVE_AND_REGENERATED_RAYS will be empty.
- * QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will contain RAY_TO_REGENERATE and RAY_UPDATE_BUFFER rays.
- * At exit,
- * QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE rays.
- * QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with RAY_TO_REGENERATE, RAY_UPDATE_BUFFER, RAY_HIT_BACKGROUND rays.
- */
-__kernel void kernel_ocl_path_trace_queue_enqueue(
- ccl_global int *Queue_data, /* Queue memory */
- ccl_global int *Queue_index, /* Tracks the number of elements in each queue */
- ccl_global char *ray_state, /* Denotes the state of each ray */
- int queuesize) /* Size (capacity) of each queue */
-{
- /* We have only 2 cases (Hit/Not-Hit) */
- ccl_local unsigned int local_queue_atomics[2];
-
- int lidx = get_local_id(1) * get_local_size(0) + get_local_id(0);
- int ray_index = get_global_id(1) * get_global_size(0) + get_global_id(0);
-
- if(lidx < 2 ) {
- local_queue_atomics[lidx] = 0;
- }
- barrier(CLK_LOCAL_MEM_FENCE);
-
- int queue_number = -1;
-
- if(IS_STATE(ray_state, ray_index, RAY_HIT_BACKGROUND)) {
- queue_number = QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS;
- }
- else if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
- queue_number = QUEUE_ACTIVE_AND_REGENERATED_RAYS;
- }
-
- unsigned int my_lqidx;
- if(queue_number != -1) {
- my_lqidx = get_local_queue_index(queue_number, local_queue_atomics);
- }
- barrier(CLK_LOCAL_MEM_FENCE);
-
- if(lidx == 0) {
- local_queue_atomics[QUEUE_ACTIVE_AND_REGENERATED_RAYS] =
- get_global_per_queue_offset(QUEUE_ACTIVE_AND_REGENERATED_RAYS,
- local_queue_atomics,
- Queue_index);
- local_queue_atomics[QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS] =
- get_global_per_queue_offset(QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS,
- local_queue_atomics,
- Queue_index);
- }
- barrier(CLK_LOCAL_MEM_FENCE);
+#define KERNEL_NAME queue_enqueue
+#define LOCALS_TYPE QueueEnqueueLocals
+#include "kernel/kernels/opencl/kernel_split_function.h"
+#undef KERNEL_NAME
+#undef LOCALS_TYPE
- unsigned int my_gqidx;
- if(queue_number != -1) {
- my_gqidx = get_global_queue_index(queue_number,
- queuesize,
- my_lqidx,
- local_queue_atomics);
- Queue_data[my_gqidx] = ray_index;
- }
-}
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_scene_intersect.cl b/intern/cycles/kernel/kernels/opencl/kernel_scene_intersect.cl
index 7f3f433c7a6..10d09377ba9 100644
--- a/intern/cycles/kernel/kernels/opencl/kernel_scene_intersect.cl
+++ b/intern/cycles/kernel/kernels/opencl/kernel_scene_intersect.cl
@@ -14,67 +14,11 @@
* limitations under the License.
*/
-#include "split/kernel_scene_intersect.h"
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_scene_intersect.h"
-__kernel void kernel_ocl_path_trace_scene_intersect(
- ccl_global char *kg,
- ccl_constant KernelData *data,
- ccl_global uint *rng_coop,
- ccl_global Ray *Ray_coop, /* Required for scene_intersect */
- ccl_global PathState *PathState_coop, /* Required for scene_intersect */
- Intersection *Intersection_coop, /* Required for scene_intersect */
- ccl_global char *ray_state, /* Denotes the state of each ray */
- int sw, int sh,
- ccl_global int *Queue_data, /* Memory for queues */
- ccl_global int *Queue_index, /* Tracks the number of elements in queues */
- int queuesize, /* Size (capacity) of queues */
- ccl_global char *use_queues_flag, /* used to decide if this kernel should use
- * queues to fetch ray index */
-#ifdef __KERNEL_DEBUG__
- DebugData *debugdata_coop,
-#endif
- int parallel_samples) /* Number of samples to be processed in parallel */
-{
- int x = get_global_id(0);
- int y = get_global_id(1);
+#define KERNEL_NAME scene_intersect
+#include "kernel/kernels/opencl/kernel_split_function.h"
+#undef KERNEL_NAME
- /* Fetch use_queues_flag */
- ccl_local char local_use_queues_flag;
- if(get_local_id(0) == 0 && get_local_id(1) == 0) {
- local_use_queues_flag = use_queues_flag[0];
- }
- barrier(CLK_LOCAL_MEM_FENCE);
-
- int ray_index;
- if(local_use_queues_flag) {
- int thread_index = get_global_id(1) * get_global_size(0) + get_global_id(0);
- ray_index = get_ray_index(thread_index,
- QUEUE_ACTIVE_AND_REGENERATED_RAYS,
- Queue_data,
- queuesize,
- 0);
-
- if(ray_index == QUEUE_EMPTY_SLOT) {
- return;
- }
- } else {
- if(x < (sw * parallel_samples) && y < sh) {
- ray_index = x + y * (sw * parallel_samples);
- } else {
- return;
- }
- }
-
- kernel_scene_intersect((KernelGlobals *)kg,
- rng_coop,
- Ray_coop,
- PathState_coop,
- Intersection_coop,
- ray_state,
- sw, sh,
- use_queues_flag,
-#ifdef __KERNEL_DEBUG__
- debugdata_coop,
-#endif
- ray_index);
-}
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_shader_eval.cl b/intern/cycles/kernel/kernels/opencl/kernel_shader_eval.cl
index c37856c8f30..40eaa561863 100644
--- a/intern/cycles/kernel/kernels/opencl/kernel_shader_eval.cl
+++ b/intern/cycles/kernel/kernels/opencl/kernel_shader_eval.cl
@@ -14,55 +14,11 @@
* limitations under the License.
*/
-#include "split/kernel_shader_eval.h"
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_shader_eval.h"
-__kernel void kernel_ocl_path_trace_shader_eval(
- ccl_global char *kg,
- ccl_constant KernelData *data,
- ccl_global char *sd, /* Output ShaderData structure to be filled */
- ccl_global uint *rng_coop, /* Required for rbsdf calculation */
- ccl_global Ray *Ray_coop, /* Required for setting up shader from ray */
- ccl_global PathState *PathState_coop, /* Required for all functions in this kernel */
- Intersection *Intersection_coop, /* Required for setting up shader from ray */
- ccl_global char *ray_state, /* Denotes the state of each ray */
- ccl_global int *Queue_data, /* queue memory */
- ccl_global int *Queue_index, /* Tracks the number of elements in each queue */
- int queuesize) /* Size (capacity) of each queue */
-{
- /* Enqeueue RAY_TO_REGENERATE rays into QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS queue. */
- ccl_local unsigned int local_queue_atomics;
- if(get_local_id(0) == 0 && get_local_id(1) == 0) {
- local_queue_atomics = 0;
- }
- barrier(CLK_LOCAL_MEM_FENCE);
+#define KERNEL_NAME shader_eval
+#include "kernel/kernels/opencl/kernel_split_function.h"
+#undef KERNEL_NAME
- int ray_index = get_global_id(1) * get_global_size(0) + get_global_id(0);
- ray_index = get_ray_index(ray_index,
- QUEUE_ACTIVE_AND_REGENERATED_RAYS,
- Queue_data,
- queuesize,
- 0);
-
- if(ray_index == QUEUE_EMPTY_SLOT) {
- return;
- }
-
- char enqueue_flag = (IS_STATE(ray_state, ray_index, RAY_TO_REGENERATE)) ? 1 : 0;
- enqueue_ray_index_local(ray_index,
- QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS,
- enqueue_flag,
- queuesize,
- &local_queue_atomics,
- Queue_data,
- Queue_index);
-
- /* Continue on with shader evaluation. */
- kernel_shader_eval((KernelGlobals *)kg,
- (ShaderData *)sd,
- rng_coop,
- Ray_coop,
- PathState_coop,
- Intersection_coop,
- ray_state,
- ray_index);
-}
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_shader_setup.cl b/intern/cycles/kernel/kernels/opencl/kernel_shader_setup.cl
new file mode 100644
index 00000000000..8c36100f762
--- /dev/null
+++ b/intern/cycles/kernel/kernels/opencl/kernel_shader_setup.cl
@@ -0,0 +1,26 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_shader_setup.h"
+
+#define KERNEL_NAME shader_setup
+#define LOCALS_TYPE unsigned int
+#include "kernel/kernels/opencl/kernel_split_function.h"
+#undef KERNEL_NAME
+#undef LOCALS_TYPE
+
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_shader_sort.cl b/intern/cycles/kernel/kernels/opencl/kernel_shader_sort.cl
new file mode 100644
index 00000000000..bcacaa4a054
--- /dev/null
+++ b/intern/cycles/kernel/kernels/opencl/kernel_shader_sort.cl
@@ -0,0 +1,27 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_shader_sort.h"
+
+__attribute__((reqd_work_group_size(64, 1, 1)))
+#define KERNEL_NAME shader_sort
+#define LOCALS_TYPE ShaderSortLocals
+#include "kernel/kernels/opencl/kernel_split_function.h"
+#undef KERNEL_NAME
+#undef LOCALS_TYPE
+
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_shadow_blocked.cl b/intern/cycles/kernel/kernels/opencl/kernel_shadow_blocked.cl
deleted file mode 100644
index edf76fba714..00000000000
--- a/intern/cycles/kernel/kernels/opencl/kernel_shadow_blocked.cl
+++ /dev/null
@@ -1,65 +0,0 @@
-/*
- * Copyright 2011-2015 Blender Foundation
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "split/kernel_shadow_blocked.h"
-
-__kernel void kernel_ocl_path_trace_shadow_blocked(
- ccl_global char *kg,
- ccl_constant KernelData *data,
- ccl_global PathState *PathState_coop, /* Required for shadow blocked */
- ccl_global Ray *LightRay_dl_coop, /* Required for direct lighting's shadow blocked */
- ccl_global Ray *LightRay_ao_coop, /* Required for AO's shadow blocked */
- ccl_global char *ray_state,
- ccl_global int *Queue_data, /* Queue memory */
- ccl_global int *Queue_index, /* Tracks the number of elements in each queue */
- int queuesize) /* Size (capacity) of each queue */
-{
- int lidx = get_local_id(1) * get_local_id(0) + get_local_id(0);
-
- ccl_local unsigned int ao_queue_length;
- ccl_local unsigned int dl_queue_length;
- if(lidx == 0) {
- ao_queue_length = Queue_index[QUEUE_SHADOW_RAY_CAST_AO_RAYS];
- dl_queue_length = Queue_index[QUEUE_SHADOW_RAY_CAST_DL_RAYS];
- }
- barrier(CLK_LOCAL_MEM_FENCE);
-
- /* flag determining if the current ray is to process shadow ray for AO or DL */
- char shadow_blocked_type = -1;
-
- int ray_index = QUEUE_EMPTY_SLOT;
- int thread_index = get_global_id(1) * get_global_size(0) + get_global_id(0);
- if(thread_index < ao_queue_length + dl_queue_length) {
- if(thread_index < ao_queue_length) {
- ray_index = get_ray_index(thread_index, QUEUE_SHADOW_RAY_CAST_AO_RAYS, Queue_data, queuesize, 1);
- shadow_blocked_type = RAY_SHADOW_RAY_CAST_AO;
- } else {
- ray_index = get_ray_index(thread_index - ao_queue_length, QUEUE_SHADOW_RAY_CAST_DL_RAYS, Queue_data, queuesize, 1);
- shadow_blocked_type = RAY_SHADOW_RAY_CAST_DL;
- }
- }
-
- if(ray_index == QUEUE_EMPTY_SLOT)
- return;
-
- kernel_shadow_blocked((KernelGlobals *)kg,
- PathState_coop,
- LightRay_dl_coop,
- LightRay_ao_coop,
- ray_state,
- shadow_blocked_type,
- ray_index);
-}
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_shadow_blocked_ao.cl b/intern/cycles/kernel/kernels/opencl/kernel_shadow_blocked_ao.cl
new file mode 100644
index 00000000000..8de250a375c
--- /dev/null
+++ b/intern/cycles/kernel/kernels/opencl/kernel_shadow_blocked_ao.cl
@@ -0,0 +1,24 @@
+/*
+ * Copyright 2011-2015 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_shadow_blocked_ao.h"
+
+#define KERNEL_NAME shadow_blocked_ao
+#include "kernel/kernels/opencl/kernel_split_function.h"
+#undef KERNEL_NAME
+
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_shadow_blocked_dl.cl b/intern/cycles/kernel/kernels/opencl/kernel_shadow_blocked_dl.cl
new file mode 100644
index 00000000000..29da77022ed
--- /dev/null
+++ b/intern/cycles/kernel/kernels/opencl/kernel_shadow_blocked_dl.cl
@@ -0,0 +1,24 @@
+/*
+ * Copyright 2011-2015 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_shadow_blocked_dl.h"
+
+#define KERNEL_NAME shadow_blocked_dl
+#include "kernel/kernels/opencl/kernel_split_function.h"
+#undef KERNEL_NAME
+
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_split.cl b/intern/cycles/kernel/kernels/opencl/kernel_split.cl
new file mode 100644
index 00000000000..4cbda1bc2e7
--- /dev/null
+++ b/intern/cycles/kernel/kernels/opencl/kernel_split.cl
@@ -0,0 +1,41 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "kernel/kernel_compat_opencl.h" // PRECOMPILED
+#include "kernel/split/kernel_split_common.h" // PRECOMPILED
+
+#include "kernel/kernels/opencl/kernel_state_buffer_size.cl"
+#include "kernel/kernels/opencl/kernel_data_init.cl"
+#include "kernel/kernels/opencl/kernel_path_init.cl"
+
+#include "kernel/kernels/opencl/kernel_scene_intersect.cl"
+#include "kernel/kernels/opencl/kernel_lamp_emission.cl"
+#include "kernel/kernels/opencl/kernel_do_volume.cl"
+#include "kernel/kernels/opencl/kernel_indirect_background.cl"
+#include "kernel/kernels/opencl/kernel_queue_enqueue.cl"
+#include "kernel/kernels/opencl/kernel_shader_setup.cl"
+#include "kernel/kernels/opencl/kernel_shader_sort.cl"
+#include "kernel/kernels/opencl/kernel_shader_eval.cl"
+#include "kernel/kernels/opencl/kernel_holdout_emission_blurring_pathtermination_ao.cl"
+#include "kernel/kernels/opencl/kernel_subsurface_scatter.cl"
+#include "kernel/kernels/opencl/kernel_direct_lighting.cl"
+#include "kernel/kernels/opencl/kernel_shadow_blocked_ao.cl"
+#include "kernel/kernels/opencl/kernel_shadow_blocked_dl.cl"
+#include "kernel/kernels/opencl/kernel_enqueue_inactive.cl"
+#include "kernel/kernels/opencl/kernel_next_iteration_setup.cl"
+#include "kernel/kernels/opencl/kernel_indirect_subsurface.cl"
+#include "kernel/kernels/opencl/kernel_buffer_update.cl"
+
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_split_function.h b/intern/cycles/kernel/kernels/opencl/kernel_split_function.h
new file mode 100644
index 00000000000..6aa7681cbed
--- /dev/null
+++ b/intern/cycles/kernel/kernels/opencl/kernel_split_function.h
@@ -0,0 +1,65 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define KERNEL_NAME_JOIN(a, b) a ## _ ## b
+#define KERNEL_NAME_EVAL(a, b) KERNEL_NAME_JOIN(a, b)
+
+__kernel void KERNEL_NAME_EVAL(kernel_ocl_path_trace, KERNEL_NAME)(
+ ccl_global char *kg_global,
+ ccl_constant KernelData *data,
+
+ ccl_global void *split_data_buffer,
+ ccl_global char *ray_state,
+
+ KERNEL_BUFFER_PARAMS,
+
+ ccl_global int *queue_index,
+ ccl_global char *use_queues_flag,
+ ccl_global unsigned int *work_pools,
+ ccl_global float *buffer
+ )
+{
+#ifdef LOCALS_TYPE
+ ccl_local LOCALS_TYPE locals;
+#endif
+
+ KernelGlobals *kg = (KernelGlobals*)kg_global;
+
+ if(ccl_local_id(0) + ccl_local_id(1) == 0) {
+ kg->data = data;
+
+ kernel_split_params.queue_index = queue_index;
+ kernel_split_params.use_queues_flag = use_queues_flag;
+ kernel_split_params.work_pools = work_pools;
+ kernel_split_params.tile.buffer = buffer;
+
+ split_data_init(kg, &kernel_split_state, ccl_global_size(0)*ccl_global_size(1), split_data_buffer, ray_state);
+
+ }
+
+ kernel_set_buffer_pointers(kg, KERNEL_BUFFER_ARGS);
+
+ KERNEL_NAME_EVAL(kernel, KERNEL_NAME)(
+ kg
+#ifdef LOCALS_TYPE
+ , &locals
+#endif
+ );
+}
+
+#undef KERNEL_NAME_JOIN
+#undef KERNEL_NAME_EVAL
+
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_state_buffer_size.cl b/intern/cycles/kernel/kernels/opencl/kernel_state_buffer_size.cl
new file mode 100644
index 00000000000..c10ecc426c6
--- /dev/null
+++ b/intern/cycles/kernel/kernels/opencl/kernel_state_buffer_size.cl
@@ -0,0 +1,29 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+
+__kernel void kernel_ocl_path_trace_state_buffer_size(
+ ccl_global char *kg,
+ ccl_constant KernelData *data,
+ uint num_threads,
+ ccl_global uint64_t *size)
+{
+ ((KernelGlobals*)kg)->data = data;
+ *size = split_data_buffer_size((KernelGlobals*)kg, num_threads);
+}
+
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_subsurface_scatter.cl b/intern/cycles/kernel/kernels/opencl/kernel_subsurface_scatter.cl
new file mode 100644
index 00000000000..2b3be38df84
--- /dev/null
+++ b/intern/cycles/kernel/kernels/opencl/kernel_subsurface_scatter.cl
@@ -0,0 +1,24 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "kernel/kernel_compat_opencl.h"
+#include "kernel/split/kernel_split_common.h"
+#include "kernel/split/kernel_subsurface_scatter.h"
+
+#define KERNEL_NAME subsurface_scatter
+#include "kernel/kernels/opencl/kernel_split_function.h"
+#undef KERNEL_NAME
+
diff --git a/intern/cycles/kernel/kernels/opencl/kernel_sum_all_radiance.cl b/intern/cycles/kernel/kernels/opencl/kernel_sum_all_radiance.cl
deleted file mode 100644
index 88a1ed830af..00000000000
--- a/intern/cycles/kernel/kernels/opencl/kernel_sum_all_radiance.cl
+++ /dev/null
@@ -1,38 +0,0 @@
-/*
- * Copyright 2011-2015 Blender Foundation
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "split/kernel_sum_all_radiance.h"
-
-__kernel void kernel_ocl_path_trace_sum_all_radiance(
- ccl_constant KernelData *data, /* To get pass_stride to offet into buffer */
- ccl_global float *buffer, /* Output buffer of RenderTile */
- ccl_global float *per_sample_output_buffer, /* Radiance contributed by all samples */
- int parallel_samples, int sw, int sh, int stride,
- int buffer_offset_x,
- int buffer_offset_y,
- int buffer_stride,
- int start_sample)
-{
- kernel_sum_all_radiance(data,
- buffer,
- per_sample_output_buffer,
- parallel_samples,
- sw, sh, stride,
- buffer_offset_x,
- buffer_offset_y,
- buffer_stride,
- start_sample);
-}
diff --git a/intern/cycles/kernel/openvdb/vdb_intern.h b/intern/cycles/kernel/openvdb/vdb_intern.h
index 71d6b81e0ff..0ebb0eed094 100644
--- a/intern/cycles/kernel/openvdb/vdb_intern.h
+++ b/intern/cycles/kernel/openvdb/vdb_intern.h
@@ -33,7 +33,7 @@
# pragma GCC diagnostic pop
#endif
-#include "util_vector.h"
+#include "util/util_vector.h"
CCL_NAMESPACE_BEGIN
diff --git a/intern/cycles/kernel/osl/CMakeLists.txt b/intern/cycles/kernel/osl/CMakeLists.txt
index 98de40e5a8a..d2eb89e0e0a 100644
--- a/intern/cycles/kernel/osl/CMakeLists.txt
+++ b/intern/cycles/kernel/osl/CMakeLists.txt
@@ -1,12 +1,6 @@
set(INC
- .
- ..
- ../svm
- ../../graph
- ../../render
- ../../util
- ../../device
+ ../..
)
set(INC_SYS
diff --git a/intern/cycles/kernel/osl/background.cpp b/intern/cycles/kernel/osl/background.cpp
index d835f9be45c..2e73e7a601e 100644
--- a/intern/cycles/kernel/osl/background.cpp
+++ b/intern/cycles/kernel/osl/background.cpp
@@ -34,10 +34,10 @@
#include <OSL/genclosure.h>
-#include "osl_closures.h"
+#include "kernel/osl/osl_closures.h"
-#include "kernel_compat_cpu.h"
-#include "closure/alloc.h"
+#include "kernel/kernel_compat_cpu.h"
+#include "kernel/closure/alloc.h"
CCL_NAMESPACE_BEGIN
diff --git a/intern/cycles/kernel/osl/bsdf_diffuse_ramp.cpp b/intern/cycles/kernel/osl/bsdf_diffuse_ramp.cpp
index bc26f42b559..ea18f2c8c86 100644
--- a/intern/cycles/kernel/osl/bsdf_diffuse_ramp.cpp
+++ b/intern/cycles/kernel/osl/bsdf_diffuse_ramp.cpp
@@ -34,13 +34,13 @@
#include <OSL/genclosure.h>
-#include "kernel_compat_cpu.h"
-#include "osl_closures.h"
+#include "kernel/kernel_compat_cpu.h"
+#include "kernel/osl/osl_closures.h"
-#include "kernel_types.h"
-#include "kernel_montecarlo.h"
-#include "closure/alloc.h"
-#include "closure/bsdf_diffuse_ramp.h"
+#include "kernel/kernel_types.h"
+#include "kernel/kernel_montecarlo.h"
+#include "kernel/closure/alloc.h"
+#include "kernel/closure/bsdf_diffuse_ramp.h"
CCL_NAMESPACE_BEGIN
diff --git a/intern/cycles/kernel/osl/bsdf_phong_ramp.cpp b/intern/cycles/kernel/osl/bsdf_phong_ramp.cpp
index 14c7644936e..a26671eb09e 100644
--- a/intern/cycles/kernel/osl/bsdf_phong_ramp.cpp
+++ b/intern/cycles/kernel/osl/bsdf_phong_ramp.cpp
@@ -34,12 +34,12 @@
#include <OSL/genclosure.h>
-#include "kernel_compat_cpu.h"
-#include "osl_closures.h"
+#include "kernel/kernel_compat_cpu.h"
+#include "kernel/osl/osl_closures.h"
-#include "kernel_types.h"
-#include "closure/alloc.h"
-#include "closure/bsdf_phong_ramp.h"
+#include "kernel/kernel_types.h"
+#include "kernel/closure/alloc.h"
+#include "kernel/closure/bsdf_phong_ramp.h"
CCL_NAMESPACE_BEGIN
diff --git a/intern/cycles/kernel/osl/emissive.cpp b/intern/cycles/kernel/osl/emissive.cpp
index 3f13e08b302..8843a196dad 100644
--- a/intern/cycles/kernel/osl/emissive.cpp
+++ b/intern/cycles/kernel/osl/emissive.cpp
@@ -34,12 +34,12 @@
#include <OSL/genclosure.h>
-#include "osl_closures.h"
+#include "kernel/osl/osl_closures.h"
-#include "kernel_compat_cpu.h"
-#include "kernel_types.h"
-#include "closure/alloc.h"
-#include "closure/emissive.h"
+#include "kernel/kernel_compat_cpu.h"
+#include "kernel/kernel_types.h"
+#include "kernel/closure/alloc.h"
+#include "kernel/closure/emissive.h"
CCL_NAMESPACE_BEGIN
diff --git a/intern/cycles/kernel/osl/osl_bssrdf.cpp b/intern/cycles/kernel/osl/osl_bssrdf.cpp
index 3614717e28c..27a96720c1e 100644
--- a/intern/cycles/kernel/osl/osl_bssrdf.cpp
+++ b/intern/cycles/kernel/osl/osl_bssrdf.cpp
@@ -32,15 +32,17 @@
#include <OSL/genclosure.h>
-#include "kernel_compat_cpu.h"
-#include "osl_closures.h"
+#include "kernel/kernel_compat_cpu.h"
+#include "kernel/osl/osl_closures.h"
-#include "kernel_types.h"
-#include "kernel_montecarlo.h"
+#include "kernel/kernel_types.h"
+#include "kernel/kernel_montecarlo.h"
-#include "closure/alloc.h"
-#include "closure/bsdf_diffuse.h"
-#include "closure/bssrdf.h"
+#include "kernel/closure/alloc.h"
+#include "kernel/closure/bsdf_util.h"
+#include "kernel/closure/bsdf_diffuse.h"
+#include "kernel/closure/bsdf_principled_diffuse.h"
+#include "kernel/closure/bssrdf.h"
CCL_NAMESPACE_BEGIN
@@ -78,7 +80,8 @@ public:
bssrdf->albedo = albedo.x;
bssrdf->sharpness = sharpness;
bssrdf->N = params.N;
- ccl_fetch(sd, flag) |= bssrdf_setup(bssrdf, (ClosureType)type);
+ bssrdf->roughness = params.roughness;
+ sd->flag |= bssrdf_setup(bssrdf, (ClosureType)type);
}
bssrdf = bssrdf_alloc(sd, make_float3(0.0f, weight.y, 0.0f));
@@ -89,7 +92,8 @@ public:
bssrdf->albedo = albedo.y;
bssrdf->sharpness = sharpness;
bssrdf->N = params.N;
- ccl_fetch(sd, flag) |= bssrdf_setup(bssrdf, (ClosureType)type);
+ bssrdf->roughness = params.roughness;
+ sd->flag |= bssrdf_setup(bssrdf, (ClosureType)type);
}
bssrdf = bssrdf_alloc(sd, make_float3(0.0f, 0.0f, weight.z));
@@ -100,7 +104,8 @@ public:
bssrdf->albedo = albedo.z;
bssrdf->sharpness = sharpness;
bssrdf->N = params.N;
- ccl_fetch(sd, flag) |= bssrdf_setup(bssrdf, (ClosureType)type);
+ bssrdf->roughness = params.roughness;
+ sd->flag |= bssrdf_setup(bssrdf, (ClosureType)type);
}
}
}
@@ -180,5 +185,31 @@ ClosureParam *closure_bssrdf_burley_params()
CCLOSURE_PREPARE(closure_bssrdf_burley_prepare, BurleyBSSRDFClosure)
+/* Disney principled */
+
+class PrincipledBSSRDFClosure : public CBSSRDFClosure {
+public:
+ void setup(ShaderData *sd, int path_flag, float3 weight)
+ {
+ alloc(sd, path_flag, weight, CLOSURE_BSSRDF_PRINCIPLED_ID);
+ }
+};
+
+ClosureParam *closure_bssrdf_principled_params()
+{
+ static ClosureParam params[] = {
+ CLOSURE_FLOAT3_PARAM(PrincipledBSSRDFClosure, params.N),
+ CLOSURE_FLOAT3_PARAM(PrincipledBSSRDFClosure, radius),
+ CLOSURE_FLOAT_PARAM(PrincipledBSSRDFClosure, params.texture_blur),
+ CLOSURE_FLOAT3_PARAM(PrincipledBSSRDFClosure, albedo),
+ CLOSURE_FLOAT_PARAM(PrincipledBSSRDFClosure, params.roughness),
+ CLOSURE_STRING_KEYPARAM(PrincipledBSSRDFClosure, label, "label"),
+ CLOSURE_FINISH_PARAM(PrincipledBSSRDFClosure)
+ };
+ return params;
+}
+
+CCLOSURE_PREPARE(closure_bssrdf_principled_prepare, PrincipledBSSRDFClosure)
+
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/osl/osl_closures.cpp b/intern/cycles/kernel/osl/osl_closures.cpp
index 94de782dca0..14c5c1c3db5 100644
--- a/intern/cycles/kernel/osl/osl_closures.cpp
+++ b/intern/cycles/kernel/osl/osl_closures.cpp
@@ -33,33 +33,36 @@
#include <OSL/genclosure.h>
#include <OSL/oslclosure.h>
-#include "osl_closures.h"
-#include "osl_shader.h"
-
-#include "util_debug.h"
-#include "util_math.h"
-#include "util_param.h"
-
-#include "kernel_types.h"
-#include "kernel_compat_cpu.h"
-#include "kernel_globals.h"
-#include "kernel_montecarlo.h"
-#include "kernel_random.h"
-
-#include "closure/alloc.h"
-#include "closure/bsdf_util.h"
-#include "closure/bsdf_ashikhmin_velvet.h"
-#include "closure/bsdf_diffuse.h"
-#include "closure/bsdf_microfacet.h"
-#include "closure/bsdf_microfacet_multi.h"
-#include "closure/bsdf_oren_nayar.h"
-#include "closure/bsdf_reflection.h"
-#include "closure/bsdf_refraction.h"
-#include "closure/bsdf_transparent.h"
-#include "closure/bsdf_ashikhmin_shirley.h"
-#include "closure/bsdf_toon.h"
-#include "closure/bsdf_hair.h"
-#include "closure/volume.h"
+#include "kernel/osl/osl_closures.h"
+#include "kernel/osl/osl_shader.h"
+
+#include "util/util_debug.h"
+#include "util/util_math.h"
+#include "util/util_param.h"
+
+#include "kernel/kernel_types.h"
+#include "kernel/kernel_compat_cpu.h"
+#include "kernel/split/kernel_split_data_types.h"
+#include "kernel/kernel_globals.h"
+#include "kernel/kernel_montecarlo.h"
+#include "kernel/kernel_random.h"
+
+#include "kernel/closure/alloc.h"
+#include "kernel/closure/bsdf_util.h"
+#include "kernel/closure/bsdf_ashikhmin_velvet.h"
+#include "kernel/closure/bsdf_diffuse.h"
+#include "kernel/closure/bsdf_microfacet.h"
+#include "kernel/closure/bsdf_microfacet_multi.h"
+#include "kernel/closure/bsdf_oren_nayar.h"
+#include "kernel/closure/bsdf_reflection.h"
+#include "kernel/closure/bsdf_refraction.h"
+#include "kernel/closure/bsdf_transparent.h"
+#include "kernel/closure/bsdf_ashikhmin_shirley.h"
+#include "kernel/closure/bsdf_toon.h"
+#include "kernel/closure/bsdf_hair.h"
+#include "kernel/closure/bsdf_principled_diffuse.h"
+#include "kernel/closure/bsdf_principled_sheen.h"
+#include "kernel/closure/volume.h"
CCL_NAMESPACE_BEGIN
@@ -153,7 +156,7 @@ BSDF_CLOSURE_CLASS_BEGIN(MicrofacetBeckmannRefraction, microfacet_beckmann_refra
BSDF_CLOSURE_CLASS_END(MicrofacetBeckmannRefraction, microfacet_beckmann_refraction)
BSDF_CLOSURE_CLASS_BEGIN(HairReflection, hair_reflection, HairBsdf, LABEL_GLOSSY)
- CLOSURE_FLOAT3_PARAM(HairReflectionClosure, unused),
+ CLOSURE_FLOAT3_PARAM(HairReflectionClosure, params.N),
CLOSURE_FLOAT_PARAM(HairReflectionClosure, params.roughness1),
CLOSURE_FLOAT_PARAM(HairReflectionClosure, params.roughness2),
CLOSURE_FLOAT3_PARAM(HairReflectionClosure, params.T),
@@ -161,7 +164,7 @@ BSDF_CLOSURE_CLASS_BEGIN(HairReflection, hair_reflection, HairBsdf, LABEL_GLOSSY
BSDF_CLOSURE_CLASS_END(HairReflection, hair_reflection)
BSDF_CLOSURE_CLASS_BEGIN(HairTransmission, hair_transmission, HairBsdf, LABEL_GLOSSY)
- CLOSURE_FLOAT3_PARAM(HairTransmissionClosure, unused),
+ CLOSURE_FLOAT3_PARAM(HairTransmissionClosure, params.N),
CLOSURE_FLOAT_PARAM(HairTransmissionClosure, params.roughness1),
CLOSURE_FLOAT_PARAM(HairTransmissionClosure, params.roughness2),
CLOSURE_FLOAT3_PARAM(HairReflectionClosure, params.T),
@@ -175,6 +178,63 @@ VOLUME_CLOSURE_CLASS_END(VolumeHenyeyGreenstein, henyey_greenstein)
VOLUME_CLOSURE_CLASS_BEGIN(VolumeAbsorption, absorption, ShaderClosure, LABEL_SINGULAR)
VOLUME_CLOSURE_CLASS_END(VolumeAbsorption, absorption)
+BSDF_CLOSURE_CLASS_BEGIN(PrincipledDiffuse, principled_diffuse, PrincipledDiffuseBsdf, LABEL_DIFFUSE)
+ CLOSURE_FLOAT3_PARAM(PrincipledDiffuseClosure, params.N),
+ CLOSURE_FLOAT_PARAM(PrincipledDiffuseClosure, params.roughness),
+BSDF_CLOSURE_CLASS_END(PrincipledDiffuse, principled_diffuse)
+
+BSDF_CLOSURE_CLASS_BEGIN(PrincipledSheen, principled_sheen, PrincipledSheenBsdf, LABEL_DIFFUSE)
+ CLOSURE_FLOAT3_PARAM(PrincipledSheenClosure, params.N),
+BSDF_CLOSURE_CLASS_END(PrincipledSheen, principled_sheen)
+
+/* DISNEY PRINCIPLED CLEARCOAT */
+class PrincipledClearcoatClosure : public CBSDFClosure {
+public:
+ MicrofacetBsdf params;
+ float clearcoat, clearcoat_roughness;
+
+ MicrofacetBsdf *alloc(ShaderData *sd, int path_flag, float3 weight)
+ {
+ MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc_osl(sd, sizeof(MicrofacetBsdf), weight, &params);
+ MicrofacetExtra *extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));
+ if(bsdf && extra) {
+ bsdf->extra = extra;
+
+ bsdf->ior = 1.5f;
+
+ bsdf->alpha_x = clearcoat_roughness;
+ bsdf->alpha_y = clearcoat_roughness;
+
+ bsdf->extra->cspec0 = make_float3(0.04f, 0.04f, 0.04f);
+ bsdf->extra->clearcoat = clearcoat;
+
+ return bsdf;
+ }
+
+ return NULL;
+ }
+
+ void setup(ShaderData *sd, int path_flag, float3 weight)
+ {
+ MicrofacetBsdf *bsdf = alloc(sd, path_flag, weight);
+ sd->flag |= (bsdf) ? bsdf_microfacet_ggx_clearcoat_setup(bsdf, sd) : 0;
+ }
+};
+
+ClosureParam *closure_bsdf_principled_clearcoat_params()
+{
+ static ClosureParam params[] = {
+ CLOSURE_FLOAT3_PARAM(PrincipledClearcoatClosure, params.N),
+ CLOSURE_FLOAT_PARAM(PrincipledClearcoatClosure, clearcoat),
+ CLOSURE_FLOAT_PARAM(PrincipledClearcoatClosure, clearcoat_roughness),
+ CLOSURE_STRING_KEYPARAM(PrincipledClearcoatClosure, label, "label"),
+ CLOSURE_FINISH_PARAM(PrincipledClearcoatClosure)
+ };
+ return params;
+}
+CCLOSURE_PREPARE(closure_bsdf_principled_clearcoat_prepare, PrincipledClearcoatClosure)
+
+
/* Registration */
static void register_closure(OSL::ShadingSystem *ss, const char *name, int id, OSL::ClosureParam *params, OSL::PrepareClosureFunc prepare)
@@ -214,6 +274,16 @@ void OSLShader::register_closures(OSLShadingSystem *ss_)
closure_bsdf_microfacet_multi_ggx_glass_params(), closure_bsdf_microfacet_multi_ggx_glass_prepare);
register_closure(ss, "microfacet_multi_ggx_aniso", id++,
closure_bsdf_microfacet_multi_ggx_aniso_params(), closure_bsdf_microfacet_multi_ggx_aniso_prepare);
+ register_closure(ss, "microfacet_ggx_fresnel", id++,
+ closure_bsdf_microfacet_ggx_fresnel_params(), closure_bsdf_microfacet_ggx_fresnel_prepare);
+ register_closure(ss, "microfacet_ggx_aniso_fresnel", id++,
+ closure_bsdf_microfacet_ggx_aniso_fresnel_params(), closure_bsdf_microfacet_ggx_aniso_fresnel_prepare);
+ register_closure(ss, "microfacet_multi_ggx_fresnel", id++,
+ closure_bsdf_microfacet_multi_ggx_fresnel_params(), closure_bsdf_microfacet_multi_ggx_fresnel_prepare);
+ register_closure(ss, "microfacet_multi_ggx_glass_fresnel", id++,
+ closure_bsdf_microfacet_multi_ggx_glass_fresnel_params(), closure_bsdf_microfacet_multi_ggx_glass_fresnel_prepare);
+ register_closure(ss, "microfacet_multi_ggx_aniso_fresnel", id++,
+ closure_bsdf_microfacet_multi_ggx_aniso_fresnel_params(), closure_bsdf_microfacet_multi_ggx_aniso_fresnel_prepare);
register_closure(ss, "microfacet_beckmann", id++,
bsdf_microfacet_beckmann_params(), bsdf_microfacet_beckmann_prepare);
register_closure(ss, "microfacet_beckmann_aniso", id++,
@@ -228,6 +298,12 @@ void OSLShader::register_closures(OSLShadingSystem *ss_)
bsdf_diffuse_toon_params(), bsdf_diffuse_toon_prepare);
register_closure(ss, "glossy_toon", id++,
bsdf_glossy_toon_params(), bsdf_glossy_toon_prepare);
+ register_closure(ss, "principled_diffuse", id++,
+ bsdf_principled_diffuse_params(), bsdf_principled_diffuse_prepare);
+ register_closure(ss, "principled_sheen", id++,
+ bsdf_principled_sheen_params(), bsdf_principled_sheen_prepare);
+ register_closure(ss, "principled_clearcoat", id++,
+ closure_bsdf_principled_clearcoat_params(), closure_bsdf_principled_clearcoat_prepare);
register_closure(ss, "emission", id++,
closure_emission_params(), closure_emission_prepare);
@@ -247,6 +323,8 @@ void OSLShader::register_closures(OSLShadingSystem *ss_)
closure_bssrdf_gaussian_params(), closure_bssrdf_gaussian_prepare);
register_closure(ss, "bssrdf_burley", id++,
closure_bssrdf_burley_params(), closure_bssrdf_burley_prepare);
+ register_closure(ss, "bssrdf_principled", id++,
+ closure_bssrdf_principled_params(), closure_bssrdf_principled_prepare);
register_closure(ss, "hair_reflection", id++,
bsdf_hair_reflection_params(), bsdf_hair_reflection_prepare);
@@ -277,6 +355,86 @@ bool CBSDFClosure::skip(const ShaderData *sd, int path_flag, int scattering)
return false;
}
+
+/* GGX closures with Fresnel */
+
+class MicrofacetFresnelClosure : public CBSDFClosure {
+public:
+ MicrofacetBsdf params;
+ float3 color;
+ float3 cspec0;
+
+ MicrofacetBsdf *alloc(ShaderData *sd, int path_flag, float3 weight)
+ {
+ /* Technically, the MultiGGX Glass closure may also transmit. However,
+ * since this is set statically and only used for caustic flags, this
+ * is probably as good as it gets. */
+ if(!skip(sd, path_flag, LABEL_GLOSSY | LABEL_REFLECT)) {
+ MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc_osl(sd, sizeof(MicrofacetBsdf), weight, &params);
+ MicrofacetExtra *extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));
+ if(bsdf && extra) {
+ bsdf->extra = extra;
+ bsdf->extra->color = color;
+ bsdf->extra->cspec0 = cspec0;
+ return bsdf;
+ }
+ }
+
+ return NULL;
+ }
+};
+
+class MicrofacetGGXFresnelClosure : public MicrofacetFresnelClosure {
+public:
+ void setup(ShaderData *sd, int path_flag, float3 weight)
+ {
+ MicrofacetBsdf *bsdf = alloc(sd, path_flag, weight);
+ sd->flag |= (bsdf) ? bsdf_microfacet_ggx_fresnel_setup(bsdf, sd) : 0;
+ }
+};
+
+ClosureParam *closure_bsdf_microfacet_ggx_fresnel_params()
+{
+ static ClosureParam params[] = {
+ CLOSURE_FLOAT3_PARAM(MicrofacetGGXFresnelClosure, params.N),
+ CLOSURE_FLOAT_PARAM(MicrofacetGGXFresnelClosure, params.alpha_x),
+ CLOSURE_FLOAT_PARAM(MicrofacetGGXFresnelClosure, params.ior),
+ CLOSURE_FLOAT3_PARAM(MicrofacetGGXFresnelClosure, color),
+ CLOSURE_FLOAT3_PARAM(MicrofacetGGXFresnelClosure, cspec0),
+ CLOSURE_STRING_KEYPARAM(MicrofacetGGXFresnelClosure, label, "label"),
+ CLOSURE_FINISH_PARAM(MicrofacetGGXFresnelClosure)
+ };
+ return params;
+}
+CCLOSURE_PREPARE(closure_bsdf_microfacet_ggx_fresnel_prepare, MicrofacetGGXFresnelClosure);
+
+class MicrofacetGGXAnisoFresnelClosure : public MicrofacetFresnelClosure {
+public:
+ void setup(ShaderData *sd, int path_flag, float3 weight)
+ {
+ MicrofacetBsdf *bsdf = alloc(sd, path_flag, weight);
+ sd->flag |= (bsdf) ? bsdf_microfacet_ggx_aniso_fresnel_setup(bsdf, sd) : 0;
+ }
+};
+
+ClosureParam *closure_bsdf_microfacet_ggx_aniso_fresnel_params()
+{
+ static ClosureParam params[] = {
+ CLOSURE_FLOAT3_PARAM(MicrofacetGGXFresnelClosure, params.N),
+ CLOSURE_FLOAT3_PARAM(MicrofacetGGXFresnelClosure, params.T),
+ CLOSURE_FLOAT_PARAM(MicrofacetGGXFresnelClosure, params.alpha_x),
+ CLOSURE_FLOAT_PARAM(MicrofacetGGXFresnelClosure, params.alpha_y),
+ CLOSURE_FLOAT_PARAM(MicrofacetGGXFresnelClosure, params.ior),
+ CLOSURE_FLOAT3_PARAM(MicrofacetGGXFresnelClosure, color),
+ CLOSURE_FLOAT3_PARAM(MicrofacetGGXFresnelClosure, cspec0),
+ CLOSURE_STRING_KEYPARAM(MicrofacetGGXFresnelClosure, label, "label"),
+ CLOSURE_FINISH_PARAM(MicrofacetGGXFresnelClosure)
+ };
+ return params;
+}
+CCLOSURE_PREPARE(closure_bsdf_microfacet_ggx_aniso_fresnel_prepare, MicrofacetGGXAnisoFresnelClosure);
+
+
/* Multiscattering GGX closures */
class MicrofacetMultiClosure : public CBSDFClosure {
@@ -286,7 +444,7 @@ public:
MicrofacetBsdf *alloc(ShaderData *sd, int path_flag, float3 weight)
{
- /* Technically, the MultiGGX Glass closure may also transmit. However,
+ /* Technically, the MultiGGX closure may also transmit. However,
* since this is set statically and only used for caustic flags, this
* is probably as good as it gets. */
if(!skip(sd, path_flag, LABEL_GLOSSY|LABEL_REFLECT)) {
@@ -374,5 +532,110 @@ ClosureParam *closure_bsdf_microfacet_multi_ggx_glass_params()
}
CCLOSURE_PREPARE(closure_bsdf_microfacet_multi_ggx_glass_prepare, MicrofacetMultiGGXGlassClosure);
+
+/* Multiscattering GGX closures with Fresnel */
+
+class MicrofacetMultiFresnelClosure : public CBSDFClosure {
+public:
+ MicrofacetBsdf params;
+ float3 color;
+ float3 cspec0;
+
+ MicrofacetBsdf *alloc(ShaderData *sd, int path_flag, float3 weight)
+ {
+ /* Technically, the MultiGGX closure may also transmit. However,
+ * since this is set statically and only used for caustic flags, this
+ * is probably as good as it gets. */
+ if(!skip(sd, path_flag, LABEL_GLOSSY | LABEL_REFLECT)) {
+ MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc_osl(sd, sizeof(MicrofacetBsdf), weight, &params);
+ MicrofacetExtra *extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));
+ if(bsdf && extra) {
+ bsdf->extra = extra;
+ bsdf->extra->color = color;
+ bsdf->extra->cspec0 = cspec0;
+ return bsdf;
+ }
+ }
+
+ return NULL;
+ }
+};
+
+class MicrofacetMultiGGXFresnelClosure : public MicrofacetMultiFresnelClosure {
+public:
+ void setup(ShaderData *sd, int path_flag, float3 weight)
+ {
+ MicrofacetBsdf *bsdf = alloc(sd, path_flag, weight);
+ sd->flag |= (bsdf) ? bsdf_microfacet_multi_ggx_fresnel_setup(bsdf, sd) : 0;
+ }
+};
+
+ClosureParam *closure_bsdf_microfacet_multi_ggx_fresnel_params()
+{
+ static ClosureParam params[] = {
+ CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXFresnelClosure, params.N),
+ CLOSURE_FLOAT_PARAM(MicrofacetMultiGGXFresnelClosure, params.alpha_x),
+ CLOSURE_FLOAT_PARAM(MicrofacetMultiGGXFresnelClosure, params.ior),
+ CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXFresnelClosure, color),
+ CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXFresnelClosure, cspec0),
+ CLOSURE_STRING_KEYPARAM(MicrofacetMultiGGXFresnelClosure, label, "label"),
+ CLOSURE_FINISH_PARAM(MicrofacetMultiGGXFresnelClosure)
+ };
+ return params;
+}
+CCLOSURE_PREPARE(closure_bsdf_microfacet_multi_ggx_fresnel_prepare, MicrofacetMultiGGXFresnelClosure);
+
+class MicrofacetMultiGGXAnisoFresnelClosure : public MicrofacetMultiFresnelClosure {
+public:
+ void setup(ShaderData *sd, int path_flag, float3 weight)
+ {
+ MicrofacetBsdf *bsdf = alloc(sd, path_flag, weight);
+ sd->flag |= (bsdf) ? bsdf_microfacet_multi_ggx_aniso_fresnel_setup(bsdf, sd) : 0;
+ }
+};
+
+ClosureParam *closure_bsdf_microfacet_multi_ggx_aniso_fresnel_params()
+{
+ static ClosureParam params[] = {
+ CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXFresnelClosure, params.N),
+ CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXFresnelClosure, params.T),
+ CLOSURE_FLOAT_PARAM(MicrofacetMultiGGXFresnelClosure, params.alpha_x),
+ CLOSURE_FLOAT_PARAM(MicrofacetMultiGGXFresnelClosure, params.alpha_y),
+ CLOSURE_FLOAT_PARAM(MicrofacetMultiGGXFresnelClosure, params.ior),
+ CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXFresnelClosure, color),
+ CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXFresnelClosure, cspec0),
+ CLOSURE_STRING_KEYPARAM(MicrofacetMultiGGXFresnelClosure, label, "label"),
+ CLOSURE_FINISH_PARAM(MicrofacetMultiGGXFresnelClosure)
+ };
+ return params;
+}
+CCLOSURE_PREPARE(closure_bsdf_microfacet_multi_ggx_aniso_fresnel_prepare, MicrofacetMultiGGXAnisoFresnelClosure);
+
+class MicrofacetMultiGGXGlassFresnelClosure : public MicrofacetMultiFresnelClosure {
+public:
+ MicrofacetMultiGGXGlassFresnelClosure() : MicrofacetMultiFresnelClosure() {}
+
+ void setup(ShaderData *sd, int path_flag, float3 weight)
+ {
+ MicrofacetBsdf *bsdf = alloc(sd, path_flag, weight);
+ sd->flag |= (bsdf) ? bsdf_microfacet_multi_ggx_glass_fresnel_setup(bsdf, sd) : 0;
+ }
+};
+
+ClosureParam *closure_bsdf_microfacet_multi_ggx_glass_fresnel_params()
+{
+ static ClosureParam params[] = {
+ CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXFresnelClosure, params.N),
+ CLOSURE_FLOAT_PARAM(MicrofacetMultiGGXFresnelClosure, params.alpha_x),
+ CLOSURE_FLOAT_PARAM(MicrofacetMultiGGXFresnelClosure, params.ior),
+ CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXFresnelClosure, color),
+ CLOSURE_FLOAT3_PARAM(MicrofacetMultiGGXFresnelClosure, cspec0),
+ CLOSURE_STRING_KEYPARAM(MicrofacetMultiGGXFresnelClosure, label, "label"),
+ CLOSURE_FINISH_PARAM(MicrofacetMultiGGXFresnelClosure)
+ };
+ return params;
+}
+CCLOSURE_PREPARE(closure_bsdf_microfacet_multi_ggx_glass_fresnel_prepare, MicrofacetMultiGGXGlassFresnelClosure);
+
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/osl/osl_closures.h b/intern/cycles/kernel/osl/osl_closures.h
index cd7b33703ff..ff5fd9cc905 100644
--- a/intern/cycles/kernel/osl/osl_closures.h
+++ b/intern/cycles/kernel/osl/osl_closures.h
@@ -33,8 +33,8 @@
#ifndef __OSL_CLOSURES_H__
#define __OSL_CLOSURES_H__
-#include "util_types.h"
-#include "kernel_types.h"
+#include "util/util_types.h"
+#include "kernel/kernel_types.h"
#include <OSL/oslclosure.h>
#include <OSL/oslexec.h>
@@ -51,10 +51,17 @@ OSL::ClosureParam *closure_bsdf_phong_ramp_params();
OSL::ClosureParam *closure_bssrdf_cubic_params();
OSL::ClosureParam *closure_bssrdf_gaussian_params();
OSL::ClosureParam *closure_bssrdf_burley_params();
+OSL::ClosureParam *closure_bssrdf_principled_params();
OSL::ClosureParam *closure_henyey_greenstein_volume_params();
OSL::ClosureParam *closure_bsdf_microfacet_multi_ggx_params();
OSL::ClosureParam *closure_bsdf_microfacet_multi_ggx_glass_params();
OSL::ClosureParam *closure_bsdf_microfacet_multi_ggx_aniso_params();
+OSL::ClosureParam *closure_bsdf_microfacet_ggx_fresnel_params();
+OSL::ClosureParam *closure_bsdf_microfacet_ggx_aniso_fresnel_params();
+OSL::ClosureParam *closure_bsdf_microfacet_multi_ggx_fresnel_params();
+OSL::ClosureParam *closure_bsdf_microfacet_multi_ggx_glass_fresnel_params();
+OSL::ClosureParam *closure_bsdf_microfacet_multi_ggx_aniso_fresnel_params();
+OSL::ClosureParam *closure_bsdf_principled_clearcoat_params();
void closure_emission_prepare(OSL::RendererServices *, int id, void *data);
void closure_background_prepare(OSL::RendererServices *, int id, void *data);
@@ -65,10 +72,17 @@ void closure_bsdf_phong_ramp_prepare(OSL::RendererServices *, int id, void *data
void closure_bssrdf_cubic_prepare(OSL::RendererServices *, int id, void *data);
void closure_bssrdf_gaussian_prepare(OSL::RendererServices *, int id, void *data);
void closure_bssrdf_burley_prepare(OSL::RendererServices *, int id, void *data);
+void closure_bssrdf_principled_prepare(OSL::RendererServices *, int id, void *data);
void closure_henyey_greenstein_volume_prepare(OSL::RendererServices *, int id, void *data);
void closure_bsdf_microfacet_multi_ggx_prepare(OSL::RendererServices *, int id, void *data);
void closure_bsdf_microfacet_multi_ggx_glass_prepare(OSL::RendererServices *, int id, void *data);
void closure_bsdf_microfacet_multi_ggx_aniso_prepare(OSL::RendererServices *, int id, void *data);
+void closure_bsdf_microfacet_ggx_fresnel_prepare(OSL::RendererServices *, int id, void *data);
+void closure_bsdf_microfacet_ggx_aniso_fresnel_prepare(OSL::RendererServices *, int id, void *data);
+void closure_bsdf_microfacet_multi_ggx_fresnel_prepare(OSL::RendererServices *, int id, void *data);
+void closure_bsdf_microfacet_multi_ggx_glass_fresnel_prepare(OSL::RendererServices *, int id, void *data);
+void closure_bsdf_microfacet_multi_ggx_aniso_fresnel_prepare(OSL::RendererServices *, int id, void *data);
+void closure_bsdf_principled_clearcoat_prepare(OSL::RendererServices *, int id, void *data);
#define CCLOSURE_PREPARE(name, classname) \
void name(RendererServices *, int id, void *data) \
diff --git a/intern/cycles/kernel/osl/osl_globals.h b/intern/cycles/kernel/osl/osl_globals.h
index 65cb7ecc6b4..9585d9f4825 100644
--- a/intern/cycles/kernel/osl/osl_globals.h
+++ b/intern/cycles/kernel/osl/osl_globals.h
@@ -21,10 +21,10 @@
#include <OSL/oslexec.h>
-#include "util_map.h"
-#include "util_param.h"
-#include "util_thread.h"
-#include "util_vector.h"
+#include "util/util_map.h"
+#include "util/util_param.h"
+#include "util/util_thread.h"
+#include "util/util_vector.h"
#ifndef WIN32
using std::isfinite;
@@ -86,7 +86,7 @@ struct OSLThreadData {
OSL::ShaderGlobals globals;
OSL::PerThreadInfo *osl_thread_info;
OSLTraceData tracedata;
- OSL::ShadingContext *context[SHADER_CONTEXT_NUM];
+ OSL::ShadingContext *context;
OIIO::TextureSystem::Perthread *oiio_thread_info;
};
diff --git a/intern/cycles/kernel/osl/osl_services.cpp b/intern/cycles/kernel/osl/osl_services.cpp
index bc093272eca..c220a5ee3a1 100644
--- a/intern/cycles/kernel/osl/osl_services.cpp
+++ b/intern/cycles/kernel/osl/osl_services.cpp
@@ -25,38 +25,38 @@
#include <string.h>
-#include "mesh.h"
-#include "object.h"
-#include "scene.h"
-
-#include "osl_closures.h"
-#include "osl_globals.h"
-#include "osl_services.h"
-#include "osl_shader.h"
-
-#include "kernel_compat_cpu.h"
-#include "kernel_globals.h"
-#include "kernel_random.h"
-#include "kernel_projection.h"
-#include "kernel_differential.h"
-#include "kernel_montecarlo.h"
-#include "kernel_camera.h"
-
-#include "kernels/cpu/kernel_cpu_image.h"
+#include "render/mesh.h"
+#include "render/object.h"
+#include "render/scene.h"
+
+#include "kernel/osl/osl_closures.h"
+#include "kernel/osl/osl_globals.h"
+#include "kernel/osl/osl_services.h"
+#include "kernel/osl/osl_shader.h"
+
+#include "kernel/kernel_compat_cpu.h"
+#include "kernel/split/kernel_split_data_types.h"
+#include "kernel/kernel_globals.h"
+#include "kernel/kernel_random.h"
+#include "kernel/kernel_projection.h"
+#include "kernel/kernel_differential.h"
+#include "kernel/kernel_montecarlo.h"
+#include "kernel/kernel_camera.h"
+#include "kernel/kernels/cpu/kernel_cpu_image.h"
+#include "kernel/geom/geom.h"
+#include "kernel/bvh/bvh.h"
/* Note: "util_foreach.h" needs to be included after "kernel_compat_cpu.h", as
* for some reason ccl::foreach conflicts with openvdb::tools::foreach, which is
* indirectly included through "kernel_compat_cpu.h".
*/
-#include "util_foreach.h"
-#include "util_logging.h"
-#include "util_string.h"
-#include "geom/geom.h"
-#include "bvh/bvh.h"
+#include "util/util_foreach.h"
+#include "util/util_logging.h"
+#include "util/util_string.h"
-#include "kernel_projection.h"
-#include "kernel_accumulate.h"
-#include "kernel_shader.h"
+#include "kernel/kernel_projection.h"
+#include "kernel/kernel_accumulate.h"
+#include "kernel/kernel_shader.h"
#ifdef WITH_PTEX
# include <Ptexture.h>
@@ -107,6 +107,8 @@ ustring OSLRenderServices::u_curve_tangent_normal("geom:curve_tangent_normal");
#endif
ustring OSLRenderServices::u_path_ray_length("path:ray_length");
ustring OSLRenderServices::u_path_ray_depth("path:ray_depth");
+ustring OSLRenderServices::u_path_diffuse_depth("path:diffuse_depth");
+ustring OSLRenderServices::u_path_glossy_depth("path:glossy_depth");
ustring OSLRenderServices::u_path_transparent_depth("path:transparent_depth");
ustring OSLRenderServices::u_path_transmission_depth("path:transmission_depth");
ustring OSLRenderServices::u_trace("trace");
@@ -715,7 +717,7 @@ bool OSLRenderServices::get_object_standard_attribute(KernelGlobals *kg, ShaderD
else
motion_triangle_vertices(kg, sd->object, sd->prim, sd->time, P);
- if(!(sd->flag & SD_TRANSFORM_APPLIED)) {
+ if(!(sd->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
object_position_transform(kg, sd, &P[0]);
object_position_transform(kg, sd, &P[1]);
object_position_transform(kg, sd, &P[2]);
@@ -764,6 +766,24 @@ bool OSLRenderServices::get_background_attribute(KernelGlobals *kg, ShaderData *
int f = state->bounce;
return set_attribute_int(f, type, derivatives, val);
}
+ else if(name == u_path_diffuse_depth) {
+ /* Diffuse Ray Depth */
+ PathState *state = sd->osl_path_state;
+ int f = state->diffuse_bounce;
+ return set_attribute_int(f, type, derivatives, val);
+ }
+ else if(name == u_path_glossy_depth) {
+ /* Glossy Ray Depth */
+ PathState *state = sd->osl_path_state;
+ int f = state->glossy_bounce;
+ return set_attribute_int(f, type, derivatives, val);
+ }
+ else if(name == u_path_transmission_depth) {
+ /* Transmission Ray Depth */
+ PathState *state = sd->osl_path_state;
+ int f = state->transmission_bounce;
+ return set_attribute_int(f, type, derivatives, val);
+ }
else if(name == u_path_transparent_depth) {
/* Transparent Ray Depth */
PathState *state = sd->osl_path_state;
@@ -808,7 +828,7 @@ bool OSLRenderServices::get_background_attribute(KernelGlobals *kg, ShaderData *
bool OSLRenderServices::get_attribute(OSL::ShaderGlobals *sg, bool derivatives, ustring object_name,
TypeDesc type, ustring name, void *val)
{
- if(sg->renderstate == NULL)
+ if(sg == NULL || sg->renderstate == NULL)
return false;
ShaderData *sd = (ShaderData *)(sg->renderstate);
@@ -946,7 +966,7 @@ bool OSLRenderServices::texture(ustring filename,
if(filename.length() && filename[0] == '@') {
int slot = atoi(filename.c_str() + 1);
- float4 rgba = kernel_tex_image_interp(slot, s, 1.0f - t);
+ float4 rgba = kernel_tex_image_interp(kg, slot, s, 1.0f - t);
result[0] = rgba[0];
if(nchannels > 1)
@@ -1027,7 +1047,7 @@ bool OSLRenderServices::texture3d(ustring filename,
bool status;
if(filename.length() && filename[0] == '@') {
int slot = atoi(filename.c_str() + 1);
- float4 rgba = kernel_tex_image_interp_3d(slot, P.x, P.y, P.z);
+ float4 rgba = kernel_tex_image_interp_3d(kg, slot, P.x, P.y, P.z, INTERPOLATION_NONE);
result[0] = rgba[0];
if(nchannels > 1)
@@ -1181,8 +1201,9 @@ bool OSLRenderServices::trace(TraceOpt &options, OSL::ShaderGlobals *sg,
tracedata->init = true;
tracedata->sd.osl_globals = sd->osl_globals;
- /* raytrace */
- return scene_intersect(sd->osl_globals, ray, PATH_RAY_ALL_VISIBILITY, &tracedata->isect, NULL, 0.0f, 0.0f);
+ /* Raytrace, leaving out shadow opaque to avoid early exit. */
+ uint visibility = PATH_RAY_ALL_VISIBILITY - PATH_RAY_SHADOW_OPAQUE;
+ return scene_intersect(sd->osl_globals, ray, visibility, &tracedata->isect, NULL, 0.0f, 0.0f);
}
diff --git a/intern/cycles/kernel/osl/osl_services.h b/intern/cycles/kernel/osl/osl_services.h
index 0f2e02c62b0..ec34ca77115 100644
--- a/intern/cycles/kernel/osl/osl_services.h
+++ b/intern/cycles/kernel/osl/osl_services.h
@@ -165,6 +165,8 @@ public:
static ustring u_curve_tangent_normal;
static ustring u_path_ray_length;
static ustring u_path_ray_depth;
+ static ustring u_path_diffuse_depth;
+ static ustring u_path_glossy_depth;
static ustring u_path_transparent_depth;
static ustring u_path_transmission_depth;
static ustring u_trace;
diff --git a/intern/cycles/kernel/osl/osl_shader.cpp b/intern/cycles/kernel/osl/osl_shader.cpp
index 0d762bbdb38..6b3a996ca12 100644
--- a/intern/cycles/kernel/osl/osl_shader.cpp
+++ b/intern/cycles/kernel/osl/osl_shader.cpp
@@ -16,21 +16,22 @@
#include <OSL/oslexec.h>
-#include "kernel_compat_cpu.h"
-#include "kernel_montecarlo.h"
-#include "kernel_types.h"
-#include "kernel_globals.h"
+#include "kernel/kernel_compat_cpu.h"
+#include "kernel/kernel_montecarlo.h"
+#include "kernel/kernel_types.h"
+#include "kernel/split/kernel_split_data_types.h"
+#include "kernel/kernel_globals.h"
-#include "geom/geom_object.h"
+#include "kernel/geom/geom_object.h"
-#include "osl_closures.h"
-#include "osl_globals.h"
-#include "osl_services.h"
-#include "osl_shader.h"
+#include "kernel/osl/osl_closures.h"
+#include "kernel/osl/osl_globals.h"
+#include "kernel/osl/osl_services.h"
+#include "kernel/osl/osl_shader.h"
-#include "util_foreach.h"
+#include "util/util_foreach.h"
-#include "attribute.h"
+#include "render/attribute.h"
CCL_NAMESPACE_BEGIN
@@ -56,9 +57,7 @@ void OSLShader::thread_init(KernelGlobals *kg, KernelGlobals *kernel_globals, OS
tdata->globals.tracedata = &tdata->tracedata;
tdata->globals.flipHandedness = false;
tdata->osl_thread_info = ss->create_thread_info();
-
- for(int i = 0; i < SHADER_CONTEXT_NUM; i++)
- tdata->context[i] = ss->get_context(tdata->osl_thread_info);
+ tdata->context = ss->get_context(tdata->osl_thread_info);
tdata->oiio_thread_info = osl_globals->ts->get_perthread_info();
@@ -73,9 +72,7 @@ void OSLShader::thread_free(KernelGlobals *kg)
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSLThreadData *tdata = kg->osl_tdata;
-
- for(int i = 0; i < SHADER_CONTEXT_NUM; i++)
- ss->release_context(tdata->context[i]);
+ ss->release_context(tdata->context);
ss->destroy_thread_info(tdata->osl_thread_info);
@@ -172,7 +169,7 @@ static void flatten_surface_closure_tree(ShaderData *sd,
}
}
-void OSLShader::eval_surface(KernelGlobals *kg, ShaderData *sd, PathState *state, int path_flag, ShaderContext ctx)
+void OSLShader::eval_surface(KernelGlobals *kg, ShaderData *sd, PathState *state, int path_flag)
{
/* setup shader globals from shader data */
OSLThreadData *tdata = kg->osl_tdata;
@@ -181,7 +178,7 @@ void OSLShader::eval_surface(KernelGlobals *kg, ShaderData *sd, PathState *state
/* execute shader for this point */
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSL::ShaderGlobals *globals = &tdata->globals;
- OSL::ShadingContext *octx = tdata->context[(int)ctx];
+ OSL::ShadingContext *octx = tdata->context;
int shader = sd->shader & SHADER_MASK;
/* automatic bump shader */
@@ -273,7 +270,7 @@ static void flatten_background_closure_tree(ShaderData *sd,
}
}
-void OSLShader::eval_background(KernelGlobals *kg, ShaderData *sd, PathState *state, int path_flag, ShaderContext ctx)
+void OSLShader::eval_background(KernelGlobals *kg, ShaderData *sd, PathState *state, int path_flag)
{
/* setup shader globals from shader data */
OSLThreadData *tdata = kg->osl_tdata;
@@ -282,7 +279,7 @@ void OSLShader::eval_background(KernelGlobals *kg, ShaderData *sd, PathState *st
/* execute shader for this point */
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSL::ShaderGlobals *globals = &tdata->globals;
- OSL::ShadingContext *octx = tdata->context[(int)ctx];
+ OSL::ShadingContext *octx = tdata->context;
if(kg->osl->background_state) {
ss->execute(octx, *(kg->osl->background_state), *globals);
@@ -328,7 +325,7 @@ static void flatten_volume_closure_tree(ShaderData *sd,
}
}
-void OSLShader::eval_volume(KernelGlobals *kg, ShaderData *sd, PathState *state, int path_flag, ShaderContext ctx)
+void OSLShader::eval_volume(KernelGlobals *kg, ShaderData *sd, PathState *state, int path_flag)
{
/* setup shader globals from shader data */
OSLThreadData *tdata = kg->osl_tdata;
@@ -337,7 +334,7 @@ void OSLShader::eval_volume(KernelGlobals *kg, ShaderData *sd, PathState *state,
/* execute shader */
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSL::ShaderGlobals *globals = &tdata->globals;
- OSL::ShadingContext *octx = tdata->context[(int)ctx];
+ OSL::ShadingContext *octx = tdata->context;
int shader = sd->shader & SHADER_MASK;
if(kg->osl->volume_state[shader]) {
@@ -351,19 +348,17 @@ void OSLShader::eval_volume(KernelGlobals *kg, ShaderData *sd, PathState *state,
/* Displacement */
-void OSLShader::eval_displacement(KernelGlobals *kg, ShaderData *sd, ShaderContext ctx)
+void OSLShader::eval_displacement(KernelGlobals *kg, ShaderData *sd, PathState *state)
{
/* setup shader globals from shader data */
OSLThreadData *tdata = kg->osl_tdata;
- PathState state = {0};
-
- shaderdata_to_shaderglobals(kg, sd, &state, 0, tdata);
+ shaderdata_to_shaderglobals(kg, sd, state, 0, tdata);
/* execute shader */
OSL::ShadingSystem *ss = (OSL::ShadingSystem*)kg->osl_ss;
OSL::ShaderGlobals *globals = &tdata->globals;
- OSL::ShadingContext *octx = tdata->context[(int)ctx];
+ OSL::ShadingContext *octx = tdata->context;
int shader = sd->shader & SHADER_MASK;
if(kg->osl->displacement_state[shader]) {
diff --git a/intern/cycles/kernel/osl/osl_shader.h b/intern/cycles/kernel/osl/osl_shader.h
index ad06dd6929d..6b392b25cf7 100644
--- a/intern/cycles/kernel/osl/osl_shader.h
+++ b/intern/cycles/kernel/osl/osl_shader.h
@@ -29,7 +29,7 @@
* This means no thread state must be passed along in the kernel itself.
*/
-#include "kernel_types.h"
+#include "kernel/kernel_types.h"
CCL_NAMESPACE_BEGIN
@@ -53,10 +53,10 @@ public:
static void thread_free(KernelGlobals *kg);
/* eval */
- static void eval_surface(KernelGlobals *kg, ShaderData *sd, PathState *state, int path_flag, ShaderContext ctx);
- static void eval_background(KernelGlobals *kg, ShaderData *sd, PathState *state, int path_flag, ShaderContext ctx);
- static void eval_volume(KernelGlobals *kg, ShaderData *sd, PathState *state, int path_flag, ShaderContext ctx);
- static void eval_displacement(KernelGlobals *kg, ShaderData *sd, ShaderContext ctx);
+ static void eval_surface(KernelGlobals *kg, ShaderData *sd, PathState *state, int path_flag);
+ static void eval_background(KernelGlobals *kg, ShaderData *sd, PathState *state, int path_flag);
+ static void eval_volume(KernelGlobals *kg, ShaderData *sd, PathState *state, int path_flag);
+ static void eval_displacement(KernelGlobals *kg, ShaderData *sd, PathState *state);
/* attributes */
static int find_attribute(KernelGlobals *kg, const ShaderData *sd, uint id, AttributeDescriptor *desc);
diff --git a/intern/cycles/kernel/shaders/CMakeLists.txt b/intern/cycles/kernel/shaders/CMakeLists.txt
index b43f8402d42..1a8ed4c884a 100644
--- a/intern/cycles/kernel/shaders/CMakeLists.txt
+++ b/intern/cycles/kernel/shaders/CMakeLists.txt
@@ -81,13 +81,15 @@ set(SRC_OSL
node_wireframe.osl
node_hair_bsdf.osl
node_uv_map.osl
+ node_principled_bsdf.osl
node_rgb_to_bw.osl
)
set(SRC_OSL_HEADERS
- node_texture.h
node_color.h
node_fresnel.h
+ node_ramp_util.h
+ node_texture.h
stdosl.h
oslutil.h
)
diff --git a/intern/cycles/kernel/shaders/node_light_path.osl b/intern/cycles/kernel/shaders/node_light_path.osl
index a021a40467d..64fe4c20132 100644
--- a/intern/cycles/kernel/shaders/node_light_path.osl
+++ b/intern/cycles/kernel/shaders/node_light_path.osl
@@ -27,6 +27,8 @@ shader node_light_path(
output float IsVolumeScatterRay = 0.0,
output float RayLength = 0.0,
output float RayDepth = 0.0,
+ output float DiffuseDepth = 0.0,
+ output float GlossyDepth = 0.0,
output float TransparentDepth = 0.0,
output float TransmissionDepth = 0.0)
{
@@ -45,6 +47,14 @@ shader node_light_path(
getattribute("path:ray_depth", ray_depth);
RayDepth = (float)ray_depth;
+ int diffuse_depth;
+ getattribute("path:diffuse_depth", diffuse_depth);
+ DiffuseDepth = (float)diffuse_depth;
+
+ int glossy_depth;
+ getattribute("path:glossy_depth", glossy_depth);
+ GlossyDepth = (float)glossy_depth;
+
int transparent_depth;
getattribute("path:transparent_depth", transparent_depth);
TransparentDepth = (float)transparent_depth;
diff --git a/intern/cycles/kernel/shaders/node_principled_bsdf.osl b/intern/cycles/kernel/shaders/node_principled_bsdf.osl
new file mode 100644
index 00000000000..6870d479af3
--- /dev/null
+++ b/intern/cycles/kernel/shaders/node_principled_bsdf.osl
@@ -0,0 +1,120 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "stdosl.h"
+#include "node_fresnel.h"
+
+shader node_principled_bsdf(
+ string distribution = "Multiscatter GGX",
+ color BaseColor = color(0.8, 0.8, 0.8),
+ float Subsurface = 0.0,
+ vector SubsurfaceRadius = vector(1.0, 1.0, 1.0),
+ color SubsurfaceColor = color(0.7, 0.1, 0.1),
+ float Metallic = 0.0,
+ float Specular = 0.5,
+ float SpecularTint = 0.0,
+ float Roughness = 0.5,
+ float Anisotropic = 0.0,
+ float AnisotropicRotation = 0.0,
+ float Sheen = 0.0,
+ float SheenTint = 0.5,
+ float Clearcoat = 0.0,
+ float ClearcoatRoughness = 0.03,
+ float IOR = 1.45,
+ float Transmission = 0.0,
+ float TransmissionRoughness = 0.0,
+ normal Normal = N,
+ normal ClearcoatNormal = N,
+ normal Tangent = normalize(dPdu),
+ output closure color BSDF = 0)
+{
+ float f = max(IOR, 1e-5);
+ float diffuse_weight = (1.0 - clamp(Metallic, 0.0, 1.0)) * (1.0 - clamp(Transmission, 0.0, 1.0));
+ float final_transmission = clamp(Transmission, 0.0, 1.0) * (1.0 - clamp(Metallic, 0.0, 1.0));
+ float specular_weight = (1.0 - final_transmission);
+
+ vector T = Tangent;
+
+ float m_cdlum = luminance(BaseColor);
+ color m_ctint = m_cdlum > 0.0 ? BaseColor / m_cdlum : color(0.0, 0.0, 0.0); // normalize lum. to isolate hue+sat
+
+ /* rotate tangent */
+ if (AnisotropicRotation != 0.0)
+ T = rotate(T, AnisotropicRotation * M_2PI, point(0.0, 0.0, 0.0), Normal);
+
+ if (diffuse_weight > 1e-5) {
+ if (Subsurface > 1e-5) {
+ color mixed_ss_base_color = SubsurfaceColor * Subsurface + BaseColor * (1.0 - Subsurface);
+ BSDF = mixed_ss_base_color * bssrdf_principled(Normal, Subsurface * SubsurfaceRadius, 0.0, SubsurfaceColor, Roughness);
+ } else {
+ BSDF = BaseColor * principled_diffuse(Normal, Roughness);
+ }
+
+ if (Sheen > 1e-5) {
+ color sheen_color = color(1.0, 1.0, 1.0) * (1.0 - SheenTint) + m_ctint * SheenTint;
+
+ BSDF = BSDF + sheen_color * Sheen * principled_sheen(Normal);
+ }
+
+ BSDF = BSDF * diffuse_weight;
+ }
+
+ if (specular_weight > 1e-5) {
+ float aspect = sqrt(1.0 - Anisotropic * 0.9);
+ float r2 = Roughness * Roughness;
+
+ float alpha_x = r2 / aspect;
+ float alpha_y = r2 * aspect;
+
+ color tmp_col = color(1.0, 1.0, 1.0) * (1.0 - SpecularTint) + m_ctint * SpecularTint;
+
+ color Cspec0 = (Specular * 0.08 * tmp_col) * (1.0 - Metallic) + BaseColor * Metallic;
+
+ if (distribution == "GGX" || Roughness <= 0.075) {
+ BSDF = BSDF + specular_weight * microfacet_ggx_aniso_fresnel(Normal, T, alpha_x, alpha_y, (2.0 / (1.0 - sqrt(0.08 * Specular))) - 1.0, BaseColor, Cspec0);
+ } else {
+ BSDF = BSDF + specular_weight * microfacet_multi_ggx_aniso_fresnel(Normal, T, alpha_x, alpha_y, (2.0 / (1.0 - sqrt(0.08 * Specular))) - 1.0, BaseColor, Cspec0);
+ }
+ }
+
+ if (final_transmission > 1e-5) {
+ color Cspec0 = BaseColor * SpecularTint + color(1.0, 1.0, 1.0) * (1.0 - SpecularTint);
+ float eta = backfacing() ? 1.0 / f : f;
+
+ if (distribution == "GGX" || Roughness <= 5e-2) {
+ float cosNO = dot(Normal, I);
+ float Fr = fresnel_dielectric_cos(cosNO, eta);
+
+ float refl_roughness = Roughness;
+ if (Roughness <= 1e-2)
+ refl_roughness = 0.0;
+
+ float transmission_roughness = refl_roughness;
+ if (distribution == "GGX")
+ transmission_roughness = 1.0 - (1.0 - refl_roughness) * (1.0 - TransmissionRoughness);
+
+ BSDF = BSDF + final_transmission * (Fr * microfacet_ggx_fresnel(Normal, refl_roughness * refl_roughness, eta, BaseColor, Cspec0) +
+ (1.0 - Fr) * BaseColor * microfacet_ggx_refraction(Normal, transmission_roughness * transmission_roughness, eta));
+ } else {
+ BSDF = BSDF + final_transmission * microfacet_multi_ggx_glass_fresnel(Normal, Roughness * Roughness, eta, BaseColor, Cspec0);
+ }
+ }
+
+ if (Clearcoat > 1e-5) {
+ BSDF = BSDF + principled_clearcoat(ClearcoatNormal, Clearcoat, ClearcoatRoughness * ClearcoatRoughness);
+ }
+}
+
diff --git a/intern/cycles/kernel/shaders/stdosl.h b/intern/cycles/kernel/shaders/stdosl.h
index a8dda8a12c9..c91d2918687 100644
--- a/intern/cycles/kernel/shaders/stdosl.h
+++ b/intern/cycles/kernel/shaders/stdosl.h
@@ -530,6 +530,11 @@ closure color microfacet_ggx_refraction(normal N, float ag, float eta) BUILTIN;
closure color microfacet_multi_ggx(normal N, float ag, color C) BUILTIN;
closure color microfacet_multi_ggx_aniso(normal N, vector T, float ax, float ay, color C) BUILTIN;
closure color microfacet_multi_ggx_glass(normal N, float ag, float eta, color C) BUILTIN;
+closure color microfacet_ggx_fresnel(normal N, float ag, float eta, color C, color Cspec0) BUILTIN;
+closure color microfacet_ggx_aniso_fresnel(normal N, vector T, float ax, float ay, float eta, color C, color Cspec0) BUILTIN;
+closure color microfacet_multi_ggx_fresnel(normal N, float ag, float eta, color C, color Cspec0) BUILTIN;
+closure color microfacet_multi_ggx_aniso_fresnel(normal N, vector T, float ax, float ay, float eta, color C, color Cspec0) BUILTIN;
+closure color microfacet_multi_ggx_glass_fresnel(normal N, float ag, float eta, color C, color Cspec0) BUILTIN;
closure color microfacet_beckmann(normal N, float ab) BUILTIN;
closure color microfacet_beckmann_aniso(normal N, vector T, float ax, float ay) BUILTIN;
closure color microfacet_beckmann_refraction(normal N, float ab, float eta) BUILTIN;
@@ -539,11 +544,15 @@ closure color emission() BUILTIN;
closure color background() BUILTIN;
closure color holdout() BUILTIN;
closure color ambient_occlusion() BUILTIN;
+closure color principled_diffuse(normal N, float roughness) BUILTIN;
+closure color principled_sheen(normal N) BUILTIN;
+closure color principled_clearcoat(normal N, float clearcoat, float clearcoat_roughness) BUILTIN;
// BSSRDF
closure color bssrdf_cubic(normal N, vector radius, float texture_blur, float sharpness) BUILTIN;
closure color bssrdf_gaussian(normal N, vector radius, float texture_blur) BUILTIN;
closure color bssrdf_burley(normal N, vector radius, float texture_blur, color albedo) BUILTIN;
+closure color bssrdf_principled(normal N, vector radius, float texture_blur, color subsurface_color, float roughness) BUILTIN;
// Hair
closure color hair_reflection(normal N, float roughnessu, float roughnessv, vector T, float offset) BUILTIN;
diff --git a/intern/cycles/kernel/split/kernel_background_buffer_update.h b/intern/cycles/kernel/split/kernel_background_buffer_update.h
deleted file mode 100644
index 9bfa71c75ef..00000000000
--- a/intern/cycles/kernel/split/kernel_background_buffer_update.h
+++ /dev/null
@@ -1,248 +0,0 @@
-/*
- * Copyright 2011-2015 Blender Foundation
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "kernel_split_common.h"
-
-/* Note on kernel_background_buffer_update kernel.
- * This is the fourth kernel in the ray tracing logic, and the third
- * of the path iteration kernels. This kernel takes care of rays that hit
- * the background (sceneintersect kernel), and for the rays of
- * state RAY_UPDATE_BUFFER it updates the ray's accumulated radiance in
- * the output buffer. This kernel also takes care of rays that have been determined
- * to-be-regenerated.
- *
- * We will empty QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS queue in this kernel
- *
- * Typically all rays that are in state RAY_HIT_BACKGROUND, RAY_UPDATE_BUFFER
- * will be eventually set to RAY_TO_REGENERATE state in this kernel. Finally all rays of ray_state
- * RAY_TO_REGENERATE will be regenerated and put in queue QUEUE_ACTIVE_AND_REGENERATED_RAYS.
- *
- * The input and output are as follows,
- *
- * rng_coop ---------------------------------------------|--- kernel_background_buffer_update --|--- PathRadiance_coop
- * throughput_coop --------------------------------------| |--- L_transparent_coop
- * per_sample_output_buffers ----------------------------| |--- per_sample_output_buffers
- * Ray_coop ---------------------------------------------| |--- ray_state
- * PathState_coop ---------------------------------------| |--- Queue_data (QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS)
- * L_transparent_coop -----------------------------------| |--- Queue_data (QUEUE_ACTIVE_AND_REGENERATED_RAYS)
- * ray_state --------------------------------------------| |--- Queue_index (QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS)
- * Queue_data (QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS) ----| |--- Queue_index (QUEUE_ACTIVE_AND_REGENERATED_RAYS)
- * Queue_index (QUEUE_ACTIVE_AND_REGENERATED_RAYS) ------| |--- work_array
- * parallel_samples -------------------------------------| |--- PathState_coop
- * end_sample -------------------------------------------| |--- throughput_coop
- * kg (globals) -----------------------------------------| |--- rng_coop
- * rng_state --------------------------------------------| |--- Ray
- * PathRadiance_coop ------------------------------------| |
- * sw ---------------------------------------------------| |
- * sh ---------------------------------------------------| |
- * sx ---------------------------------------------------| |
- * sy ---------------------------------------------------| |
- * stride -----------------------------------------------| |
- * work_array -------------------------------------------| |--- work_array
- * queuesize --------------------------------------------| |
- * start_sample -----------------------------------------| |--- work_pool_wgs
- * work_pool_wgs ----------------------------------------| |
- * num_samples ------------------------------------------| |
- *
- * note on sd : sd argument is neither an input nor an output for this kernel. It is just filled and consumed here itself.
- * Note on Queues :
- * This kernel fetches rays from QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS queue.
- *
- * State of queues when this kernel is called :
- * At entry,
- * QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE rays
- * QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with RAY_UPDATE_BUFFER, RAY_HIT_BACKGROUND, RAY_TO_REGENERATE rays
- * At exit,
- * QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE and RAY_REGENERATED rays
- * QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be empty
- */
-ccl_device char kernel_background_buffer_update(
- KernelGlobals *kg,
- ccl_global float *per_sample_output_buffers,
- ccl_global uint *rng_state,
- ccl_global uint *rng_coop, /* Required for buffer Update */
- ccl_global float3 *throughput_coop, /* Required for background hit processing */
- PathRadiance *PathRadiance_coop, /* Required for background hit processing and buffer Update */
- ccl_global Ray *Ray_coop, /* Required for background hit processing */
- ccl_global PathState *PathState_coop, /* Required for background hit processing */
- ccl_global float *L_transparent_coop, /* Required for background hit processing and buffer Update */
- ccl_global char *ray_state, /* Stores information on the current state of a ray */
- int sw, int sh, int sx, int sy, int stride,
- int rng_state_offset_x,
- int rng_state_offset_y,
- int rng_state_stride,
- ccl_global unsigned int *work_array, /* Denotes work of each ray */
- int end_sample,
- int start_sample,
-#ifdef __WORK_STEALING__
- ccl_global unsigned int *work_pool_wgs,
- unsigned int num_samples,
-#endif
-#ifdef __KERNEL_DEBUG__
- DebugData *debugdata_coop,
-#endif
- int parallel_samples, /* Number of samples to be processed in parallel */
- int ray_index)
-{
- char enqueue_flag = 0;
-#ifdef __KERNEL_DEBUG__
- DebugData *debug_data = &debugdata_coop[ray_index];
-#endif
- ccl_global PathState *state = &PathState_coop[ray_index];
- PathRadiance *L = L = &PathRadiance_coop[ray_index];
- ccl_global Ray *ray = &Ray_coop[ray_index];
- ccl_global float3 *throughput = &throughput_coop[ray_index];
- ccl_global float *L_transparent = &L_transparent_coop[ray_index];
- ccl_global uint *rng = &rng_coop[ray_index];
-
-#ifdef __WORK_STEALING__
- unsigned int my_work;
- ccl_global float *initial_per_sample_output_buffers;
- ccl_global uint *initial_rng;
-#endif
- unsigned int sample;
- unsigned int tile_x;
- unsigned int tile_y;
- unsigned int pixel_x;
- unsigned int pixel_y;
- unsigned int my_sample_tile;
-
-#ifdef __WORK_STEALING__
- my_work = work_array[ray_index];
- sample = get_my_sample(my_work, sw, sh, parallel_samples, ray_index) + start_sample;
- get_pixel_tile_position(&pixel_x, &pixel_y,
- &tile_x, &tile_y,
- my_work,
- sw, sh, sx, sy,
- parallel_samples,
- ray_index);
- my_sample_tile = 0;
- initial_per_sample_output_buffers = per_sample_output_buffers;
- initial_rng = rng_state;
-#else /* __WORK_STEALING__ */
- sample = work_array[ray_index];
- int tile_index = ray_index / parallel_samples;
- /* buffer and rng_state's stride is "stride". Find x and y using ray_index */
- tile_x = tile_index % sw;
- tile_y = tile_index / sw;
- my_sample_tile = ray_index - (tile_index * parallel_samples);
-#endif /* __WORK_STEALING__ */
-
- rng_state += (rng_state_offset_x + tile_x) + (rng_state_offset_y + tile_y) * rng_state_stride;
- per_sample_output_buffers += (((tile_x + (tile_y * stride)) * parallel_samples) + my_sample_tile) * kernel_data.film.pass_stride;
-
- if(IS_STATE(ray_state, ray_index, RAY_HIT_BACKGROUND)) {
- /* eval background shader if nothing hit */
- if(kernel_data.background.transparent && (state->flag & PATH_RAY_CAMERA)) {
- *L_transparent = (*L_transparent) + average((*throughput));
-#ifdef __PASSES__
- if(!(kernel_data.film.pass_flag & PASS_BACKGROUND))
-#endif
- ASSIGN_RAY_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER);
- }
-
- if(IS_STATE(ray_state, ray_index, RAY_HIT_BACKGROUND)) {
-#ifdef __BACKGROUND__
- /* sample background shader */
- float3 L_background = indirect_background(kg, kg->sd_input, state, ray);
- path_radiance_accum_background(L, (*throughput), L_background, state->bounce);
-#endif
- ASSIGN_RAY_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER);
- }
- }
-
- if(IS_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER)) {
- float3 L_sum = path_radiance_clamp_and_sum(kg, L);
- kernel_write_light_passes(kg, per_sample_output_buffers, L, sample);
-#ifdef __KERNEL_DEBUG__
- kernel_write_debug_passes(kg, per_sample_output_buffers, state, debug_data, sample);
-#endif
- float4 L_rad = make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - (*L_transparent));
-
- /* accumulate result in output buffer */
- kernel_write_pass_float4(per_sample_output_buffers, sample, L_rad);
- path_rng_end(kg, rng_state, *rng);
-
- ASSIGN_RAY_STATE(ray_state, ray_index, RAY_TO_REGENERATE);
- }
-
- if(IS_STATE(ray_state, ray_index, RAY_TO_REGENERATE)) {
-#ifdef __WORK_STEALING__
- /* We have completed current work; So get next work */
- int valid_work = get_next_work(work_pool_wgs, &my_work, sw, sh, num_samples, parallel_samples, ray_index);
- if(!valid_work) {
- /* If work is invalid, this means no more work is available and the thread may exit */
- ASSIGN_RAY_STATE(ray_state, ray_index, RAY_INACTIVE);
- }
-#else /* __WORK_STEALING__ */
- if((sample + parallel_samples) >= end_sample) {
- ASSIGN_RAY_STATE(ray_state, ray_index, RAY_INACTIVE);
- }
-#endif /* __WORK_STEALING__ */
-
- if(IS_STATE(ray_state, ray_index, RAY_TO_REGENERATE)) {
-#ifdef __WORK_STEALING__
- work_array[ray_index] = my_work;
- /* Get the sample associated with the current work */
- sample = get_my_sample(my_work, sw, sh, parallel_samples, ray_index) + start_sample;
- /* Get pixel and tile position associated with current work */
- get_pixel_tile_position(&pixel_x, &pixel_y, &tile_x, &tile_y, my_work, sw, sh, sx, sy, parallel_samples, ray_index);
- my_sample_tile = 0;
-
- /* Remap rng_state according to the current work */
- rng_state = initial_rng + ((rng_state_offset_x + tile_x) + (rng_state_offset_y + tile_y) * rng_state_stride);
- /* Remap per_sample_output_buffers according to the current work */
- per_sample_output_buffers = initial_per_sample_output_buffers
- + (((tile_x + (tile_y * stride)) * parallel_samples) + my_sample_tile) * kernel_data.film.pass_stride;
-#else /* __WORK_STEALING__ */
- work_array[ray_index] = sample + parallel_samples;
- sample = work_array[ray_index];
-
- /* Get ray position from ray index */
- pixel_x = sx + ((ray_index / parallel_samples) % sw);
- pixel_y = sy + ((ray_index / parallel_samples) / sw);
-#endif /* __WORK_STEALING__ */
-
- /* Initialize random numbers and ray. */
- kernel_path_trace_setup(kg, rng_state, sample, pixel_x, pixel_y, rng, ray);
-
- if(ray->t != 0.0f) {
- /* Initialize throughput, L_transparent, Ray, PathState;
- * These rays proceed with path-iteration.
- */
- *throughput = make_float3(1.0f, 1.0f, 1.0f);
- *L_transparent = 0.0f;
- path_radiance_init(L, kernel_data.film.use_light_pass);
- path_state_init(kg, kg->sd_input, state, rng, sample, ray);
-#ifdef __KERNEL_DEBUG__
- debug_data_init(debug_data);
-#endif
- ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
- enqueue_flag = 1;
- }
- else {
- /* These rays do not participate in path-iteration. */
- float4 L_rad = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
- /* Accumulate result in output buffer. */
- kernel_write_pass_float4(per_sample_output_buffers, sample, L_rad);
- path_rng_end(kg, rng_state, *rng);
-
- ASSIGN_RAY_STATE(ray_state, ray_index, RAY_TO_REGENERATE);
- }
- }
- }
- return enqueue_flag;
-}
diff --git a/intern/cycles/kernel/split/kernel_branched.h b/intern/cycles/kernel/split/kernel_branched.h
new file mode 100644
index 00000000000..2313feac089
--- /dev/null
+++ b/intern/cycles/kernel/split/kernel_branched.h
@@ -0,0 +1,219 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+#ifdef __BRANCHED_PATH__
+
+/* sets up the various state needed to do an indirect loop */
+ccl_device_inline void kernel_split_branched_path_indirect_loop_init(KernelGlobals *kg, int ray_index)
+{
+ SplitBranchedState *branched_state = &kernel_split_state.branched_state[ray_index];
+
+ /* save a copy of the state to restore later */
+#define BRANCHED_STORE(name) \
+ branched_state->name = kernel_split_state.name[ray_index];
+
+ BRANCHED_STORE(path_state);
+ BRANCHED_STORE(throughput);
+ BRANCHED_STORE(ray);
+ BRANCHED_STORE(sd);
+ BRANCHED_STORE(isect);
+ BRANCHED_STORE(ray_state);
+
+#undef BRANCHED_STORE
+
+ /* set loop counters to intial position */
+ branched_state->next_closure = 0;
+ branched_state->next_sample = 0;
+}
+
+/* ends an indirect loop and restores the previous state */
+ccl_device_inline void kernel_split_branched_path_indirect_loop_end(KernelGlobals *kg, int ray_index)
+{
+ SplitBranchedState *branched_state = &kernel_split_state.branched_state[ray_index];
+
+ /* restore state */
+#define BRANCHED_RESTORE(name) \
+ kernel_split_state.name[ray_index] = branched_state->name;
+
+ BRANCHED_RESTORE(path_state);
+ BRANCHED_RESTORE(throughput);
+ BRANCHED_RESTORE(ray);
+ BRANCHED_RESTORE(sd);
+ BRANCHED_RESTORE(isect);
+ BRANCHED_RESTORE(ray_state);
+
+#undef BRANCHED_RESTORE
+
+ /* leave indirect loop */
+ REMOVE_RAY_FLAG(kernel_split_state.ray_state, ray_index, RAY_BRANCHED_INDIRECT);
+}
+
+ccl_device_inline bool kernel_split_branched_indirect_start_shared(KernelGlobals *kg, int ray_index)
+{
+ ccl_global char *ray_state = kernel_split_state.ray_state;
+
+ int inactive_ray = dequeue_ray_index(QUEUE_INACTIVE_RAYS,
+ kernel_split_state.queue_data, kernel_split_params.queue_size, kernel_split_params.queue_index);
+
+ if(!IS_STATE(ray_state, inactive_ray, RAY_INACTIVE)) {
+ return false;
+ }
+
+#define SPLIT_DATA_ENTRY(type, name, num) \
+ kernel_split_state.name[inactive_ray] = kernel_split_state.name[ray_index];
+ SPLIT_DATA_ENTRIES_BRANCHED_SHARED
+#undef SPLIT_DATA_ENTRY
+
+ kernel_split_state.branched_state[inactive_ray].shared_sample_count = 0;
+ kernel_split_state.branched_state[inactive_ray].original_ray = ray_index;
+ kernel_split_state.branched_state[inactive_ray].waiting_on_shared_samples = false;
+
+ PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
+ PathRadiance *inactive_L = &kernel_split_state.path_radiance[inactive_ray];
+
+ path_radiance_init(inactive_L, kernel_data.film.use_light_pass);
+ path_radiance_copy_indirect(inactive_L, L);
+
+ ray_state[inactive_ray] = RAY_REGENERATED;
+ ADD_RAY_FLAG(ray_state, inactive_ray, RAY_BRANCHED_INDIRECT_SHARED);
+ ADD_RAY_FLAG(ray_state, inactive_ray, IS_FLAG(ray_state, ray_index, RAY_BRANCHED_INDIRECT));
+
+ atomic_fetch_and_inc_uint32((ccl_global uint*)&kernel_split_state.branched_state[ray_index].shared_sample_count);
+
+ return true;
+}
+
+/* bounce off surface and integrate indirect light */
+ccl_device_noinline bool kernel_split_branched_path_surface_indirect_light_iter(KernelGlobals *kg,
+ int ray_index,
+ float num_samples_adjust,
+ ShaderData *saved_sd,
+ bool reset_path_state,
+ bool wait_for_shared)
+{
+ SplitBranchedState *branched_state = &kernel_split_state.branched_state[ray_index];
+
+ ShaderData *sd = saved_sd;
+ PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
+ float3 throughput = branched_state->throughput;
+ ccl_global PathState *ps = &kernel_split_state.path_state[ray_index];
+
+ float sum_sample_weight = 0.0f;
+#ifdef __DENOISING_FEATURES__
+ if(ps->denoising_feature_weight > 0.0f) {
+ for(int i = 0; i < sd->num_closure; i++) {
+ const ShaderClosure *sc = &sd->closure[i];
+
+ /* transparency is not handled here, but in outer loop */
+ if(!CLOSURE_IS_BSDF(sc->type) || CLOSURE_IS_BSDF_TRANSPARENT(sc->type)) {
+ continue;
+ }
+
+ sum_sample_weight += sc->sample_weight;
+ }
+ }
+ else {
+ sum_sample_weight = 1.0f;
+ }
+#endif /* __DENOISING_FEATURES__ */
+
+ for(int i = branched_state->next_closure; i < sd->num_closure; i++) {
+ const ShaderClosure *sc = &sd->closure[i];
+
+ if(!CLOSURE_IS_BSDF(sc->type))
+ continue;
+ /* transparency is not handled here, but in outer loop */
+ if(sc->type == CLOSURE_BSDF_TRANSPARENT_ID)
+ continue;
+
+ int num_samples;
+
+ if(CLOSURE_IS_BSDF_DIFFUSE(sc->type))
+ num_samples = kernel_data.integrator.diffuse_samples;
+ else if(CLOSURE_IS_BSDF_BSSRDF(sc->type))
+ num_samples = 1;
+ else if(CLOSURE_IS_BSDF_GLOSSY(sc->type))
+ num_samples = kernel_data.integrator.glossy_samples;
+ else
+ num_samples = kernel_data.integrator.transmission_samples;
+
+ num_samples = ceil_to_int(num_samples_adjust*num_samples);
+
+ float num_samples_inv = num_samples_adjust/num_samples;
+
+ for(int j = branched_state->next_sample; j < num_samples; j++) {
+ if(reset_path_state) {
+ *ps = branched_state->path_state;
+ }
+
+ ps->rng_hash = cmj_hash(branched_state->path_state.rng_hash, i);
+
+ ccl_global float3 *tp = &kernel_split_state.throughput[ray_index];
+ *tp = throughput;
+
+ ccl_global Ray *bsdf_ray = &kernel_split_state.ray[ray_index];
+
+ if(!kernel_branched_path_surface_bounce(kg,
+ sd,
+ sc,
+ j,
+ num_samples,
+ tp,
+ ps,
+ &L->state,
+ bsdf_ray,
+ sum_sample_weight))
+ {
+ continue;
+ }
+
+ ps->rng_hash = branched_state->path_state.rng_hash;
+
+ /* update state for next iteration */
+ branched_state->next_closure = i;
+ branched_state->next_sample = j+1;
+
+ /* start the indirect path */
+ *tp *= num_samples_inv;
+
+ if(kernel_split_branched_indirect_start_shared(kg, ray_index)) {
+ continue;
+ }
+
+ return true;
+ }
+
+ branched_state->next_sample = 0;
+ }
+
+ branched_state->next_closure = sd->num_closure;
+
+ if(wait_for_shared) {
+ branched_state->waiting_on_shared_samples = (branched_state->shared_sample_count > 0);
+ if(branched_state->waiting_on_shared_samples) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+#endif /* __BRANCHED_PATH__ */
+
+CCL_NAMESPACE_END
+
diff --git a/intern/cycles/kernel/split/kernel_buffer_update.h b/intern/cycles/kernel/split/kernel_buffer_update.h
new file mode 100644
index 00000000000..511334e0550
--- /dev/null
+++ b/intern/cycles/kernel/split/kernel_buffer_update.h
@@ -0,0 +1,154 @@
+/*
+ * Copyright 2011-2015 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+/* This kernel takes care of rays that hit the background (sceneintersect
+ * kernel), and for the rays of state RAY_UPDATE_BUFFER it updates the ray's
+ * accumulated radiance in the output buffer. This kernel also takes care of
+ * rays that have been determined to-be-regenerated.
+ *
+ * We will empty QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS queue in this kernel.
+ *
+ * Typically all rays that are in state RAY_HIT_BACKGROUND, RAY_UPDATE_BUFFER
+ * will be eventually set to RAY_TO_REGENERATE state in this kernel.
+ * Finally all rays of ray_state RAY_TO_REGENERATE will be regenerated and put
+ * in queue QUEUE_ACTIVE_AND_REGENERATED_RAYS.
+ *
+ * State of queues when this kernel is called:
+ * At entry,
+ * - QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE rays.
+ * - QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with
+ * RAY_UPDATE_BUFFER, RAY_HIT_BACKGROUND, RAY_TO_REGENERATE rays.
+ * At exit,
+ * - QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE and
+ * RAY_REGENERATED rays.
+ * - QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be empty.
+ */
+ccl_device void kernel_buffer_update(KernelGlobals *kg,
+ ccl_local_param unsigned int *local_queue_atomics)
+{
+ if(ccl_local_id(0) == 0 && ccl_local_id(1) == 0) {
+ *local_queue_atomics = 0;
+ }
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+
+ int ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+ if(ray_index == 0) {
+ /* We will empty this queue in this kernel. */
+ kernel_split_params.queue_index[QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS] = 0;
+ }
+ char enqueue_flag = 0;
+ ray_index = get_ray_index(kg, ray_index,
+ QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_size,
+ 1);
+
+#ifdef __COMPUTE_DEVICE_GPU__
+ /* If we are executing on a GPU device, we exit all threads that are not
+ * required.
+ *
+ * If we are executing on a CPU device, then we need to keep all threads
+ * active since we have barrier() calls later in the kernel. CPU devices,
+ * expect all threads to execute barrier statement.
+ */
+ if(ray_index == QUEUE_EMPTY_SLOT) {
+ return;
+ }
+#endif
+
+#ifndef __COMPUTE_DEVICE_GPU__
+ if(ray_index != QUEUE_EMPTY_SLOT) {
+#endif
+
+ ccl_global char *ray_state = kernel_split_state.ray_state;
+ ccl_global PathState *state = &kernel_split_state.path_state[ray_index];
+ PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
+ ccl_global Ray *ray = &kernel_split_state.ray[ray_index];
+ ccl_global float3 *throughput = &kernel_split_state.throughput[ray_index];
+
+ if(IS_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER)) {
+ uint sample = state->sample;
+ uint buffer_offset = kernel_split_state.buffer_offset[ray_index];
+ ccl_global float *buffer = kernel_split_params.tile.buffer + buffer_offset;
+
+ /* accumulate result in output buffer */
+ kernel_write_result(kg, buffer, sample, L);
+
+ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_TO_REGENERATE);
+ }
+
+ if(IS_STATE(ray_state, ray_index, RAY_TO_REGENERATE)) {
+ /* We have completed current work; So get next work */
+ ccl_global uint *work_pools = kernel_split_params.work_pools;
+ uint total_work_size = kernel_split_params.total_work_size;
+ uint work_index;
+
+ if(!get_next_work(kg, work_pools, total_work_size, ray_index, &work_index)) {
+ /* If work is invalid, this means no more work is available and the thread may exit */
+ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_INACTIVE);
+ }
+
+ if(IS_STATE(ray_state, ray_index, RAY_TO_REGENERATE)) {
+ ccl_global WorkTile *tile = &kernel_split_params.tile;
+ uint x, y, sample;
+ get_work_pixel(tile, work_index, &x, &y, &sample);
+
+ /* Store buffer offset for writing to passes. */
+ uint buffer_offset = (tile->offset + x + y*tile->stride) * kernel_data.film.pass_stride;
+ kernel_split_state.buffer_offset[ray_index] = buffer_offset;
+
+ /* Initialize random numbers and ray. */
+ uint rng_hash;
+ kernel_path_trace_setup(kg, sample, x, y, &rng_hash, ray);
+
+ if(ray->t != 0.0f) {
+ /* Initialize throughput, path radiance, Ray, PathState;
+ * These rays proceed with path-iteration.
+ */
+ *throughput = make_float3(1.0f, 1.0f, 1.0f);
+ path_radiance_init(L, kernel_data.film.use_light_pass);
+ path_state_init(kg, &kernel_split_state.sd_DL_shadow[ray_index], state, rng_hash, sample, ray);
+#ifdef __SUBSURFACE__
+ kernel_path_subsurface_init_indirect(&kernel_split_state.ss_rays[ray_index]);
+#endif
+ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
+ enqueue_flag = 1;
+ }
+ else {
+ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_TO_REGENERATE);
+ }
+ }
+ }
+
+#ifndef __COMPUTE_DEVICE_GPU__
+ }
+#endif
+
+ /* Enqueue RAY_REGENERATED rays into QUEUE_ACTIVE_AND_REGENERATED_RAYS;
+ * These rays will be made active during next SceneIntersectkernel.
+ */
+ enqueue_ray_index_local(ray_index,
+ QUEUE_ACTIVE_AND_REGENERATED_RAYS,
+ enqueue_flag,
+ kernel_split_params.queue_size,
+ local_queue_atomics,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_index);
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/split/kernel_data_init.h b/intern/cycles/kernel/split/kernel_data_init.h
index 6e158d53d23..77fb61b80a8 100644
--- a/intern/cycles/kernel/split/kernel_data_init.h
+++ b/intern/cycles/kernel/split/kernel_data_init.h
@@ -14,221 +14,96 @@
* limitations under the License.
*/
-#include "kernel_split_common.h"
+CCL_NAMESPACE_BEGIN
-/* Note on kernel_data_initialization kernel
- * This kernel Initializes structures needed in path-iteration kernels.
- * This is the first kernel in ray-tracing logic.
+/* This kernel Initializes structures needed in path-iteration kernels.
*
- * Ray state of rays outside the tile-boundary will be marked RAY_INACTIVE
- *
- * Its input and output are as follows,
- *
- * Un-initialized rng---------------|--- kernel_data_initialization ---|--- Initialized rng
- * Un-initialized throughput -------| |--- Initialized throughput
- * Un-initialized L_transparent ----| |--- Initialized L_transparent
- * Un-initialized PathRadiance -----| |--- Initialized PathRadiance
- * Un-initialized Ray --------------| |--- Initialized Ray
- * Un-initialized PathState --------| |--- Initialized PathState
- * Un-initialized QueueData --------| |--- Initialized QueueData (to QUEUE_EMPTY_SLOT)
- * Un-initialized QueueIndex -------| |--- Initialized QueueIndex (to 0)
- * Un-initialized use_queues_flag---| |--- Initialized use_queues_flag (to false)
- * Un-initialized ray_state --------| |--- Initialized ray_state
- * parallel_samples --------------- | |--- Initialized per_sample_output_buffers
- * rng_state -----------------------| |--- Initialized work_array
- * data ----------------------------| |--- Initialized work_pool_wgs
- * start_sample --------------------| |
- * sx ------------------------------| |
- * sy ------------------------------| |
- * sw ------------------------------| |
- * sh ------------------------------| |
- * stride --------------------------| |
- * queuesize -----------------------| |
- * num_samples ---------------------| |
- *
- * Note on Queues :
+ * Note on Queues:
* All slots in queues are initialized to queue empty slot;
* The number of elements in the queues is initialized to 0;
*/
+
+#ifndef __KERNEL_CPU__
ccl_device void kernel_data_init(
+#else
+void KERNEL_FUNCTION_FULL_NAME(data_init)(
+#endif
KernelGlobals *kg,
- ShaderData *sd_DL_shadow,
ccl_constant KernelData *data,
- ccl_global float *per_sample_output_buffers,
- ccl_global uint *rng_state,
- ccl_global uint *rng_coop, /* rng array to store rng values for all rays */
- ccl_global float3 *throughput_coop, /* throughput array to store throughput values for all rays */
- ccl_global float *L_transparent_coop, /* L_transparent array to store L_transparent values for all rays */
- PathRadiance *PathRadiance_coop, /* PathRadiance array to store PathRadiance values for all rays */
- ccl_global Ray *Ray_coop, /* Ray array to store Ray information for all rays */
- ccl_global PathState *PathState_coop, /* PathState array to store PathState information for all rays */
- Intersection *Intersection_coop_shadow,
- ccl_global char *ray_state, /* Stores information on current state of a ray */
-
-#define KERNEL_TEX(type, ttype, name) \
- ccl_global type *name,
-#include "../kernel_textures.h"
-
- int start_sample, int sx, int sy, int sw, int sh, int offset, int stride,
- int rng_state_offset_x,
- int rng_state_offset_y,
- int rng_state_stride,
- ccl_global int *Queue_data, /* Memory for queues */
+ ccl_global void *split_data_buffer,
+ int num_elements,
+ ccl_global char *ray_state,
+
+#ifdef __KERNEL_OPENCL__
+ KERNEL_BUFFER_PARAMS,
+#endif
+
+ int start_sample,
+ int end_sample,
+ int sx, int sy, int sw, int sh, int offset, int stride,
ccl_global int *Queue_index, /* Tracks the number of elements in queues */
int queuesize, /* size (capacity) of the queue */
ccl_global char *use_queues_flag, /* flag to decide if scene-intersect kernel should use queues to fetch ray index */
- ccl_global unsigned int *work_array, /* work array to store which work each ray belongs to */
-#ifdef __WORK_STEALING__
- ccl_global unsigned int *work_pool_wgs, /* Work pool for each work group */
- unsigned int num_samples, /* Total number of samples per pixel */
-#endif
-#ifdef __KERNEL_DEBUG__
- DebugData *debugdata_coop,
-#endif
- int parallel_samples) /* Number of samples to be processed in parallel */
+ ccl_global unsigned int *work_pools, /* Work pool for each work group */
+ unsigned int num_samples,
+ ccl_global float *buffer)
{
+#ifdef KERNEL_STUB
+ STUB_ASSERT(KERNEL_ARCH, data_init);
+#else
+
+#ifdef __KERNEL_OPENCL__
kg->data = data;
- kg->sd_input = sd_DL_shadow;
- kg->isect_shadow = Intersection_coop_shadow;
-#define KERNEL_TEX(type, ttype, name) \
- kg->name = name;
-#include "../kernel_textures.h"
-
- int thread_index = get_global_id(1) * get_global_size(0) + get_global_id(0);
-
-#ifdef __WORK_STEALING__
- int lid = get_local_id(1) * get_local_size(0) + get_local_id(0);
- /* Initialize work_pool_wgs */
- if(lid == 0) {
- int group_index = get_group_id(1) * get_num_groups(0) + get_group_id(0);
- work_pool_wgs[group_index] = 0;
- }
- barrier(CLK_LOCAL_MEM_FENCE);
-#endif /* __WORK_STEALING__ */
+#endif
- /* Initialize queue data and queue index. */
- if(thread_index < queuesize) {
- /* Initialize active ray queue. */
- Queue_data[QUEUE_ACTIVE_AND_REGENERATED_RAYS * queuesize + thread_index] = QUEUE_EMPTY_SLOT;
- /* Initialize background and buffer update queue. */
- Queue_data[QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS * queuesize + thread_index] = QUEUE_EMPTY_SLOT;
- /* Initialize shadow ray cast of AO queue. */
- Queue_data[QUEUE_SHADOW_RAY_CAST_AO_RAYS * queuesize + thread_index] = QUEUE_EMPTY_SLOT;
- /* Initialize shadow ray cast of direct lighting queue. */
- Queue_data[QUEUE_SHADOW_RAY_CAST_DL_RAYS * queuesize + thread_index] = QUEUE_EMPTY_SLOT;
- }
+ kernel_split_params.tile.x = sx;
+ kernel_split_params.tile.y = sy;
+ kernel_split_params.tile.w = sw;
+ kernel_split_params.tile.h = sh;
- if(thread_index == 0) {
- Queue_index[QUEUE_ACTIVE_AND_REGENERATED_RAYS] = 0;
- Queue_index[QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS] = 0;
- Queue_index[QUEUE_SHADOW_RAY_CAST_AO_RAYS] = 0;
- Queue_index[QUEUE_SHADOW_RAY_CAST_DL_RAYS] = 0;
- /* The scene-intersect kernel should not use the queues very first time.
- * since the queue would be empty.
- */
- use_queues_flag[0] = 0;
- }
+ kernel_split_params.tile.start_sample = start_sample;
+ kernel_split_params.tile.num_samples = num_samples;
- int x = get_global_id(0);
- int y = get_global_id(1);
+ kernel_split_params.tile.offset = offset;
+ kernel_split_params.tile.stride = stride;
- if(x < (sw * parallel_samples) && y < sh) {
- int ray_index = x + y * (sw * parallel_samples);
+ kernel_split_params.tile.buffer = buffer;
- /* This is the first assignment to ray_state;
- * So we dont use ASSIGN_RAY_STATE macro.
- */
- ray_state[ray_index] = RAY_ACTIVE;
-
- unsigned int my_sample;
- unsigned int pixel_x;
- unsigned int pixel_y;
- unsigned int tile_x;
- unsigned int tile_y;
- unsigned int my_sample_tile;
-
-#ifdef __WORK_STEALING__
- unsigned int my_work = 0;
- /* Get work. */
- get_next_work(work_pool_wgs, &my_work, sw, sh, num_samples, parallel_samples, ray_index);
- /* Get the sample associated with the work. */
- my_sample = get_my_sample(my_work, sw, sh, parallel_samples, ray_index) + start_sample;
-
- my_sample_tile = 0;
-
- /* Get pixel and tile position associated with the work. */
- get_pixel_tile_position(&pixel_x, &pixel_y,
- &tile_x, &tile_y,
- my_work,
- sw, sh, sx, sy,
- parallel_samples,
- ray_index);
- work_array[ray_index] = my_work;
-#else /* __WORK_STEALING__ */
- unsigned int tile_index = ray_index / parallel_samples;
- tile_x = tile_index % sw;
- tile_y = tile_index / sw;
- my_sample_tile = ray_index - (tile_index * parallel_samples);
- my_sample = my_sample_tile + start_sample;
-
- /* Initialize work array. */
- work_array[ray_index] = my_sample ;
-
- /* Calculate pixel position of this ray. */
- pixel_x = sx + tile_x;
- pixel_y = sy + tile_y;
-#endif /* __WORK_STEALING__ */
-
- rng_state += (rng_state_offset_x + tile_x) + (rng_state_offset_y + tile_y) * rng_state_stride;
-
- /* Initialise per_sample_output_buffers to all zeros. */
- per_sample_output_buffers += (((tile_x + (tile_y * stride)) * parallel_samples) + (my_sample_tile)) * kernel_data.film.pass_stride;
- int per_sample_output_buffers_iterator = 0;
- for(per_sample_output_buffers_iterator = 0;
- per_sample_output_buffers_iterator < kernel_data.film.pass_stride;
- per_sample_output_buffers_iterator++)
- {
- per_sample_output_buffers[per_sample_output_buffers_iterator] = 0.0f;
- }
+ kernel_split_params.total_work_size = sw * sh * num_samples;
+
+ kernel_split_params.work_pools = work_pools;
- /* Initialize random numbers and ray. */
- kernel_path_trace_setup(kg,
- rng_state,
- my_sample,
- pixel_x, pixel_y,
- &rng_coop[ray_index],
- &Ray_coop[ray_index]);
-
- if(Ray_coop[ray_index].t != 0.0f) {
- /* Initialize throughput, L_transparent, Ray, PathState;
- * These rays proceed with path-iteration.
- */
- throughput_coop[ray_index] = make_float3(1.0f, 1.0f, 1.0f);
- L_transparent_coop[ray_index] = 0.0f;
- path_radiance_init(&PathRadiance_coop[ray_index], kernel_data.film.use_light_pass);
- path_state_init(kg,
- kg->sd_input,
- &PathState_coop[ray_index],
- &rng_coop[ray_index],
- my_sample,
- &Ray_coop[ray_index]);
-#ifdef __KERNEL_DEBUG__
- debug_data_init(&debugdata_coop[ray_index]);
+ kernel_split_params.queue_index = Queue_index;
+ kernel_split_params.queue_size = queuesize;
+ kernel_split_params.use_queues_flag = use_queues_flag;
+
+ split_data_init(kg, &kernel_split_state, num_elements, split_data_buffer, ray_state);
+
+#ifdef __KERNEL_OPENCL__
+ kernel_set_buffer_pointers(kg, KERNEL_BUFFER_ARGS);
+ kernel_set_buffer_info(kg);
#endif
- }
- else {
- /* These rays do not participate in path-iteration. */
- float4 L_rad = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
- /* Accumulate result in output buffer. */
- kernel_write_pass_float4(per_sample_output_buffers, my_sample, L_rad);
- path_rng_end(kg, rng_state, rng_coop[ray_index]);
- ASSIGN_RAY_STATE(ray_state, ray_index, RAY_TO_REGENERATE);
+
+ int thread_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+
+ /* Initialize queue data and queue index. */
+ if(thread_index < queuesize) {
+ for(int i = 0; i < NUM_QUEUES; i++) {
+ kernel_split_state.queue_data[i * queuesize + thread_index] = QUEUE_EMPTY_SLOT;
}
}
- /* Mark rest of the ray-state indices as RAY_INACTIVE. */
- if(thread_index < (get_global_size(0) * get_global_size(1)) - (sh * (sw * parallel_samples))) {
- /* First assignment, hence we dont use ASSIGN_RAY_STATE macro */
- ray_state[((sw * parallel_samples) * sh) + thread_index] = RAY_INACTIVE;
+ if(thread_index == 0) {
+ for(int i = 0; i < NUM_QUEUES; i++) {
+ Queue_index[i] = 0;
+ }
+
+ /* The scene-intersect kernel should not use the queues very first time.
+ * since the queue would be empty.
+ */
+ *use_queues_flag = 0;
}
+#endif /* KERENL_STUB */
}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/split/kernel_direct_lighting.h b/intern/cycles/kernel/split/kernel_direct_lighting.h
index 82ca18829d3..2aac66ecb84 100644
--- a/intern/cycles/kernel/split/kernel_direct_lighting.h
+++ b/intern/cycles/kernel/split/kernel_direct_lighting.h
@@ -14,95 +14,136 @@
* limitations under the License.
*/
-#include "kernel_split_common.h"
+CCL_NAMESPACE_BEGIN
-/* Note on kernel_direct_lighting kernel.
- * This is the eighth kernel in the ray tracing logic. This is the seventh
- * of the path iteration kernels. This kernel takes care of direct lighting
- * logic. However, the "shadow ray cast" part of direct lighting is handled
+/* This kernel takes care of direct lighting logic.
+ * However, the "shadow ray cast" part of direct lighting is handled
* in the next kernel.
*
- * This kernels determines the rays for which a shadow_blocked() function associated with direct lighting should be executed.
- * Those rays for which a shadow_blocked() function for direct-lighting must be executed, are marked with flag RAY_SHADOW_RAY_CAST_DL and
- * enqueued into the queue QUEUE_SHADOW_RAY_CAST_DL_RAYS
+ * This kernels determines the rays for which a shadow_blocked() function
+ * associated with direct lighting should be executed. Those rays for which
+ * a shadow_blocked() function for direct-lighting must be executed, are
+ * marked with flag RAY_SHADOW_RAY_CAST_DL and enqueued into the queue
+ * QUEUE_SHADOW_RAY_CAST_DL_RAYS
*
- * The input and output are as follows,
+ * Note on Queues:
+ * This kernel only reads from the QUEUE_ACTIVE_AND_REGENERATED_RAYS queue
+ * and processes only the rays of state RAY_ACTIVE; If a ray needs to execute
+ * the corresponding shadow_blocked part, after direct lighting, the ray is
+ * marked with RAY_SHADOW_RAY_CAST_DL flag.
*
- * rng_coop -----------------------------------------|--- kernel_direct_lighting --|--- BSDFEval_coop
- * PathState_coop -----------------------------------| |--- ISLamp_coop
- * sd -----------------------------------------------| |--- LightRay_coop
- * ray_state ----------------------------------------| |--- ray_state
- * Queue_data (QUEUE_ACTIVE_AND_REGENERATED_RAYS) ---| |
- * kg (globals) -------------------------------------| |
- * queuesize ----------------------------------------| |
- *
- * Note on Queues :
- * This kernel only reads from the QUEUE_ACTIVE_AND_REGENERATED_RAYS queue and processes
- * only the rays of state RAY_ACTIVE; If a ray needs to execute the corresponding shadow_blocked
- * part, after direct lighting, the ray is marked with RAY_SHADOW_RAY_CAST_DL flag.
- *
- * State of queues when this kernel is called :
- * state of queues QUEUE_ACTIVE_AND_REGENERATED_RAYS and QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be same
- * before and after this kernel call.
- * QUEUE_SHADOW_RAY_CAST_DL_RAYS queue will be filled with rays for which a shadow_blocked function must be executed, after this
- * kernel call. Before this kernel call the QUEUE_SHADOW_RAY_CAST_DL_RAYS will be empty.
+ * State of queues when this kernel is called:
+ * - State of queues QUEUE_ACTIVE_AND_REGENERATED_RAYS and
+ * QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be same before and after this
+ * kernel call.
+ * - QUEUE_SHADOW_RAY_CAST_DL_RAYS queue will be filled with rays for which a
+ * shadow_blocked function must be executed, after this kernel call
+ * Before this kernel call the QUEUE_SHADOW_RAY_CAST_DL_RAYS will be empty.
*/
-ccl_device char kernel_direct_lighting(
- KernelGlobals *kg,
- ShaderData *sd, /* Required for direct lighting */
- ccl_global uint *rng_coop, /* Required for direct lighting */
- ccl_global PathState *PathState_coop, /* Required for direct lighting */
- ccl_global int *ISLamp_coop, /* Required for direct lighting */
- ccl_global Ray *LightRay_coop, /* Required for direct lighting */
- ccl_global BsdfEval *BSDFEval_coop, /* Required for direct lighting */
- ccl_global char *ray_state, /* Denotes the state of each ray */
- int ray_index)
+ccl_device void kernel_direct_lighting(KernelGlobals *kg,
+ ccl_local_param unsigned int *local_queue_atomics)
{
+ if(ccl_local_id(0) == 0 && ccl_local_id(1) == 0) {
+ *local_queue_atomics = 0;
+ }
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+
char enqueue_flag = 0;
- if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
- ccl_global PathState *state = &PathState_coop[ray_index];
+ int ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+ ray_index = get_ray_index(kg, ray_index,
+ QUEUE_ACTIVE_AND_REGENERATED_RAYS,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_size,
+ 0);
+
+ if(IS_STATE(kernel_split_state.ray_state, ray_index, RAY_ACTIVE)) {
+ ccl_global PathState *state = &kernel_split_state.path_state[ray_index];
+ ShaderData *sd = &kernel_split_state.sd[ray_index];
/* direct lighting */
#ifdef __EMISSION__
- if((kernel_data.integrator.use_direct_light &&
- (ccl_fetch(sd, flag) & SD_BSDF_HAS_EVAL)))
- {
+ bool flag = (kernel_data.integrator.use_direct_light &&
+ (sd->flag & SD_BSDF_HAS_EVAL));
+
+# ifdef __BRANCHED_PATH__
+ if(flag && kernel_data.integrator.branched) {
+ flag = false;
+ enqueue_flag = 1;
+ }
+# endif /* __BRANCHED_PATH__ */
+
+# ifdef __SHADOW_TRICKS__
+ if(flag && state->flag & PATH_RAY_SHADOW_CATCHER) {
+ flag = false;
+ enqueue_flag = 1;
+ }
+# endif /* __SHADOW_TRICKS__ */
+
+ if(flag) {
/* Sample illumination from lights to find path contribution. */
- ccl_global RNG* rng = &rng_coop[ray_index];
- float light_t = path_state_rng_1D(kg, rng, state, PRNG_LIGHT);
float light_u, light_v;
- path_state_rng_2D(kg, rng, state, PRNG_LIGHT_U, &light_u, &light_v);
- float terminate = path_state_rng_light_termination(kg, rng, state);
+ path_state_rng_2D(kg, state, PRNG_LIGHT_U, &light_u, &light_v);
+ float terminate = path_state_rng_light_termination(kg, state);
LightSample ls;
if(light_sample(kg,
- light_t, light_u, light_v,
- ccl_fetch(sd, time),
- ccl_fetch(sd, P),
+ light_u, light_v,
+ sd->time,
+ sd->P,
state->bounce,
&ls)) {
Ray light_ray;
-#ifdef __OBJECT_MOTION__
- light_ray.time = ccl_fetch(sd, time);
-#endif
+ light_ray.time = sd->time;
BsdfEval L_light;
bool is_lamp;
- if(direct_emission(kg, sd, kg->sd_input, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
+ if(direct_emission(kg, sd, &kernel_split_state.sd_DL_shadow[ray_index], &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
/* Write intermediate data to global memory to access from
* the next kernel.
*/
- LightRay_coop[ray_index] = light_ray;
- BSDFEval_coop[ray_index] = L_light;
- ISLamp_coop[ray_index] = is_lamp;
+ kernel_split_state.light_ray[ray_index] = light_ray;
+ kernel_split_state.bsdf_eval[ray_index] = L_light;
+ kernel_split_state.is_lamp[ray_index] = is_lamp;
/* Mark ray state for next shadow kernel. */
- ADD_RAY_FLAG(ray_state, ray_index, RAY_SHADOW_RAY_CAST_DL);
enqueue_flag = 1;
}
}
}
#endif /* __EMISSION__ */
}
- return enqueue_flag;
+
+#ifdef __EMISSION__
+ /* Enqueue RAY_SHADOW_RAY_CAST_DL rays. */
+ enqueue_ray_index_local(ray_index,
+ QUEUE_SHADOW_RAY_CAST_DL_RAYS,
+ enqueue_flag,
+ kernel_split_params.queue_size,
+ local_queue_atomics,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_index);
+#endif
+
+#ifdef __BRANCHED_PATH__
+ /* Enqueue RAY_LIGHT_INDIRECT_NEXT_ITER rays
+ * this is the last kernel before next_iteration_setup that uses local atomics so we do this here
+ */
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+ if(ccl_local_id(0) == 0 && ccl_local_id(1) == 0) {
+ *local_queue_atomics = 0;
+ }
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+
+ ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+ enqueue_ray_index_local(ray_index,
+ QUEUE_LIGHT_INDIRECT_ITER,
+ IS_STATE(kernel_split_state.ray_state, ray_index, RAY_LIGHT_INDIRECT_NEXT_ITER),
+ kernel_split_params.queue_size,
+ local_queue_atomics,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_index);
+
+#endif /* __BRANCHED_PATH__ */
}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/split/kernel_do_volume.h b/intern/cycles/kernel/split/kernel_do_volume.h
new file mode 100644
index 00000000000..491487f1230
--- /dev/null
+++ b/intern/cycles/kernel/split/kernel_do_volume.h
@@ -0,0 +1,220 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+#if defined(__BRANCHED_PATH__) && defined(__VOLUME__)
+
+ccl_device_inline void kernel_split_branched_path_volume_indirect_light_init(KernelGlobals *kg, int ray_index)
+{
+ kernel_split_branched_path_indirect_loop_init(kg, ray_index);
+
+ ADD_RAY_FLAG(kernel_split_state.ray_state, ray_index, RAY_BRANCHED_VOLUME_INDIRECT);
+}
+
+ccl_device_noinline bool kernel_split_branched_path_volume_indirect_light_iter(KernelGlobals *kg, int ray_index)
+{
+ SplitBranchedState *branched_state = &kernel_split_state.branched_state[ray_index];
+
+ ShaderData *sd = &kernel_split_state.sd[ray_index];
+ PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
+ ShaderData *emission_sd = &kernel_split_state.sd_DL_shadow[ray_index];
+
+ /* GPU: no decoupled ray marching, scatter probalistically */
+ int num_samples = kernel_data.integrator.volume_samples;
+ float num_samples_inv = 1.0f/num_samples;
+
+ Ray volume_ray = branched_state->ray;
+ volume_ray.t = (!IS_STATE(&branched_state->ray_state, 0, RAY_HIT_BACKGROUND)) ? branched_state->isect.t : FLT_MAX;
+
+ bool heterogeneous = volume_stack_is_heterogeneous(kg, branched_state->path_state.volume_stack);
+
+ for(int j = branched_state->next_sample; j < num_samples; j++) {
+ ccl_global PathState *ps = &kernel_split_state.path_state[ray_index];
+ *ps = branched_state->path_state;
+
+ ccl_global Ray *pray = &kernel_split_state.ray[ray_index];
+ *pray = branched_state->ray;
+
+ ccl_global float3 *tp = &kernel_split_state.throughput[ray_index];
+ *tp = branched_state->throughput * num_samples_inv;
+
+ /* branch RNG state */
+ path_state_branch(ps, j, num_samples);
+
+ /* integrate along volume segment with distance sampling */
+ VolumeIntegrateResult result = kernel_volume_integrate(
+ kg, ps, sd, &volume_ray, L, tp, heterogeneous);
+
+# ifdef __VOLUME_SCATTER__
+ if(result == VOLUME_PATH_SCATTERED) {
+ /* direct lighting */
+ kernel_path_volume_connect_light(kg, sd, emission_sd, *tp, &branched_state->path_state, L);
+
+ /* indirect light bounce */
+ if(!kernel_path_volume_bounce(kg, sd, tp, ps, &L->state, pray)) {
+ continue;
+ }
+
+ /* start the indirect path */
+ branched_state->next_closure = 0;
+ branched_state->next_sample = j+1;
+
+ /* Attempting to share too many samples is slow for volumes as it causes us to
+ * loop here more and have many calls to kernel_volume_integrate which evaluates
+ * shaders. The many expensive shader evaluations cause the work load to become
+ * unbalanced and many threads to become idle in this kernel. Limiting the
+ * number of shared samples here helps quite a lot.
+ */
+ if(branched_state->shared_sample_count < 2) {
+ if(kernel_split_branched_indirect_start_shared(kg, ray_index)) {
+ continue;
+ }
+ }
+
+ return true;
+ }
+# endif
+ }
+
+ branched_state->next_sample = num_samples;
+
+ branched_state->waiting_on_shared_samples = (branched_state->shared_sample_count > 0);
+ if(branched_state->waiting_on_shared_samples) {
+ return true;
+ }
+
+ kernel_split_branched_path_indirect_loop_end(kg, ray_index);
+
+ /* todo: avoid this calculation using decoupled ray marching */
+ float3 throughput = kernel_split_state.throughput[ray_index];
+ kernel_volume_shadow(kg, emission_sd, &kernel_split_state.path_state[ray_index], &volume_ray, &throughput);
+ kernel_split_state.throughput[ray_index] = throughput;
+
+ return false;
+}
+
+#endif /* __BRANCHED_PATH__ && __VOLUME__ */
+
+ccl_device void kernel_do_volume(KernelGlobals *kg)
+{
+#ifdef __VOLUME__
+ /* We will empty this queue in this kernel. */
+ if(ccl_global_id(0) == 0 && ccl_global_id(1) == 0) {
+ kernel_split_params.queue_index[QUEUE_ACTIVE_AND_REGENERATED_RAYS] = 0;
+# ifdef __BRANCHED_PATH__
+ kernel_split_params.queue_index[QUEUE_VOLUME_INDIRECT_ITER] = 0;
+# endif /* __BRANCHED_PATH__ */
+ }
+
+ int ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+
+ if(*kernel_split_params.use_queues_flag) {
+ ray_index = get_ray_index(kg, ray_index,
+ QUEUE_ACTIVE_AND_REGENERATED_RAYS,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_size,
+ 1);
+ }
+
+ ccl_global char *ray_state = kernel_split_state.ray_state;
+
+ PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
+ ccl_global PathState *state = &kernel_split_state.path_state[ray_index];
+
+ if(IS_STATE(ray_state, ray_index, RAY_ACTIVE) ||
+ IS_STATE(ray_state, ray_index, RAY_HIT_BACKGROUND)) {
+ ccl_global float3 *throughput = &kernel_split_state.throughput[ray_index];
+ ccl_global Ray *ray = &kernel_split_state.ray[ray_index];
+ ccl_global Intersection *isect = &kernel_split_state.isect[ray_index];
+ ShaderData *sd = &kernel_split_state.sd[ray_index];
+ ShaderData *emission_sd = &kernel_split_state.sd_DL_shadow[ray_index];
+
+ bool hit = ! IS_STATE(ray_state, ray_index, RAY_HIT_BACKGROUND);
+
+ /* Sanitize volume stack. */
+ if(!hit) {
+ kernel_volume_clean_stack(kg, state->volume_stack);
+ }
+ /* volume attenuation, emission, scatter */
+ if(state->volume_stack[0].shader != SHADER_NONE) {
+ Ray volume_ray = *ray;
+ volume_ray.t = (hit)? isect->t: FLT_MAX;
+
+# ifdef __BRANCHED_PATH__
+ if(!kernel_data.integrator.branched || IS_FLAG(ray_state, ray_index, RAY_BRANCHED_INDIRECT)) {
+# endif /* __BRANCHED_PATH__ */
+ bool heterogeneous = volume_stack_is_heterogeneous(kg, state->volume_stack);
+
+ {
+ /* integrate along volume segment with distance sampling */
+ VolumeIntegrateResult result = kernel_volume_integrate(
+ kg, state, sd, &volume_ray, L, throughput, heterogeneous);
+
+# ifdef __VOLUME_SCATTER__
+ if(result == VOLUME_PATH_SCATTERED) {
+ /* direct lighting */
+ kernel_path_volume_connect_light(kg, sd, emission_sd, *throughput, state, L);
+
+ /* indirect light bounce */
+ if(kernel_path_volume_bounce(kg, sd, throughput, state, &L->state, ray)) {
+ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
+ }
+ else {
+ kernel_split_path_end(kg, ray_index);
+ }
+ }
+# endif /* __VOLUME_SCATTER__ */
+ }
+
+# ifdef __BRANCHED_PATH__
+ }
+ else {
+ kernel_split_branched_path_volume_indirect_light_init(kg, ray_index);
+
+ if(kernel_split_branched_path_volume_indirect_light_iter(kg, ray_index)) {
+ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
+ }
+ }
+# endif /* __BRANCHED_PATH__ */
+ }
+ }
+
+# ifdef __BRANCHED_PATH__
+ /* iter loop */
+ ray_index = get_ray_index(kg, ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0),
+ QUEUE_VOLUME_INDIRECT_ITER,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_size,
+ 1);
+
+ if(IS_STATE(ray_state, ray_index, RAY_VOLUME_INDIRECT_NEXT_ITER)) {
+ /* for render passes, sum and reset indirect light pass variables
+ * for the next samples */
+ path_radiance_sum_indirect(&kernel_split_state.path_radiance[ray_index]);
+ path_radiance_reset_indirect(&kernel_split_state.path_radiance[ray_index]);
+
+ if(kernel_split_branched_path_volume_indirect_light_iter(kg, ray_index)) {
+ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
+ }
+ }
+# endif /* __BRANCHED_PATH__ */
+
+#endif /* __VOLUME__ */
+}
+
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/split/kernel_enqueue_inactive.h b/intern/cycles/kernel/split/kernel_enqueue_inactive.h
new file mode 100644
index 00000000000..496355bbc3a
--- /dev/null
+++ b/intern/cycles/kernel/split/kernel_enqueue_inactive.h
@@ -0,0 +1,46 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+ccl_device void kernel_enqueue_inactive(KernelGlobals *kg,
+ ccl_local_param unsigned int *local_queue_atomics)
+{
+#ifdef __BRANCHED_PATH__
+ /* Enqeueue RAY_INACTIVE rays into QUEUE_INACTIVE_RAYS queue. */
+ if(ccl_local_id(0) == 0 && ccl_local_id(1) == 0) {
+ *local_queue_atomics = 0;
+ }
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+
+ int ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+
+ char enqueue_flag = 0;
+ if(IS_STATE(kernel_split_state.ray_state, ray_index, RAY_INACTIVE)) {
+ enqueue_flag = 1;
+ }
+
+ enqueue_ray_index_local(ray_index,
+ QUEUE_INACTIVE_RAYS,
+ enqueue_flag,
+ kernel_split_params.queue_size,
+ local_queue_atomics,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_index);
+#endif /* __BRANCHED_PATH__ */
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/split/kernel_holdout_emission_blurring_pathtermination_ao.h b/intern/cycles/kernel/split/kernel_holdout_emission_blurring_pathtermination_ao.h
index 435d1171d5c..906bad8ceb6 100644
--- a/intern/cycles/kernel/split/kernel_holdout_emission_blurring_pathtermination_ao.h
+++ b/intern/cycles/kernel/split/kernel_holdout_emission_blurring_pathtermination_ao.h
@@ -14,247 +14,161 @@
* limitations under the License.
*/
-#include "kernel_split_common.h"
+CCL_NAMESPACE_BEGIN
-/* Note on kernel_holdout_emission_blurring_pathtermination_ao kernel.
- * This is the sixth kernel in the ray tracing logic. This is the fifth
- * of the path iteration kernels. This kernel takes care of the logic to process
- * "material of type holdout", indirect primitive emission, bsdf blurring,
- * probabilistic path termination and AO.
+/* This kernel takes care of the logic to process "material of type holdout",
+ * indirect primitive emission, bsdf blurring, probabilistic path termination
+ * and AO.
*
- * This kernels determines the rays for which a shadow_blocked() function associated with AO should be executed.
- * Those rays for which a shadow_blocked() function for AO must be executed are marked with flag RAY_SHADOW_RAY_CAST_ao and
- * enqueued into the queue QUEUE_SHADOW_RAY_CAST_AO_RAYS
+ * This kernels determines the rays for which a shadow_blocked() function
+ * associated with AO should be executed. Those rays for which a
+ * shadow_blocked() function for AO must be executed are marked with flag
+ * RAY_SHADOW_RAY_CAST_ao and enqueued into the queue
+ * QUEUE_SHADOW_RAY_CAST_AO_RAYS
*
* Ray state of rays that are terminated in this kernel are changed to RAY_UPDATE_BUFFER
*
- * The input and output are as follows,
+ * Note on Queues:
+ * This kernel fetches rays from the queue QUEUE_ACTIVE_AND_REGENERATED_RAYS
+ * and processes only the rays of state RAY_ACTIVE.
+ * There are different points in this kernel where a ray may terminate and
+ * reach RAY_UPDATE_BUFFER state. These rays are enqueued into
+ * QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS queue. These rays will still be present
+ * in QUEUE_ACTIVE_AND_REGENERATED_RAYS queue, but since their ray-state has
+ * been changed to RAY_UPDATE_BUFFER, there is no problem.
*
- * rng_coop ---------------------------------------------|--- kernel_holdout_emission_blurring_pathtermination_ao ---|--- Queue_index (QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS)
- * throughput_coop --------------------------------------| |--- PathState_coop
- * PathRadiance_coop ------------------------------------| |--- throughput_coop
- * Intersection_coop ------------------------------------| |--- L_transparent_coop
- * PathState_coop ---------------------------------------| |--- per_sample_output_buffers
- * L_transparent_coop -----------------------------------| |--- PathRadiance_coop
- * sd ---------------------------------------------------| |--- ShaderData
- * ray_state --------------------------------------------| |--- ray_state
- * Queue_data (QUEUE_ACTIVE_AND_REGENERATED_RAYS) -------| |--- Queue_data (QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS)
- * Queue_index (QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS) ---| |--- AOAlpha_coop
- * kg (globals) -----------------------------------------| |--- AOBSDF_coop
- * parallel_samples -------------------------------------| |--- AOLightRay_coop
- * per_sample_output_buffers ----------------------------| |
- * sw ---------------------------------------------------| |
- * sh ---------------------------------------------------| |
- * sx ---------------------------------------------------| |
- * sy ---------------------------------------------------| |
- * stride -----------------------------------------------| |
- * work_array -------------------------------------------| |
- * queuesize --------------------------------------------| |
- * start_sample -----------------------------------------| |
- *
- * Note on Queues :
- * This kernel fetches rays from the queue QUEUE_ACTIVE_AND_REGENERATED_RAYS and processes only
- * the rays of state RAY_ACTIVE.
- * There are different points in this kernel where a ray may terminate and reach RAY_UPDATE_BUFFER
- * state. These rays are enqueued into QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS queue. These rays will
- * still be present in QUEUE_ACTIVE_AND_REGENERATED_RAYS queue, but since their ray-state has been
- * changed to RAY_UPDATE_BUFFER, there is no problem.
- *
- * State of queues when this kernel is called :
+ * State of queues when this kernel is called:
* At entry,
- * QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE and RAY_REGENERATED rays
- * QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with RAY_TO_REGENERATE rays.
- * QUEUE_SHADOW_RAY_CAST_AO_RAYS will be empty.
+ * - QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE and
+ * RAY_REGENERATED rays
+ * - QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with
+ * RAY_TO_REGENERATE rays.
+ * - QUEUE_SHADOW_RAY_CAST_AO_RAYS will be empty.
* At exit,
- * QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE, RAY_REGENERATED and RAY_UPDATE_BUFFER rays
- * QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with RAY_TO_REGENERATE and RAY_UPDATE_BUFFER rays
- * QUEUE_SHADOW_RAY_CAST_AO_RAYS will be filled with rays marked with flag RAY_SHADOW_RAY_CAST_AO
+ * - QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE,
+ * RAY_REGENERATED and RAY_UPDATE_BUFFER rays.
+ * - QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with
+ * RAY_TO_REGENERATE and RAY_UPDATE_BUFFER rays.
+ * - QUEUE_SHADOW_RAY_CAST_AO_RAYS will be filled with rays marked with
+ * flag RAY_SHADOW_RAY_CAST_AO
*/
+
ccl_device void kernel_holdout_emission_blurring_pathtermination_ao(
KernelGlobals *kg,
- ShaderData *sd, /* Required throughout the kernel except probabilistic path termination and AO */
- ccl_global float *per_sample_output_buffers,
- ccl_global uint *rng_coop, /* Required for "kernel_write_data_passes" and AO */
- ccl_global float3 *throughput_coop, /* Required for handling holdout material and AO */
- ccl_global float *L_transparent_coop, /* Required for handling holdout material */
- PathRadiance *PathRadiance_coop, /* Required for "kernel_write_data_passes" and indirect primitive emission */
- ccl_global PathState *PathState_coop, /* Required throughout the kernel and AO */
- Intersection *Intersection_coop, /* Required for indirect primitive emission */
- ccl_global float3 *AOAlpha_coop, /* Required for AO */
- ccl_global float3 *AOBSDF_coop, /* Required for AO */
- ccl_global Ray *AOLightRay_coop, /* Required for AO */
- int sw, int sh, int sx, int sy, int stride,
- ccl_global char *ray_state, /* Denotes the state of each ray */
- ccl_global unsigned int *work_array, /* Denotes the work that each ray belongs to */
-#ifdef __WORK_STEALING__
- unsigned int start_sample,
-#endif
- int parallel_samples, /* Number of samples to be processed in parallel */
- int ray_index,
- char *enqueue_flag,
- char *enqueue_flag_AO_SHADOW_RAY_CAST)
+ ccl_local_param BackgroundAOLocals *locals)
{
-#ifdef __WORK_STEALING__
- unsigned int my_work;
- unsigned int pixel_x;
- unsigned int pixel_y;
+ if(ccl_local_id(0) == 0 && ccl_local_id(1) == 0) {
+ locals->queue_atomics_bg = 0;
+ locals->queue_atomics_ao = 0;
+ }
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+
+#ifdef __AO__
+ char enqueue_flag = 0;
+#endif
+ int ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+ ray_index = get_ray_index(kg, ray_index,
+ QUEUE_ACTIVE_AND_REGENERATED_RAYS,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_size,
+ 0);
+
+#ifdef __COMPUTE_DEVICE_GPU__
+ /* If we are executing on a GPU device, we exit all threads that are not
+ * required.
+ *
+ * If we are executing on a CPU device, then we need to keep all threads
+ * active since we have barrier() calls later in the kernel. CPU devices,
+ * expect all threads to execute barrier statement.
+ */
+ if(ray_index == QUEUE_EMPTY_SLOT) {
+ return;
+ }
+#endif /* __COMPUTE_DEVICE_GPU__ */
+
+#ifndef __COMPUTE_DEVICE_GPU__
+ if(ray_index != QUEUE_EMPTY_SLOT) {
#endif
- unsigned int tile_x;
- unsigned int tile_y;
- int my_sample_tile;
- unsigned int sample;
- ccl_global RNG *rng = 0x0;
ccl_global PathState *state = 0x0;
float3 throughput;
- if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
+ ccl_global char *ray_state = kernel_split_state.ray_state;
+ ShaderData *sd = &kernel_split_state.sd[ray_index];
- throughput = throughput_coop[ray_index];
- state = &PathState_coop[ray_index];
- rng = &rng_coop[ray_index];
-#ifdef __WORK_STEALING__
- my_work = work_array[ray_index];
- sample = get_my_sample(my_work, sw, sh, parallel_samples, ray_index) + start_sample;
- get_pixel_tile_position(&pixel_x, &pixel_y,
- &tile_x, &tile_y,
- my_work,
- sw, sh, sx, sy,
- parallel_samples,
- ray_index);
- my_sample_tile = 0;
-#else /* __WORK_STEALING__ */
- sample = work_array[ray_index];
- /* Buffer's stride is "stride"; Find x and y using ray_index. */
- int tile_index = ray_index / parallel_samples;
- tile_x = tile_index % sw;
- tile_y = tile_index / sw;
- my_sample_tile = ray_index - (tile_index * parallel_samples);
-#endif /* __WORK_STEALING__ */
- per_sample_output_buffers +=
- (((tile_x + (tile_y * stride)) * parallel_samples) + my_sample_tile) *
- kernel_data.film.pass_stride;
-
- /* holdout */
-#ifdef __HOLDOUT__
- if((ccl_fetch(sd, flag) & (SD_HOLDOUT|SD_HOLDOUT_MASK)) &&
- (state->flag & PATH_RAY_CAMERA))
+ if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
+ uint buffer_offset = kernel_split_state.buffer_offset[ray_index];
+ ccl_global float *buffer = kernel_split_params.tile.buffer + buffer_offset;
+
+ ccl_global Ray *ray = &kernel_split_state.ray[ray_index];
+ ShaderData *emission_sd = &kernel_split_state.sd_DL_shadow[ray_index];
+ PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
+
+ throughput = kernel_split_state.throughput[ray_index];
+ state = &kernel_split_state.path_state[ray_index];
+
+ if(!kernel_path_shader_apply(kg,
+ sd,
+ state,
+ ray,
+ throughput,
+ emission_sd,
+ L,
+ buffer))
{
- if(kernel_data.background.transparent) {
- float3 holdout_weight;
-
- if(ccl_fetch(sd, flag) & SD_HOLDOUT_MASK)
- holdout_weight = make_float3(1.0f, 1.0f, 1.0f);
- else
- holdout_weight = shader_holdout_eval(kg, sd);
-
- /* any throughput is ok, should all be identical here */
- L_transparent_coop[ray_index] += average(holdout_weight*throughput);
- }
-
- if(ccl_fetch(sd, flag) & SD_HOLDOUT_MASK) {
- ASSIGN_RAY_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER);
- *enqueue_flag = 1;
- }
+ kernel_split_path_end(kg, ray_index);
}
-#endif /* __HOLDOUT__ */
}
if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
- PathRadiance *L = &PathRadiance_coop[ray_index];
- /* Holdout mask objects do not write data passes. */
- kernel_write_data_passes(kg,
- per_sample_output_buffers,
- L,
- sd,
- sample,
- state,
- throughput);
- /* Blurring of bsdf after bounces, for rays that have a small likelihood
- * of following this particular path (diffuse, rough glossy.
- */
- if(kernel_data.integrator.filter_glossy != FLT_MAX) {
- float blur_pdf = kernel_data.integrator.filter_glossy*state->min_ray_pdf;
- if(blur_pdf < 1.0f) {
- float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
- shader_bsdf_blur(kg, sd, blur_roughness);
- }
- }
-
-#ifdef __EMISSION__
- /* emission */
- if(ccl_fetch(sd, flag) & SD_EMISSION) {
- /* TODO(sergey): is isect.t wrong here for transparent surfaces? */
- float3 emission = indirect_primitive_emission(
- kg,
- sd,
- Intersection_coop[ray_index].t,
- state->flag,
- state->ray_pdf);
- path_radiance_accum_emission(L, throughput, emission, state->bounce);
- }
-#endif /* __EMISSION__ */
-
/* Path termination. this is a strange place to put the termination, it's
* mainly due to the mixed in MIS that we use. gives too many unneeded
* shader evaluations, only need emission if we are going to terminate.
*/
- float probability = path_state_terminate_probability(kg, state, throughput);
+ float probability = path_state_continuation_probability(kg, state, throughput);
if(probability == 0.0f) {
- ASSIGN_RAY_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER);
- *enqueue_flag = 1;
+ kernel_split_path_end(kg, ray_index);
+ }
+ else if(probability < 1.0f) {
+ float terminate = path_state_rng_1D(kg, state, PRNG_TERMINATE);
+ if(terminate >= probability) {
+ kernel_split_path_end(kg, ray_index);
+ }
+ else {
+ kernel_split_state.throughput[ray_index] = throughput/probability;
+ }
}
if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
- if(probability != 1.0f) {
- float terminate = path_state_rng_1D_for_decision(kg, rng, state, PRNG_TERMINATE);
- if(terminate >= probability) {
- ASSIGN_RAY_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER);
- *enqueue_flag = 1;
- }
- else {
- throughput_coop[ray_index] = throughput/probability;
- }
- }
+ PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
+ kernel_update_denoising_features(kg, sd, state, L);
}
}
#ifdef __AO__
if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
/* ambient occlusion */
- if(kernel_data.integrator.use_ambient_occlusion ||
- (ccl_fetch(sd, flag) & SD_AO))
- {
- /* todo: solve correlation */
- float bsdf_u, bsdf_v;
- path_state_rng_2D(kg, rng, state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
-
- float ao_factor = kernel_data.background.ao_factor;
- float3 ao_N;
- AOBSDF_coop[ray_index] = shader_bsdf_ao(kg, sd, ao_factor, &ao_N);
- AOAlpha_coop[ray_index] = shader_bsdf_alpha(kg, sd);
-
- float3 ao_D;
- float ao_pdf;
- sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);
-
- if(dot(ccl_fetch(sd, Ng), ao_D) > 0.0f && ao_pdf != 0.0f) {
- Ray _ray;
- _ray.P = ray_offset(ccl_fetch(sd, P), ccl_fetch(sd, Ng));
- _ray.D = ao_D;
- _ray.t = kernel_data.background.ao_distance;
-#ifdef __OBJECT_MOTION__
- _ray.time = ccl_fetch(sd, time);
-#endif
- _ray.dP = ccl_fetch(sd, dP);
- _ray.dD = differential3_zero();
- AOLightRay_coop[ray_index] = _ray;
-
- ADD_RAY_FLAG(ray_state, ray_index, RAY_SHADOW_RAY_CAST_AO);
- *enqueue_flag_AO_SHADOW_RAY_CAST = 1;
- }
+ if(kernel_data.integrator.use_ambient_occlusion || (sd->flag & SD_AO)) {
+ enqueue_flag = 1;
}
}
#endif /* __AO__ */
+
+#ifndef __COMPUTE_DEVICE_GPU__
+ }
+#endif
+
+#ifdef __AO__
+ /* Enqueue to-shadow-ray-cast rays. */
+ enqueue_ray_index_local(ray_index,
+ QUEUE_SHADOW_RAY_CAST_AO_RAYS,
+ enqueue_flag,
+ kernel_split_params.queue_size,
+ &locals->queue_atomics_ao,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_index);
+#endif
}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/split/kernel_indirect_background.h b/intern/cycles/kernel/split/kernel_indirect_background.h
new file mode 100644
index 00000000000..437043a5971
--- /dev/null
+++ b/intern/cycles/kernel/split/kernel_indirect_background.h
@@ -0,0 +1,65 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+ccl_device void kernel_indirect_background(KernelGlobals *kg)
+{
+ ccl_global char *ray_state = kernel_split_state.ray_state;
+
+ int thread_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+ int ray_index;
+
+ if(kernel_data.integrator.ao_bounces != INT_MAX) {
+ ray_index = get_ray_index(kg, thread_index,
+ QUEUE_ACTIVE_AND_REGENERATED_RAYS,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_size,
+ 0);
+
+ if(ray_index != QUEUE_EMPTY_SLOT) {
+ if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
+ ccl_global PathState *state = &kernel_split_state.path_state[ray_index];
+ if(path_state_ao_bounce(kg, state)) {
+ kernel_split_path_end(kg, ray_index);
+ }
+ }
+ }
+ }
+
+ ray_index = get_ray_index(kg, thread_index,
+ QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_size,
+ 0);
+
+ if(ray_index == QUEUE_EMPTY_SLOT) {
+ return;
+ }
+
+ if(IS_STATE(ray_state, ray_index, RAY_HIT_BACKGROUND)) {
+ ccl_global PathState *state = &kernel_split_state.path_state[ray_index];
+ PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
+ ccl_global Ray *ray = &kernel_split_state.ray[ray_index];
+ float3 throughput = kernel_split_state.throughput[ray_index];
+ ShaderData *emission_sd = &kernel_split_state.sd_DL_shadow[ray_index];
+
+ kernel_path_background(kg, state, ray, throughput, emission_sd, L);
+ kernel_split_path_end(kg, ray_index);
+ }
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/split/kernel_indirect_subsurface.h b/intern/cycles/kernel/split/kernel_indirect_subsurface.h
new file mode 100644
index 00000000000..e9fe5552e8c
--- /dev/null
+++ b/intern/cycles/kernel/split/kernel_indirect_subsurface.h
@@ -0,0 +1,79 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+ccl_device void kernel_indirect_subsurface(KernelGlobals *kg)
+{
+ int thread_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+ if(thread_index == 0) {
+ /* We will empty both queues in this kernel. */
+ kernel_split_params.queue_index[QUEUE_ACTIVE_AND_REGENERATED_RAYS] = 0;
+ kernel_split_params.queue_index[QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS] = 0;
+ }
+
+ int ray_index;
+ get_ray_index(kg, thread_index,
+ QUEUE_ACTIVE_AND_REGENERATED_RAYS,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_size,
+ 1);
+ ray_index = get_ray_index(kg, thread_index,
+ QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_size,
+ 1);
+
+#ifdef __SUBSURFACE__
+
+ if(ray_index == QUEUE_EMPTY_SLOT) {
+ return;
+ }
+
+ ccl_global char *ray_state = kernel_split_state.ray_state;
+ ccl_global PathState *state = &kernel_split_state.path_state[ray_index];
+ PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
+ ccl_global Ray *ray = &kernel_split_state.ray[ray_index];
+ ccl_global float3 *throughput = &kernel_split_state.throughput[ray_index];
+
+#ifdef __BRANCHED_PATH__
+ if(!kernel_data.integrator.branched) {
+#endif
+ if(IS_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER)) {
+ ccl_addr_space SubsurfaceIndirectRays *ss_indirect = &kernel_split_state.ss_rays[ray_index];
+
+ /* Trace indirect subsurface rays by restarting the loop. this uses less
+ * stack memory than invoking kernel_path_indirect.
+ */
+ if(ss_indirect->num_rays) {
+ kernel_path_subsurface_setup_indirect(kg,
+ ss_indirect,
+ state,
+ ray,
+ L,
+ throughput);
+ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
+ }
+ }
+#ifdef __BRANCHED_PATH__
+ }
+#endif
+
+#endif /* __SUBSURFACE__ */
+
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/split/kernel_lamp_emission.h b/intern/cycles/kernel/split/kernel_lamp_emission.h
index 3bd0e361078..448456d167d 100644
--- a/intern/cycles/kernel/split/kernel_lamp_emission.h
+++ b/intern/cycles/kernel/split/kernel_lamp_emission.h
@@ -14,70 +14,55 @@
* limitations under the License.
*/
-#include "kernel_split_common.h"
+CCL_NAMESPACE_BEGIN
-/* Note on kernel_lamp_emission
- * This is the 3rd kernel in the ray-tracing logic. This is the second of the
- * path-iteration kernels. This kernel takes care of the indirect lamp emission logic.
- * This kernel operates on QUEUE_ACTIVE_AND_REGENERATED_RAYS. It processes rays of state RAY_ACTIVE
- * and RAY_HIT_BACKGROUND.
+/* This kernel operates on QUEUE_ACTIVE_AND_REGENERATED_RAYS.
+ * It processes rays of state RAY_ACTIVE and RAY_HIT_BACKGROUND.
* We will empty QUEUE_ACTIVE_AND_REGENERATED_RAYS queue in this kernel.
- * The input/output of the kernel is as follows,
- * Throughput_coop ------------------------------------|--- kernel_lamp_emission --|--- PathRadiance_coop
- * Ray_coop -------------------------------------------| |--- Queue_data(QUEUE_ACTIVE_AND_REGENERATED_RAYS)
- * PathState_coop -------------------------------------| |--- Queue_index(QUEUE_ACTIVE_AND_REGENERATED_RAYS)
- * kg (globals) ---------------------------------------| |
- * Intersection_coop ----------------------------------| |
- * ray_state ------------------------------------------| |
- * Queue_data (QUEUE_ACTIVE_AND_REGENERATED_RAYS) -----| |
- * Queue_index (QUEUE_ACTIVE_AND_REGENERATED_RAYS) ----| |
- * queuesize ------------------------------------------| |
- * use_queues_flag ------------------------------------| |
- * sw -------------------------------------------------| |
- * sh -------------------------------------------------| |
*/
-ccl_device void kernel_lamp_emission(
- KernelGlobals *kg,
- ccl_global float3 *throughput_coop, /* Required for lamp emission */
- PathRadiance *PathRadiance_coop, /* Required for lamp emission */
- ccl_global Ray *Ray_coop, /* Required for lamp emission */
- ccl_global PathState *PathState_coop, /* Required for lamp emission */
- Intersection *Intersection_coop, /* Required for lamp emission */
- ccl_global char *ray_state, /* Denotes the state of each ray */
- int sw, int sh,
- ccl_global char *use_queues_flag, /* Used to decide if this kernel should use
- * queues to fetch ray index
- */
- int ray_index)
+ccl_device void kernel_lamp_emission(KernelGlobals *kg)
{
- if(IS_STATE(ray_state, ray_index, RAY_ACTIVE) ||
- IS_STATE(ray_state, ray_index, RAY_HIT_BACKGROUND))
- {
- PathRadiance *L = &PathRadiance_coop[ray_index];
- ccl_global PathState *state = &PathState_coop[ray_index];
+#ifndef __VOLUME__
+ /* We will empty this queue in this kernel. */
+ if(ccl_global_id(0) == 0 && ccl_global_id(1) == 0) {
+ kernel_split_params.queue_index[QUEUE_ACTIVE_AND_REGENERATED_RAYS] = 0;
+ }
+#endif
+ /* Fetch use_queues_flag. */
+ char local_use_queues_flag = *kernel_split_params.use_queues_flag;
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
- float3 throughput = throughput_coop[ray_index];
- Ray ray = Ray_coop[ray_index];
+ int ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+ if(local_use_queues_flag) {
+ ray_index = get_ray_index(kg, ray_index,
+ QUEUE_ACTIVE_AND_REGENERATED_RAYS,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_size,
+#ifndef __VOLUME__
+ 1
+#else
+ 0
+#endif
+ );
+ if(ray_index == QUEUE_EMPTY_SLOT) {
+ return;
+ }
+ }
-#ifdef __LAMP_MIS__
- if(kernel_data.integrator.use_lamp_mis && !(state->flag & PATH_RAY_CAMERA)) {
- /* ray starting from previous non-transparent bounce */
- Ray light_ray;
+ if(IS_STATE(kernel_split_state.ray_state, ray_index, RAY_ACTIVE) ||
+ IS_STATE(kernel_split_state.ray_state, ray_index, RAY_HIT_BACKGROUND))
+ {
+ PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
+ ccl_global PathState *state = &kernel_split_state.path_state[ray_index];
- light_ray.P = ray.P - state->ray_t*ray.D;
- state->ray_t += Intersection_coop[ray_index].t;
- light_ray.D = ray.D;
- light_ray.t = state->ray_t;
- light_ray.time = ray.time;
- light_ray.dD = ray.dD;
- light_ray.dP = ray.dP;
- /* intersect with lamp */
- float3 emission;
+ float3 throughput = kernel_split_state.throughput[ray_index];
+ Ray ray = kernel_split_state.ray[ray_index];
+ ccl_global Intersection *isect = &kernel_split_state.isect[ray_index];
+ ShaderData *emission_sd = &kernel_split_state.sd_DL_shadow[ray_index];
- if(indirect_lamp_emission(kg, kg->sd_input, state, &light_ray, &emission)) {
- path_radiance_accum_emission(L, throughput, emission, state->bounce);
- }
- }
-#endif /* __LAMP_MIS__ */
+ kernel_path_lamp_emission(kg, state, &ray, throughput, isect, emission_sd, L);
}
}
+
+CCL_NAMESPACE_END
+
diff --git a/intern/cycles/kernel/split/kernel_next_iteration_setup.h b/intern/cycles/kernel/split/kernel_next_iteration_setup.h
index 816f3a6fbff..c3373174582 100644
--- a/intern/cycles/kernel/split/kernel_next_iteration_setup.h
+++ b/intern/cycles/kernel/split/kernel_next_iteration_setup.h
@@ -14,128 +14,230 @@
* limitations under the License.
*/
-#include "kernel_split_common.h"
+CCL_NAMESPACE_BEGIN
-/* Note on kernel_setup_next_iteration kernel.
- * This is the tenth kernel in the ray tracing logic. This is the ninth
- * of the path iteration kernels. This kernel takes care of setting up
- * Ray for the next iteration of path-iteration and accumulating radiance
- * corresponding to AO and direct-lighting
+/*This kernel takes care of setting up ray for the next iteration of
+ * path-iteration and accumulating radiance corresponding to AO and
+ * direct-lighting
*
- * Ray state of rays that are terminated in this kernel are changed to RAY_UPDATE_BUFFER
+ * Ray state of rays that are terminated in this kernel are changed
+ * to RAY_UPDATE_BUFFER.
*
- * The input and output are as follows,
+ * Note on queues:
+ * This kernel fetches rays from the queue QUEUE_ACTIVE_AND_REGENERATED_RAYS
+ * and processes only the rays of state RAY_ACTIVE.
+ * There are different points in this kernel where a ray may terminate and
+ * reach RAY_UPDATE_BUFF state. These rays are enqueued into
+ * QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS queue. These rays will still be present
+ * in QUEUE_ACTIVE_AND_REGENERATED_RAYS queue, but since their ray-state has
+ * been changed to RAY_UPDATE_BUFF, there is no problem.
*
- * rng_coop ---------------------------------------------|--- kernel_next_iteration_setup -|--- Queue_index (QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS)
- * throughput_coop --------------------------------------| |--- Queue_data (QUEUE_HITBF_BUFF_UPDATE_TOREGEN_RAYS)
- * PathRadiance_coop ------------------------------------| |--- throughput_coop
- * PathState_coop ---------------------------------------| |--- PathRadiance_coop
- * sd ---------------------------------------------------| |--- PathState_coop
- * ray_state --------------------------------------------| |--- ray_state
- * Queue_data (QUEUE_ACTIVE_AND_REGENERATD_RAYS) --------| |--- Ray_coop
- * Queue_index (QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS) ---| |--- use_queues_flag
- * Ray_coop ---------------------------------------------| |
- * kg (globals) -----------------------------------------| |
- * LightRay_dl_coop -------------------------------------|
- * ISLamp_coop ------------------------------------------|
- * BSDFEval_coop ----------------------------------------|
- * LightRay_ao_coop -------------------------------------|
- * AOBSDF_coop ------------------------------------------|
- * AOAlpha_coop -----------------------------------------|
- *
- * Note on queues,
- * This kernel fetches rays from the queue QUEUE_ACTIVE_AND_REGENERATED_RAYS and processes only
- * the rays of state RAY_ACTIVE.
- * There are different points in this kernel where a ray may terminate and reach RAY_UPDATE_BUFF
- * state. These rays are enqueued into QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS queue. These rays will
- * still be present in QUEUE_ACTIVE_AND_REGENERATED_RAYS queue, but since their ray-state has been
- * changed to RAY_UPDATE_BUFF, there is no problem.
- *
- * State of queues when this kernel is called :
+ * State of queues when this kernel is called:
* At entry,
- * QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE, RAY_REGENERATED, RAY_UPDATE_BUFFER rays.
- * QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with RAY_TO_REGENERATE and RAY_UPDATE_BUFFER rays
+ * - QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE,
+ * RAY_REGENERATED, RAY_UPDATE_BUFFER rays.
+ * - QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with
+ * RAY_TO_REGENERATE and RAY_UPDATE_BUFFER rays.
* At exit,
- * QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE, RAY_REGENERATED and more RAY_UPDATE_BUFFER rays.
- * QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with RAY_TO_REGENERATE and more RAY_UPDATE_BUFFER rays
+ * - QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE,
+ * RAY_REGENERATED and more RAY_UPDATE_BUFFER rays.
+ * - QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with
+ * RAY_TO_REGENERATE and more RAY_UPDATE_BUFFER rays.
*/
-ccl_device char kernel_next_iteration_setup(
- KernelGlobals *kg,
- ShaderData *sd, /* Required for setting up ray for next iteration */
- ccl_global uint *rng_coop, /* Required for setting up ray for next iteration */
- ccl_global float3 *throughput_coop, /* Required for setting up ray for next iteration */
- PathRadiance *PathRadiance_coop, /* Required for setting up ray for next iteration */
- ccl_global Ray *Ray_coop, /* Required for setting up ray for next iteration */
- ccl_global PathState *PathState_coop, /* Required for setting up ray for next iteration */
- ccl_global Ray *LightRay_dl_coop, /* Required for radiance update - direct lighting */
- ccl_global int *ISLamp_coop, /* Required for radiance update - direct lighting */
- ccl_global BsdfEval *BSDFEval_coop, /* Required for radiance update - direct lighting */
- ccl_global Ray *LightRay_ao_coop, /* Required for radiance update - AO */
- ccl_global float3 *AOBSDF_coop, /* Required for radiance update - AO */
- ccl_global float3 *AOAlpha_coop, /* Required for radiance update - AO */
- ccl_global char *ray_state, /* Denotes the state of each ray */
- ccl_global char *use_queues_flag, /* flag to decide if scene_intersect kernel should
- * use queues to fetch ray index */
- int ray_index)
+
+#ifdef __BRANCHED_PATH__
+ccl_device_inline void kernel_split_branched_indirect_light_init(KernelGlobals *kg, int ray_index)
{
- char enqueue_flag = 0;
-
- /* Load ShaderData structure. */
- PathRadiance *L = NULL;
- ccl_global PathState *state = NULL;
-
- /* Path radiance update for AO/Direct_lighting's shadow blocked. */
- if(IS_FLAG(ray_state, ray_index, RAY_SHADOW_RAY_CAST_DL) ||
- IS_FLAG(ray_state, ray_index, RAY_SHADOW_RAY_CAST_AO))
- {
- state = &PathState_coop[ray_index];
- L = &PathRadiance_coop[ray_index];
- float3 _throughput = throughput_coop[ray_index];
-
- if(IS_FLAG(ray_state, ray_index, RAY_SHADOW_RAY_CAST_AO)) {
- float3 shadow = LightRay_ao_coop[ray_index].P;
- char update_path_radiance = LightRay_ao_coop[ray_index].t;
- if(update_path_radiance) {
- path_radiance_accum_ao(L,
- _throughput,
- AOAlpha_coop[ray_index],
- AOBSDF_coop[ray_index],
- shadow,
- state->bounce);
+ kernel_split_branched_path_indirect_loop_init(kg, ray_index);
+
+ ADD_RAY_FLAG(kernel_split_state.ray_state, ray_index, RAY_BRANCHED_LIGHT_INDIRECT);
+}
+
+ccl_device void kernel_split_branched_indirect_light_end(KernelGlobals *kg, int ray_index)
+{
+ kernel_split_branched_path_indirect_loop_end(kg, ray_index);
+
+ ccl_global float3 *throughput = &kernel_split_state.throughput[ray_index];
+ ShaderData *sd = &kernel_split_state.sd[ray_index];
+ ccl_global PathState *state = &kernel_split_state.path_state[ray_index];
+ ccl_global Ray *ray = &kernel_split_state.ray[ray_index];
+
+ /* continue in case of transparency */
+ *throughput *= shader_bsdf_transparency(kg, sd);
+
+ if(is_zero(*throughput)) {
+ kernel_split_path_end(kg, ray_index);
+ }
+ else {
+ /* Update Path State */
+ state->flag |= PATH_RAY_TRANSPARENT;
+ state->transparent_bounce++;
+
+ ray->P = ray_offset(sd->P, -sd->Ng);
+ ray->t -= sd->ray_length; /* clipping works through transparent */
+
+# ifdef __RAY_DIFFERENTIALS__
+ ray->dP = sd->dP;
+ ray->dD.dx = -sd->dI.dx;
+ ray->dD.dy = -sd->dI.dy;
+# endif /* __RAY_DIFFERENTIALS__ */
+
+# ifdef __VOLUME__
+ /* enter/exit volume */
+ kernel_volume_stack_enter_exit(kg, sd, state->volume_stack);
+# endif /* __VOLUME__ */
+ }
+}
+#endif /* __BRANCHED_PATH__ */
+
+ccl_device void kernel_next_iteration_setup(KernelGlobals *kg,
+ ccl_local_param unsigned int *local_queue_atomics)
+{
+ if(ccl_local_id(0) == 0 && ccl_local_id(1) == 0) {
+ *local_queue_atomics = 0;
+ }
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+
+ if(ccl_global_id(0) == 0 && ccl_global_id(1) == 0) {
+ /* If we are here, then it means that scene-intersect kernel
+ * has already been executed atleast once. From the next time,
+ * scene-intersect kernel may operate on queues to fetch ray index
+ */
+ *kernel_split_params.use_queues_flag = 1;
+
+ /* Mark queue indices of QUEUE_SHADOW_RAY_CAST_AO_RAYS and
+ * QUEUE_SHADOW_RAY_CAST_DL_RAYS queues that were made empty during the
+ * previous kernel.
+ */
+ kernel_split_params.queue_index[QUEUE_SHADOW_RAY_CAST_AO_RAYS] = 0;
+ kernel_split_params.queue_index[QUEUE_SHADOW_RAY_CAST_DL_RAYS] = 0;
+ }
+
+ int ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+ ray_index = get_ray_index(kg, ray_index,
+ QUEUE_ACTIVE_AND_REGENERATED_RAYS,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_size,
+ 0);
+
+ ccl_global char *ray_state = kernel_split_state.ray_state;
+
+ bool active = IS_STATE(ray_state, ray_index, RAY_ACTIVE);
+ if(active) {
+ ccl_global float3 *throughput = &kernel_split_state.throughput[ray_index];
+ ccl_global Ray *ray = &kernel_split_state.ray[ray_index];
+ ShaderData *sd = &kernel_split_state.sd[ray_index];
+ ccl_global PathState *state = &kernel_split_state.path_state[ray_index];
+ PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
+
+#ifdef __BRANCHED_PATH__
+ if(!kernel_data.integrator.branched || IS_FLAG(ray_state, ray_index, RAY_BRANCHED_INDIRECT)) {
+#endif
+ /* Compute direct lighting and next bounce. */
+ if(!kernel_path_surface_bounce(kg, sd, throughput, state, &L->state, ray)) {
+ kernel_split_path_end(kg, ray_index);
}
- REMOVE_RAY_FLAG(ray_state, ray_index, RAY_SHADOW_RAY_CAST_AO);
+#ifdef __BRANCHED_PATH__
}
+ else {
+ kernel_split_branched_indirect_light_init(kg, ray_index);
- if(IS_FLAG(ray_state, ray_index, RAY_SHADOW_RAY_CAST_DL)) {
- float3 shadow = LightRay_dl_coop[ray_index].P;
- char update_path_radiance = LightRay_dl_coop[ray_index].t;
- if(update_path_radiance) {
- BsdfEval L_light = BSDFEval_coop[ray_index];
- path_radiance_accum_light(L,
- _throughput,
- &L_light,
- shadow,
- 1.0f,
- state->bounce,
- ISLamp_coop[ray_index]);
+ if(kernel_split_branched_path_surface_indirect_light_iter(kg,
+ ray_index,
+ 1.0f,
+ &kernel_split_state.branched_state[ray_index].sd,
+ true,
+ true))
+ {
+ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
+ }
+ else {
+ kernel_split_branched_indirect_light_end(kg, ray_index);
}
- REMOVE_RAY_FLAG(ray_state, ray_index, RAY_SHADOW_RAY_CAST_DL);
}
+#endif /* __BRANCHED_PATH__ */
}
- if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
- ccl_global float3 *throughput = &throughput_coop[ray_index];
- ccl_global Ray *ray = &Ray_coop[ray_index];
- ccl_global RNG *rng = &rng_coop[ray_index];
- state = &PathState_coop[ray_index];
- L = &PathRadiance_coop[ray_index];
-
- /* Compute direct lighting and next bounce. */
- if(!kernel_path_surface_bounce(kg, rng, sd, throughput, state, L, ray)) {
- ASSIGN_RAY_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER);
- enqueue_flag = 1;
+ /* Enqueue RAY_UPDATE_BUFFER rays. */
+ enqueue_ray_index_local(ray_index,
+ QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS,
+ IS_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER) && active,
+ kernel_split_params.queue_size,
+ local_queue_atomics,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_index);
+
+#ifdef __BRANCHED_PATH__
+ /* iter loop */
+ if(ccl_global_id(0) == 0 && ccl_global_id(1) == 0) {
+ kernel_split_params.queue_index[QUEUE_LIGHT_INDIRECT_ITER] = 0;
+ }
+
+ ray_index = get_ray_index(kg, ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0),
+ QUEUE_LIGHT_INDIRECT_ITER,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_size,
+ 1);
+
+ if(IS_STATE(ray_state, ray_index, RAY_LIGHT_INDIRECT_NEXT_ITER)) {
+ /* for render passes, sum and reset indirect light pass variables
+ * for the next samples */
+ PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
+
+ path_radiance_sum_indirect(L);
+ path_radiance_reset_indirect(L);
+
+ if(kernel_split_branched_path_surface_indirect_light_iter(kg,
+ ray_index,
+ 1.0f,
+ &kernel_split_state.branched_state[ray_index].sd,
+ true,
+ true))
+ {
+ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
+ }
+ else {
+ kernel_split_branched_indirect_light_end(kg, ray_index);
}
}
- return enqueue_flag;
+# ifdef __VOLUME__
+ /* Enqueue RAY_VOLUME_INDIRECT_NEXT_ITER rays */
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+ if(ccl_local_id(0) == 0 && ccl_local_id(1) == 0) {
+ *local_queue_atomics = 0;
+ }
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+
+ ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+ enqueue_ray_index_local(ray_index,
+ QUEUE_VOLUME_INDIRECT_ITER,
+ IS_STATE(kernel_split_state.ray_state, ray_index, RAY_VOLUME_INDIRECT_NEXT_ITER),
+ kernel_split_params.queue_size,
+ local_queue_atomics,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_index);
+
+# endif /* __VOLUME__ */
+
+# ifdef __SUBSURFACE__
+ /* Enqueue RAY_SUBSURFACE_INDIRECT_NEXT_ITER rays */
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+ if(ccl_local_id(0) == 0 && ccl_local_id(1) == 0) {
+ *local_queue_atomics = 0;
+ }
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+
+ ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+ enqueue_ray_index_local(ray_index,
+ QUEUE_SUBSURFACE_INDIRECT_ITER,
+ IS_STATE(kernel_split_state.ray_state, ray_index, RAY_SUBSURFACE_INDIRECT_NEXT_ITER),
+ kernel_split_params.queue_size,
+ local_queue_atomics,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_index);
+# endif /* __SUBSURFACE__ */
+#endif /* __BRANCHED_PATH__ */
}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/split/kernel_path_init.h b/intern/cycles/kernel/split/kernel_path_init.h
new file mode 100644
index 00000000000..5ad62b585fe
--- /dev/null
+++ b/intern/cycles/kernel/split/kernel_path_init.h
@@ -0,0 +1,81 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+/* This kernel initializes structures needed in path-iteration kernels.
+ * This is the first kernel in ray-tracing logic.
+ *
+ * Ray state of rays outside the tile-boundary will be marked RAY_INACTIVE
+ */
+ccl_device void kernel_path_init(KernelGlobals *kg) {
+ int ray_index = ccl_global_id(0) + ccl_global_id(1) * ccl_global_size(0);
+
+ /* This is the first assignment to ray_state;
+ * So we dont use ASSIGN_RAY_STATE macro.
+ */
+ kernel_split_state.ray_state[ray_index] = RAY_ACTIVE;
+
+ /* Get work. */
+ ccl_global uint *work_pools = kernel_split_params.work_pools;
+ uint total_work_size = kernel_split_params.total_work_size;
+ uint work_index;
+
+ if(!get_next_work(kg, work_pools, total_work_size, ray_index, &work_index)) {
+ /* No more work, mark ray as inactive */
+ kernel_split_state.ray_state[ray_index] = RAY_INACTIVE;
+
+ return;
+ }
+
+ ccl_global WorkTile *tile = &kernel_split_params.tile;
+ uint x, y, sample;
+ get_work_pixel(tile, work_index, &x, &y, &sample);
+
+ /* Store buffer offset for writing to passes. */
+ uint buffer_offset = (tile->offset + x + y*tile->stride) * kernel_data.film.pass_stride;
+ kernel_split_state.buffer_offset[ray_index] = buffer_offset;
+
+ /* Initialize random numbers and ray. */
+ uint rng_hash;
+ kernel_path_trace_setup(kg,
+ sample,
+ x, y,
+ &rng_hash,
+ &kernel_split_state.ray[ray_index]);
+
+ if(kernel_split_state.ray[ray_index].t != 0.0f) {
+ /* Initialize throughput, path radiance, Ray, PathState;
+ * These rays proceed with path-iteration.
+ */
+ kernel_split_state.throughput[ray_index] = make_float3(1.0f, 1.0f, 1.0f);
+ path_radiance_init(&kernel_split_state.path_radiance[ray_index], kernel_data.film.use_light_pass);
+ path_state_init(kg,
+ &kernel_split_state.sd_DL_shadow[ray_index],
+ &kernel_split_state.path_state[ray_index],
+ rng_hash,
+ sample,
+ &kernel_split_state.ray[ray_index]);
+#ifdef __SUBSURFACE__
+ kernel_path_subsurface_init_indirect(&kernel_split_state.ss_rays[ray_index]);
+#endif
+ }
+ else {
+ ASSIGN_RAY_STATE(kernel_split_state.ray_state, ray_index, RAY_TO_REGENERATE);
+ }
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/split/kernel_queue_enqueue.h b/intern/cycles/kernel/split/kernel_queue_enqueue.h
new file mode 100644
index 00000000000..66ce2dfb6f1
--- /dev/null
+++ b/intern/cycles/kernel/split/kernel_queue_enqueue.h
@@ -0,0 +1,91 @@
+/*
+ * Copyright 2011-2016 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+/* This kernel enqueues rays of different ray state into their
+ * appropriate queues:
+ *
+ * 1. Rays that have been determined to hit the background from the
+ * "kernel_scene_intersect" kernel are enqueued in
+ * QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS;
+ * 2. Rays that have been determined to be actively participating in pat
+ * -iteration will be enqueued into QUEUE_ACTIVE_AND_REGENERATED_RAYS.
+ *
+ * State of queue during other times this kernel is called:
+ * At entry,
+ * - QUEUE_ACTIVE_AND_REGENERATED_RAYS will be empty.
+ * - QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will contain RAY_TO_REGENERATE
+ * and RAY_UPDATE_BUFFER rays.
+ * At exit,
+ * - QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE rays.
+ * - QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with
+ * RAY_TO_REGENERATE, RAY_UPDATE_BUFFER, RAY_HIT_BACKGROUND rays.
+ */
+ccl_device void kernel_queue_enqueue(KernelGlobals *kg,
+ ccl_local_param QueueEnqueueLocals *locals)
+{
+ /* We have only 2 cases (Hit/Not-Hit) */
+ int lidx = ccl_local_id(1) * ccl_local_size(0) + ccl_local_id(0);
+ int ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+
+ if(lidx == 0) {
+ locals->queue_atomics[0] = 0;
+ locals->queue_atomics[1] = 0;
+ }
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+
+ int queue_number = -1;
+
+ if(IS_STATE(kernel_split_state.ray_state, ray_index, RAY_HIT_BACKGROUND) ||
+ IS_STATE(kernel_split_state.ray_state, ray_index, RAY_UPDATE_BUFFER) ||
+ IS_STATE(kernel_split_state.ray_state, ray_index, RAY_TO_REGENERATE)) {
+ queue_number = QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS;
+ }
+ else if(IS_STATE(kernel_split_state.ray_state, ray_index, RAY_ACTIVE) ||
+ IS_STATE(kernel_split_state.ray_state, ray_index, RAY_REGENERATED)) {
+ queue_number = QUEUE_ACTIVE_AND_REGENERATED_RAYS;
+ }
+
+ unsigned int my_lqidx;
+ if(queue_number != -1) {
+ my_lqidx = get_local_queue_index(queue_number, locals->queue_atomics);
+ }
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+
+ if(lidx == 0) {
+ locals->queue_atomics[QUEUE_ACTIVE_AND_REGENERATED_RAYS] =
+ get_global_per_queue_offset(QUEUE_ACTIVE_AND_REGENERATED_RAYS,
+ locals->queue_atomics,
+ kernel_split_params.queue_index);
+ locals->queue_atomics[QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS] =
+ get_global_per_queue_offset(QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS,
+ locals->queue_atomics,
+ kernel_split_params.queue_index);
+ }
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+
+ unsigned int my_gqidx;
+ if(queue_number != -1) {
+ my_gqidx = get_global_queue_index(queue_number,
+ kernel_split_params.queue_size,
+ my_lqidx,
+ locals->queue_atomics);
+ kernel_split_state.queue_data[my_gqidx] = ray_index;
+ }
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/split/kernel_scene_intersect.h b/intern/cycles/kernel/split/kernel_scene_intersect.h
index fc4b4ee38e5..f5378bc172b 100644
--- a/intern/cycles/kernel/split/kernel_scene_intersect.h
+++ b/intern/cycles/kernel/split/kernel_scene_intersect.h
@@ -14,119 +14,66 @@
* limitations under the License.
*/
-#include "kernel_split_common.h"
+CCL_NAMESPACE_BEGIN
-/* Note on kernel_scene_intersect kernel.
- * This is the second kernel in the ray tracing logic. This is the first
- * of the path iteration kernels. This kernel takes care of scene_intersect function.
+/* This kernel takes care of scene_intersect function.
*
* This kernel changes the ray_state of RAY_REGENERATED rays to RAY_ACTIVE.
* This kernel processes rays of ray state RAY_ACTIVE
- * This kernel determines the rays that have hit the background and changes their ray state to RAY_HIT_BACKGROUND.
- *
- * The input and output are as follows,
- *
- * Ray_coop ---------------------------------------|--------- kernel_scene_intersect----------|--- PathState
- * PathState_coop ---------------------------------| |--- Intersection
- * ray_state --------------------------------------| |--- ray_state
- * use_queues_flag --------------------------------| |
- * QueueData(QUEUE_ACTIVE_AND_REGENERATED_RAYS) ---| |
- * kg (globals) -----------------------------------| |
- * rng_coop ---------------------------------------| |
- * sw ---------------------------------------------| |
- * sh ---------------------------------------------| |
- * queuesize --------------------------------------| |
- *
- * Note on Queues :
- * Ideally we would want kernel_scene_intersect to work on queues.
- * But during the very first time, the queues will be empty and hence we perform a direct mapping
- * between ray-index and thread-index; From the next time onward, the queue will be filled and
- * we may start operating on queues.
- *
- * State of queue during the first time this kernel is called :
- * QUEUE_ACTIVE_AND_REGENERATED_RAYS and QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be empty.before and after this kernel
- *
- * State of queues during other times this kernel is called :
- * At entry,
- * QUEUE_ACTIVE_AND_REGENERATED_RAYS will have a mix of RAY_ACTIVE, RAY_UPDATE_BUFFER and RAY_REGENERATED rays;
- * QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with RAY_TO_REGENERATE and RAY_UPDATE_BUFFER rays ;
- * (The rays that are in the state RAY_UPDATE_BUFFER in both the queues are actually the same rays; These
- * are the rays that were in RAY_ACTIVE state during the initial enqueue but on further processing
- * , by different kernels, have turned into RAY_UPDATE_BUFFER rays. Since all kernel, even after fetching from
- * QUEUE_ACTIVE_AND_REGENERATED_RAYS, proceed further based on ray state information, RAY_UPDATE_BUFFER rays
- * being present in QUEUE_ACTIVE_AND_REGENERATED_RAYS does not cause any logical issues)
- * At exit,
- * QUEUE_ACTIVE_AND_REGENERATED_RAYS - All RAY_REGENERATED rays will have been converted to RAY_ACTIVE and
- * Some rays in QUEUE_ACTIVE_AND_REGENERATED_RAYS queue will move to state RAY_HIT_BACKGROUND
- * QUEUE_HITBF_BUFF_UPDATE_TOREGEN_RAYS - no change
+ * This kernel determines the rays that have hit the background and changes
+ * their ray state to RAY_HIT_BACKGROUND.
*/
-
-ccl_device void kernel_scene_intersect(
- KernelGlobals *kg,
- ccl_global uint *rng_coop,
- ccl_global Ray *Ray_coop, /* Required for scene_intersect */
- ccl_global PathState *PathState_coop, /* Required for scene_intersect */
- Intersection *Intersection_coop, /* Required for scene_intersect */
- ccl_global char *ray_state, /* Denotes the state of each ray */
- int sw, int sh,
- ccl_global char *use_queues_flag, /* used to decide if this kernel should use
- * queues to fetch ray index */
-#ifdef __KERNEL_DEBUG__
- DebugData *debugdata_coop,
-#endif
- int ray_index)
+ccl_device void kernel_scene_intersect(KernelGlobals *kg)
{
- /* All regenerated rays become active here */
- if(IS_STATE(ray_state, ray_index, RAY_REGENERATED))
- ASSIGN_RAY_STATE(ray_state, ray_index, RAY_ACTIVE);
-
- if(!IS_STATE(ray_state, ray_index, RAY_ACTIVE))
- return;
+ /* Fetch use_queues_flag */
+ char local_use_queues_flag = *kernel_split_params.use_queues_flag;
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
-#ifdef __KERNEL_DEBUG__
- DebugData *debug_data = &debugdata_coop[ray_index];
-#endif
- Intersection *isect = &Intersection_coop[ray_index];
- PathState state = PathState_coop[ray_index];
- Ray ray = Ray_coop[ray_index];
+ int ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+ if(local_use_queues_flag) {
+ ray_index = get_ray_index(kg, ray_index,
+ QUEUE_ACTIVE_AND_REGENERATED_RAYS,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_size,
+ 0);
- /* intersect scene */
- uint visibility = path_state_ray_visibility(kg, &state);
-
-#ifdef __HAIR__
- float difl = 0.0f, extmax = 0.0f;
- uint lcg_state = 0;
- RNG rng = rng_coop[ray_index];
+ if(ray_index == QUEUE_EMPTY_SLOT) {
+ return;
+ }
+ }
- if(kernel_data.bvh.have_curves) {
- if((kernel_data.cam.resolution == 1) && (state.flag & PATH_RAY_CAMERA)) {
- float3 pixdiff = ray.dD.dx + ray.dD.dy;
- /*pixdiff = pixdiff - dot(pixdiff, ray.D)*ray.D;*/
- difl = kernel_data.curve.minimum_width * len(pixdiff) * 0.5f;
+ /* All regenerated rays become active here */
+ if(IS_STATE(kernel_split_state.ray_state, ray_index, RAY_REGENERATED)) {
+#ifdef __BRANCHED_PATH__
+ if(kernel_split_state.branched_state[ray_index].waiting_on_shared_samples) {
+ kernel_split_path_end(kg, ray_index);
+ }
+ else
+#endif /* __BRANCHED_PATH__ */
+ {
+ ASSIGN_RAY_STATE(kernel_split_state.ray_state, ray_index, RAY_ACTIVE);
}
+ }
- extmax = kernel_data.curve.maximum_width;
- lcg_state = lcg_state_init(&rng, &state, 0x51633e2d);
+ if(!IS_STATE(kernel_split_state.ray_state, ray_index, RAY_ACTIVE)) {
+ return;
}
- bool hit = scene_intersect(kg, ray, visibility, isect, &lcg_state, difl, extmax);
-#else
- bool hit = scene_intersect(kg, ray, visibility, isect, NULL, 0.0f, 0.0f);
-#endif
+ ccl_global PathState *state = &kernel_split_state.path_state[ray_index];
+ Ray ray = kernel_split_state.ray[ray_index];
+ PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
-#ifdef __KERNEL_DEBUG__
- if(state.flag & PATH_RAY_CAMERA) {
- debug_data->num_bvh_traversal_steps += isect->num_traversal_steps;
- debug_data->num_bvh_traversed_instances += isect->num_traversed_instances;
- }
- debug_data->num_ray_bounces++;
-#endif
+ Intersection isect;
+ bool hit = kernel_path_scene_intersect(kg, state, &ray, &isect, L);
+ kernel_split_state.isect[ray_index] = isect;
if(!hit) {
/* Change the state of rays that hit the background;
* These rays undergo special processing in the
* background_bufferUpdate kernel.
*/
- ASSIGN_RAY_STATE(ray_state, ray_index, RAY_HIT_BACKGROUND);
+ ASSIGN_RAY_STATE(kernel_split_state.ray_state, ray_index, RAY_HIT_BACKGROUND);
}
}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/split/kernel_shader_eval.h b/intern/cycles/kernel/split/kernel_shader_eval.h
index cef64bf5f36..7032461b04a 100644
--- a/intern/cycles/kernel/split/kernel_shader_eval.h
+++ b/intern/cycles/kernel/split/kernel_shader_eval.h
@@ -1,5 +1,5 @@
/*
- * Copyright 2011-2015 Blender Foundation
+ * Copyright 2011-2017 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@@ -14,57 +14,53 @@
* limitations under the License.
*/
-#include "kernel_split_common.h"
+CCL_NAMESPACE_BEGIN
-/* Note on kernel_shader_eval kernel
- * This kernel is the 5th kernel in the ray tracing logic. This is
- * the 4rd kernel in path iteration. This kernel sets up the ShaderData
- * structure from the values computed by the previous kernels. It also identifies
- * the rays of state RAY_TO_REGENERATE and enqueues them in QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS queue.
- *
- * The input and output of the kernel is as follows,
- * rng_coop -------------------------------------------|--- kernel_shader_eval --|--- sd
- * Ray_coop -------------------------------------------| |--- Queue_data (QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS)
- * PathState_coop -------------------------------------| |--- Queue_index (QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS)
- * Intersection_coop ----------------------------------| |
- * Queue_data (QUEUE_ACTIVE_AND_REGENERATD_RAYS)-------| |
- * Queue_index(QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS)---| |
- * ray_state ------------------------------------------| |
- * kg (globals) ---------------------------------------| |
- * queuesize ------------------------------------------| |
- *
- * Note on Queues :
- * This kernel reads from the QUEUE_ACTIVE_AND_REGENERATED_RAYS queue and processes
- * only the rays of state RAY_ACTIVE;
- * State of queues when this kernel is called,
- * at entry,
- * QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE and RAY_REGENERATED rays
- * QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be empty.
- * at exit,
- * QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE and RAY_REGENERATED rays
- * QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with RAY_TO_REGENERATE rays
+/* This kernel evaluates ShaderData structure from the values computed
+ * by the previous kernels.
*/
-ccl_device void kernel_shader_eval(
- KernelGlobals *kg,
- ShaderData *sd, /* Output ShaderData structure to be filled */
- ccl_global uint *rng_coop, /* Required for rbsdf calculation */
- ccl_global Ray *Ray_coop, /* Required for setting up shader from ray */
- ccl_global PathState *PathState_coop, /* Required for all functions in this kernel */
- Intersection *Intersection_coop, /* Required for setting up shader from ray */
- ccl_global char *ray_state, /* Denotes the state of each ray */
- int ray_index)
+ccl_device void kernel_shader_eval(KernelGlobals *kg)
{
+
+ int ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+ /* Sorting on cuda split is not implemented */
+#ifdef __KERNEL_CUDA__
+ int queue_index = kernel_split_params.queue_index[QUEUE_ACTIVE_AND_REGENERATED_RAYS];
+#else
+ int queue_index = kernel_split_params.queue_index[QUEUE_SHADER_SORTED_RAYS];
+#endif
+ if(ray_index >= queue_index) {
+ return;
+ }
+ ray_index = get_ray_index(kg, ray_index,
+#ifdef __KERNEL_CUDA__
+ QUEUE_ACTIVE_AND_REGENERATED_RAYS,
+#else
+ QUEUE_SHADER_SORTED_RAYS,
+#endif
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_size,
+ 0);
+
+ if(ray_index == QUEUE_EMPTY_SLOT) {
+ return;
+ }
+
+ ccl_global char *ray_state = kernel_split_state.ray_state;
if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
- Intersection *isect = &Intersection_coop[ray_index];
- ccl_global uint *rng = &rng_coop[ray_index];
- ccl_global PathState *state = &PathState_coop[ray_index];
- Ray ray = Ray_coop[ray_index];
+ ccl_global PathState *state = &kernel_split_state.path_state[ray_index];
- shader_setup_from_ray(kg,
- sd,
- isect,
- &ray);
- float rbsdf = path_state_rng_1D_for_decision(kg, rng, state, PRNG_BSDF);
- shader_eval_surface(kg, sd, rng, state, rbsdf, state->flag, SHADER_CONTEXT_MAIN);
+ shader_eval_surface(kg, &kernel_split_state.sd[ray_index], state, state->flag);
+#ifdef __BRANCHED_PATH__
+ if(kernel_data.integrator.branched) {
+ shader_merge_closures(&kernel_split_state.sd[ray_index]);
+ }
+ else
+#endif
+ {
+ shader_prepare_closures(&kernel_split_state.sd[ray_index], state);
+ }
}
}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/split/kernel_shader_setup.h b/intern/cycles/kernel/split/kernel_shader_setup.h
new file mode 100644
index 00000000000..0432689d9fa
--- /dev/null
+++ b/intern/cycles/kernel/split/kernel_shader_setup.h
@@ -0,0 +1,70 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+/* This kernel sets up the ShaderData structure from the values computed
+ * by the previous kernels.
+ *
+ * It also identifies the rays of state RAY_TO_REGENERATE and enqueues them
+ * in QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS queue.
+ */
+ccl_device void kernel_shader_setup(KernelGlobals *kg,
+ ccl_local_param unsigned int *local_queue_atomics)
+{
+ /* Enqeueue RAY_TO_REGENERATE rays into QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS queue. */
+ if(ccl_local_id(0) == 0 && ccl_local_id(1) == 0) {
+ *local_queue_atomics = 0;
+ }
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+
+ int ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+ int queue_index = kernel_split_params.queue_index[QUEUE_ACTIVE_AND_REGENERATED_RAYS];
+ if(ray_index >= queue_index) {
+ return;
+ }
+ ray_index = get_ray_index(kg, ray_index,
+ QUEUE_ACTIVE_AND_REGENERATED_RAYS,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_size,
+ 0);
+
+ if(ray_index == QUEUE_EMPTY_SLOT) {
+ return;
+ }
+
+ char enqueue_flag = (IS_STATE(kernel_split_state.ray_state, ray_index, RAY_TO_REGENERATE)) ? 1 : 0;
+ enqueue_ray_index_local(ray_index,
+ QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS,
+ enqueue_flag,
+ kernel_split_params.queue_size,
+ local_queue_atomics,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_index);
+
+ /* Continue on with shader evaluation. */
+ if(IS_STATE(kernel_split_state.ray_state, ray_index, RAY_ACTIVE)) {
+ Intersection isect = kernel_split_state.isect[ray_index];
+ Ray ray = kernel_split_state.ray[ray_index];
+
+ shader_setup_from_ray(kg,
+ &kernel_split_state.sd[ray_index],
+ &isect,
+ &ray);
+ }
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/split/kernel_shader_sort.h b/intern/cycles/kernel/split/kernel_shader_sort.h
new file mode 100644
index 00000000000..5a55b680695
--- /dev/null
+++ b/intern/cycles/kernel/split/kernel_shader_sort.h
@@ -0,0 +1,97 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+
+ccl_device void kernel_shader_sort(KernelGlobals *kg,
+ ccl_local_param ShaderSortLocals *locals)
+{
+#ifndef __KERNEL_CUDA__
+ int tid = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+ uint qsize = kernel_split_params.queue_index[QUEUE_ACTIVE_AND_REGENERATED_RAYS];
+ if(tid == 0) {
+ kernel_split_params.queue_index[QUEUE_SHADER_SORTED_RAYS] = qsize;
+ }
+
+ uint offset = (tid/SHADER_SORT_LOCAL_SIZE)*SHADER_SORT_BLOCK_SIZE;
+ if(offset >= qsize) {
+ return;
+ }
+
+ int lid = ccl_local_id(1) * ccl_local_size(0) + ccl_local_id(0);
+ uint input = QUEUE_ACTIVE_AND_REGENERATED_RAYS * (kernel_split_params.queue_size);
+ uint output = QUEUE_SHADER_SORTED_RAYS * (kernel_split_params.queue_size);
+ ccl_local uint *local_value = &locals->local_value[0];
+ ccl_local ushort *local_index = &locals->local_index[0];
+
+ /* copy to local memory */
+ for(uint i = 0; i < SHADER_SORT_BLOCK_SIZE; i += SHADER_SORT_LOCAL_SIZE) {
+ uint idx = offset + i + lid;
+ uint add = input + idx;
+ uint value = (~0);
+ if(idx < qsize) {
+ int ray_index = kernel_split_state.queue_data[add];
+ bool valid = (ray_index != QUEUE_EMPTY_SLOT) && IS_STATE(kernel_split_state.ray_state, ray_index, RAY_ACTIVE);
+ if(valid) {
+ value = kernel_split_state.sd[ray_index].shader & SHADER_MASK;
+ }
+ }
+ local_value[i + lid] = value;
+ local_index[i + lid] = i + lid;
+ }
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+
+ /* skip sorting for cpu split kernel */
+# ifdef __KERNEL_OPENCL__
+
+ /* bitonic sort */
+ for(uint length = 1; length < SHADER_SORT_BLOCK_SIZE; length <<= 1) {
+ for(uint inc = length; inc > 0; inc >>= 1) {
+ for(uint ii = 0; ii < SHADER_SORT_BLOCK_SIZE; ii += SHADER_SORT_LOCAL_SIZE) {
+ uint i = lid + ii;
+ bool direction = ((i & (length << 1)) != 0);
+ uint j = i ^ inc;
+ ushort ioff = local_index[i];
+ ushort joff = local_index[j];
+ uint iKey = local_value[ioff];
+ uint jKey = local_value[joff];
+ bool smaller = (jKey < iKey) || (jKey == iKey && j < i);
+ bool swap = smaller ^ (j < i) ^ direction;
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+ local_index[i] = (swap) ? joff : ioff;
+ local_index[j] = (swap) ? ioff : joff;
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+ }
+ }
+ }
+# endif /* __KERNEL_OPENCL__ */
+
+ /* copy to destination */
+ for(uint i = 0; i < SHADER_SORT_BLOCK_SIZE; i += SHADER_SORT_LOCAL_SIZE) {
+ uint idx = offset + i + lid;
+ uint lidx = local_index[i + lid];
+ uint outi = output + idx;
+ uint ini = input + offset + lidx;
+ uint value = local_value[lidx];
+ if(idx < qsize) {
+ kernel_split_state.queue_data[outi] = (value == (~0)) ? QUEUE_EMPTY_SLOT : kernel_split_state.queue_data[ini];
+ }
+ }
+#endif /* __KERNEL_CUDA__ */
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/split/kernel_shadow_blocked.h b/intern/cycles/kernel/split/kernel_shadow_blocked.h
deleted file mode 100644
index 6153af47f96..00000000000
--- a/intern/cycles/kernel/split/kernel_shadow_blocked.h
+++ /dev/null
@@ -1,85 +0,0 @@
-/*
- * Copyright 2011-2015 Blender Foundation
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "kernel_split_common.h"
-
-/* Note on kernel_shadow_blocked kernel.
- * This is the ninth kernel in the ray tracing logic. This is the eighth
- * of the path iteration kernels. This kernel takes care of "shadow ray cast"
- * logic of the direct lighting and AO part of ray tracing.
- *
- * The input and output are as follows,
- *
- * PathState_coop ----------------------------------|--- kernel_shadow_blocked --|
- * LightRay_dl_coop --------------------------------| |--- LightRay_dl_coop
- * LightRay_ao_coop --------------------------------| |--- LightRay_ao_coop
- * ray_state ---------------------------------------| |--- ray_state
- * Queue_data(QUEUE_SHADOW_RAY_CAST_AO_RAYS & | |--- Queue_data (QUEUE_SHADOW_RAY_CAST_AO_RAYS & QUEUE_SHADOW_RAY_CAST_AO_RAYS)
- QUEUE_SHADOW_RAY_CAST_DL_RAYS) -------| |
- * Queue_index(QUEUE_SHADOW_RAY_CAST_AO_RAYS&
- QUEUE_SHADOW_RAY_CAST_DL_RAYS) -------| |
- * kg (globals) ------------------------------------| |
- * queuesize ---------------------------------------| |
- *
- * Note on sd_shadow : sd_shadow is neither input nor output to this kernel. sd_shadow is filled and consumed in this kernel itself.
- * Note on queues :
- * The kernel fetches from QUEUE_SHADOW_RAY_CAST_AO_RAYS and QUEUE_SHADOW_RAY_CAST_DL_RAYS queues. We will empty
- * these queues this kernel.
- * State of queues when this kernel is called :
- * state of queues QUEUE_ACTIVE_AND_REGENERATED_RAYS and QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be same
- * before and after this kernel call.
- * QUEUE_SHADOW_RAY_CAST_AO_RAYS & QUEUE_SHADOW_RAY_CAST_DL_RAYS will be filled with rays marked with flags RAY_SHADOW_RAY_CAST_AO
- * and RAY_SHADOW_RAY_CAST_DL respectively, during kernel entry.
- * QUEUE_SHADOW_RAY_CAST_AO_RAYS and QUEUE_SHADOW_RAY_CAST_DL_RAYS will be empty at kernel exit.
- */
-ccl_device void kernel_shadow_blocked(
- KernelGlobals *kg,
- ccl_global PathState *PathState_coop, /* Required for shadow blocked */
- ccl_global Ray *LightRay_dl_coop, /* Required for direct lighting's shadow blocked */
- ccl_global Ray *LightRay_ao_coop, /* Required for AO's shadow blocked */
- ccl_global char *ray_state,
- char shadow_blocked_type,
- int ray_index)
-{
- /* Flag determining if we need to update L. */
- char update_path_radiance = 0;
-
- if(IS_FLAG(ray_state, ray_index, RAY_SHADOW_RAY_CAST_DL) ||
- IS_FLAG(ray_state, ray_index, RAY_SHADOW_RAY_CAST_AO))
- {
- ccl_global PathState *state = &PathState_coop[ray_index];
- ccl_global Ray *light_ray_dl_global = &LightRay_dl_coop[ray_index];
- ccl_global Ray *light_ray_ao_global = &LightRay_ao_coop[ray_index];
-
- ccl_global Ray *light_ray_global =
- shadow_blocked_type == RAY_SHADOW_RAY_CAST_AO
- ? light_ray_ao_global
- : light_ray_dl_global;
-
- float3 shadow;
- update_path_radiance = !(shadow_blocked(kg,
- kg->sd_input,
- state,
- light_ray_global,
- &shadow));
-
- /* We use light_ray_global's P and t to store shadow and
- * update_path_radiance.
- */
- light_ray_global->P = shadow;
- light_ray_global->t = update_path_radiance;
- }
-}
diff --git a/intern/cycles/kernel/split/kernel_shadow_blocked_ao.h b/intern/cycles/kernel/split/kernel_shadow_blocked_ao.h
new file mode 100644
index 00000000000..79aa2c9435b
--- /dev/null
+++ b/intern/cycles/kernel/split/kernel_shadow_blocked_ao.h
@@ -0,0 +1,55 @@
+/*
+ * Copyright 2011-2015 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+/* Shadow ray cast for AO. */
+ccl_device void kernel_shadow_blocked_ao(KernelGlobals *kg)
+{
+ unsigned int ao_queue_length = kernel_split_params.queue_index[QUEUE_SHADOW_RAY_CAST_AO_RAYS];
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+
+ int ray_index = QUEUE_EMPTY_SLOT;
+ int thread_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+ if(thread_index < ao_queue_length) {
+ ray_index = get_ray_index(kg, thread_index, QUEUE_SHADOW_RAY_CAST_AO_RAYS,
+ kernel_split_state.queue_data, kernel_split_params.queue_size, 1);
+ }
+
+ if(ray_index == QUEUE_EMPTY_SLOT) {
+ return;
+ }
+
+ ShaderData *sd = &kernel_split_state.sd[ray_index];
+ ShaderData *emission_sd = &kernel_split_state.sd_DL_shadow[ray_index];
+ PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
+ ccl_global PathState *state = &kernel_split_state.path_state[ray_index];
+ float3 throughput = kernel_split_state.throughput[ray_index];
+
+#ifdef __BRANCHED_PATH__
+ if(!kernel_data.integrator.branched || IS_FLAG(kernel_split_state.ray_state, ray_index, RAY_BRANCHED_INDIRECT)) {
+#endif
+ kernel_path_ao(kg, sd, emission_sd, L, state, throughput, shader_bsdf_alpha(kg, sd));
+#ifdef __BRANCHED_PATH__
+ }
+ else {
+ kernel_branched_path_ao(kg, sd, emission_sd, L, state, throughput);
+ }
+#endif
+}
+
+CCL_NAMESPACE_END
+
diff --git a/intern/cycles/kernel/split/kernel_shadow_blocked_dl.h b/intern/cycles/kernel/split/kernel_shadow_blocked_dl.h
new file mode 100644
index 00000000000..b52f9a5eb81
--- /dev/null
+++ b/intern/cycles/kernel/split/kernel_shadow_blocked_dl.h
@@ -0,0 +1,107 @@
+/*
+ * Copyright 2011-2015 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+/* Shadow ray cast for direct visible light. */
+ccl_device void kernel_shadow_blocked_dl(KernelGlobals *kg)
+{
+ unsigned int dl_queue_length = kernel_split_params.queue_index[QUEUE_SHADOW_RAY_CAST_DL_RAYS];
+ ccl_barrier(CCL_LOCAL_MEM_FENCE);
+
+ int ray_index = QUEUE_EMPTY_SLOT;
+ int thread_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+ if(thread_index < dl_queue_length) {
+ ray_index = get_ray_index(kg, thread_index, QUEUE_SHADOW_RAY_CAST_DL_RAYS,
+ kernel_split_state.queue_data, kernel_split_params.queue_size, 1);
+ }
+
+#ifdef __BRANCHED_PATH__
+ /* TODO(mai): move this somewhere else? */
+ if(thread_index == 0) {
+ /* Clear QUEUE_INACTIVE_RAYS before next kernel. */
+ kernel_split_params.queue_index[QUEUE_INACTIVE_RAYS] = 0;
+ }
+#endif /* __BRANCHED_PATH__ */
+
+ if(ray_index == QUEUE_EMPTY_SLOT)
+ return;
+
+ ccl_global PathState *state = &kernel_split_state.path_state[ray_index];
+ Ray ray = kernel_split_state.light_ray[ray_index];
+ PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
+ ShaderData *sd = &kernel_split_state.sd[ray_index];
+ float3 throughput = kernel_split_state.throughput[ray_index];
+
+ BsdfEval L_light = kernel_split_state.bsdf_eval[ray_index];
+ ShaderData *emission_sd = &kernel_split_state.sd_DL_shadow[ray_index];
+ bool is_lamp = kernel_split_state.is_lamp[ray_index];
+
+# if defined(__BRANCHED_PATH__) || defined(__SHADOW_TRICKS__)
+ bool use_branched = false;
+ int all = 0;
+
+ if(state->flag & PATH_RAY_SHADOW_CATCHER) {
+ use_branched = true;
+ all = 1;
+ }
+# if defined(__BRANCHED_PATH__)
+ else if(kernel_data.integrator.branched) {
+ use_branched = true;
+
+ if(IS_FLAG(kernel_split_state.ray_state, ray_index, RAY_BRANCHED_INDIRECT)) {
+ all = (kernel_data.integrator.sample_all_lights_indirect);
+ }
+ else
+ {
+ all = (kernel_data.integrator.sample_all_lights_direct);
+ }
+ }
+# endif /* __BRANCHED_PATH__ */
+
+ if(use_branched) {
+ kernel_branched_path_surface_connect_light(kg,
+ sd,
+ emission_sd,
+ state,
+ throughput,
+ 1.0f,
+ L,
+ all);
+ }
+ else
+# endif /* defined(__BRANCHED_PATH__) || defined(__SHADOW_TRICKS__)*/
+ {
+ /* trace shadow ray */
+ float3 shadow;
+
+ if(!shadow_blocked(kg,
+ sd,
+ emission_sd,
+ state,
+ &ray,
+ &shadow))
+ {
+ /* accumulate */
+ path_radiance_accum_light(L, state, throughput, &L_light, shadow, 1.0f, is_lamp);
+ }
+ else {
+ path_radiance_accum_total_light(L, state, throughput, &L_light);
+ }
+ }
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/split/kernel_split_common.h b/intern/cycles/kernel/split/kernel_split_common.h
index 2135ee22b2e..21886ee62ee 100644
--- a/intern/cycles/kernel/split/kernel_split_common.h
+++ b/intern/cycles/kernel/split/kernel_split_common.h
@@ -17,48 +17,78 @@
#ifndef __KERNEL_SPLIT_H__
#define __KERNEL_SPLIT_H__
-#include "kernel_compat_opencl.h"
-#include "kernel_math.h"
-#include "kernel_types.h"
-#include "kernel_globals.h"
-#include "kernel_image_opencl.h"
-
-#include "util_atomic.h"
-
-#include "kernel_random.h"
-#include "kernel_projection.h"
-#include "kernel_montecarlo.h"
-#include "kernel_differential.h"
-#include "kernel_camera.h"
-
-#include "geom/geom.h"
-#include "bvh/bvh.h"
-
-#include "kernel_accumulate.h"
-#include "kernel_shader.h"
-#include "kernel_light.h"
-#include "kernel_passes.h"
-
-#ifdef __SUBSURFACE__
-#include "kernel_subsurface.h"
+#include "kernel/kernel_math.h"
+#include "kernel/kernel_types.h"
+
+#include "kernel/split/kernel_split_data.h"
+
+#include "kernel/kernel_globals.h"
+
+#ifdef __OSL__
+# include "kernel/osl/osl_shader.h"
+#endif
+
+#ifdef __KERNEL_OPENCL__
+# include "kernel/kernels/opencl/kernel_opencl_image.h"
+#endif
+#ifdef __KERNEL_CUDA__
+# include "kernel/kernels/cuda/kernel_cuda_image.h"
+#endif
+#ifdef __KERNEL_CPU__
+# include "kernel/kernels/cpu/kernel_cpu_image.h"
+#endif
+
+#include "util/util_atomic.h"
+
+#include "kernel/kernel_path.h"
+#ifdef __BRANCHED_PATH__
+# include "kernel/kernel_path_branched.h"
#endif
-#ifdef __VOLUME__
-#include "kernel_volume.h"
+#include "kernel/kernel_queues.h"
+#include "kernel/kernel_work_stealing.h"
+
+#ifdef __BRANCHED_PATH__
+# include "kernel/split/kernel_branched.h"
#endif
-#include "kernel_path_state.h"
-#include "kernel_shadow.h"
-#include "kernel_emission.h"
-#include "kernel_path_common.h"
-#include "kernel_path_surface.h"
-#include "kernel_path_volume.h"
+CCL_NAMESPACE_BEGIN
+
+ccl_device_inline void kernel_split_path_end(KernelGlobals *kg, int ray_index)
+{
+ ccl_global char *ray_state = kernel_split_state.ray_state;
+
+#ifdef __BRANCHED_PATH__
+ if(IS_FLAG(ray_state, ray_index, RAY_BRANCHED_INDIRECT_SHARED)) {
+ int orig_ray = kernel_split_state.branched_state[ray_index].original_ray;
+
+ PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
+ PathRadiance *orig_ray_L = &kernel_split_state.path_radiance[orig_ray];
+
+ path_radiance_sum_indirect(L);
+ path_radiance_accum_sample(orig_ray_L, L);
+
+ atomic_fetch_and_dec_uint32((ccl_global uint*)&kernel_split_state.branched_state[orig_ray].shared_sample_count);
-#ifdef __KERNEL_DEBUG__
-#include "kernel_debug.h"
+ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_INACTIVE);
+ }
+ else if(IS_FLAG(ray_state, ray_index, RAY_BRANCHED_LIGHT_INDIRECT)) {
+ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_LIGHT_INDIRECT_NEXT_ITER);
+ }
+ else if(IS_FLAG(ray_state, ray_index, RAY_BRANCHED_VOLUME_INDIRECT)) {
+ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_VOLUME_INDIRECT_NEXT_ITER);
+ }
+ else if(IS_FLAG(ray_state, ray_index, RAY_BRANCHED_SUBSURFACE_INDIRECT)) {
+ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_SUBSURFACE_INDIRECT_NEXT_ITER);
+ }
+ else {
+ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER);
+ }
+#else
+ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER);
#endif
+}
-#include "kernel_queues.h"
-#include "kernel_work_stealing.h"
+CCL_NAMESPACE_END
#endif /* __KERNEL_SPLIT_H__ */
diff --git a/intern/cycles/kernel/split/kernel_split_data.h b/intern/cycles/kernel/split/kernel_split_data.h
new file mode 100644
index 00000000000..eac22050a38
--- /dev/null
+++ b/intern/cycles/kernel/split/kernel_split_data.h
@@ -0,0 +1,57 @@
+/*
+ * Copyright 2011-2016 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef __KERNEL_SPLIT_DATA_H__
+#define __KERNEL_SPLIT_DATA_H__
+
+#include "kernel/split/kernel_split_data_types.h"
+#include "kernel/kernel_globals.h"
+
+CCL_NAMESPACE_BEGIN
+
+ccl_device_inline uint64_t split_data_buffer_size(KernelGlobals *kg, size_t num_elements)
+{
+ (void)kg; /* Unused on CPU. */
+
+ uint64_t size = 0;
+#define SPLIT_DATA_ENTRY(type, name, num) + align_up(num_elements * num * sizeof(type), 16)
+ size = size SPLIT_DATA_ENTRIES;
+#undef SPLIT_DATA_ENTRY
+
+ return size;
+}
+
+ccl_device_inline void split_data_init(KernelGlobals *kg,
+ ccl_global SplitData *split_data,
+ size_t num_elements,
+ ccl_global void *data,
+ ccl_global char *ray_state)
+{
+ (void)kg; /* Unused on CPU. */
+
+ ccl_global char *p = (ccl_global char*)data;
+
+#define SPLIT_DATA_ENTRY(type, name, num) \
+ split_data->name = (type*)p; p += align_up(num_elements * num * sizeof(type), 16);
+ SPLIT_DATA_ENTRIES;
+#undef SPLIT_DATA_ENTRY
+
+ split_data->ray_state = ray_state;
+}
+
+CCL_NAMESPACE_END
+
+#endif /* __KERNEL_SPLIT_DATA_H__ */
diff --git a/intern/cycles/kernel/split/kernel_split_data_types.h b/intern/cycles/kernel/split/kernel_split_data_types.h
new file mode 100644
index 00000000000..b0e6e5f5250
--- /dev/null
+++ b/intern/cycles/kernel/split/kernel_split_data_types.h
@@ -0,0 +1,175 @@
+/*
+ * Copyright 2011-2016 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef __KERNEL_SPLIT_DATA_TYPES_H__
+#define __KERNEL_SPLIT_DATA_TYPES_H__
+
+CCL_NAMESPACE_BEGIN
+
+/* parameters used by the split kernels, we use a single struct to avoid passing these to each kernel */
+
+typedef struct SplitParams {
+ WorkTile tile;
+ uint total_work_size;
+
+ ccl_global unsigned int *work_pools;
+
+ ccl_global int *queue_index;
+ int queue_size;
+ ccl_global char *use_queues_flag;
+
+ /* Place for storing sd->flag. AMD GPU OpenCL compiler workaround */
+ int dummy_sd_flag;
+} SplitParams;
+
+/* Global memory variables [porting]; These memory is used for
+ * co-operation between different kernels; Data written by one
+ * kernel will be available to another kernel via this global
+ * memory.
+ */
+
+/* SPLIT_DATA_ENTRY(type, name, num) */
+
+#ifdef __BRANCHED_PATH__
+
+typedef ccl_global struct SplitBranchedState {
+ /* various state that must be kept and restored after an indirect loop */
+ PathState path_state;
+ float3 throughput;
+ Ray ray;
+
+ struct ShaderData sd;
+ Intersection isect;
+
+ char ray_state;
+
+ /* indirect loop state */
+ int next_closure;
+ int next_sample;
+
+#ifdef __SUBSURFACE__
+ int ss_next_closure;
+ int ss_next_sample;
+ int next_hit;
+ int num_hits;
+
+ uint lcg_state;
+ SubsurfaceIntersection ss_isect;
+
+# ifdef __VOLUME__
+ VolumeStack volume_stack[VOLUME_STACK_SIZE];
+# endif /* __VOLUME__ */
+#endif /*__SUBSURFACE__ */
+
+ int shared_sample_count; /* number of branched samples shared with other threads */
+ int original_ray; /* index of original ray when sharing branched samples */
+ bool waiting_on_shared_samples;
+} SplitBranchedState;
+
+#define SPLIT_DATA_BRANCHED_ENTRIES \
+ SPLIT_DATA_ENTRY( SplitBranchedState, branched_state, 1)
+#else
+#define SPLIT_DATA_BRANCHED_ENTRIES
+#endif /* __BRANCHED_PATH__ */
+
+#ifdef __SUBSURFACE__
+# define SPLIT_DATA_SUBSURFACE_ENTRIES \
+ SPLIT_DATA_ENTRY(ccl_global SubsurfaceIndirectRays, ss_rays, 1)
+#else
+# define SPLIT_DATA_SUBSURFACE_ENTRIES
+#endif /* __SUBSURFACE__ */
+
+#ifdef __VOLUME__
+# define SPLIT_DATA_VOLUME_ENTRIES \
+ SPLIT_DATA_ENTRY(ccl_global PathState, state_shadow, 1)
+#else
+# define SPLIT_DATA_VOLUME_ENTRIES
+#endif /* __VOLUME__ */
+
+#define SPLIT_DATA_ENTRIES \
+ SPLIT_DATA_ENTRY(ccl_global float3, throughput, 1) \
+ SPLIT_DATA_ENTRY(PathRadiance, path_radiance, 1) \
+ SPLIT_DATA_ENTRY(ccl_global Ray, ray, 1) \
+ SPLIT_DATA_ENTRY(ccl_global PathState, path_state, 1) \
+ SPLIT_DATA_ENTRY(ccl_global Intersection, isect, 1) \
+ SPLIT_DATA_ENTRY(ccl_global BsdfEval, bsdf_eval, 1) \
+ SPLIT_DATA_ENTRY(ccl_global int, is_lamp, 1) \
+ SPLIT_DATA_ENTRY(ccl_global Ray, light_ray, 1) \
+ SPLIT_DATA_ENTRY(ccl_global int, queue_data, (NUM_QUEUES*2)) /* TODO(mai): this is too large? */ \
+ SPLIT_DATA_ENTRY(ccl_global uint, buffer_offset, 1) \
+ SPLIT_DATA_ENTRY(ShaderData, sd, 1) \
+ SPLIT_DATA_ENTRY(ShaderData, sd_DL_shadow, 1) \
+ SPLIT_DATA_SUBSURFACE_ENTRIES \
+ SPLIT_DATA_VOLUME_ENTRIES \
+ SPLIT_DATA_BRANCHED_ENTRIES \
+
+/* entries to be copied to inactive rays when sharing branched samples (TODO: which are actually needed?) */
+#define SPLIT_DATA_ENTRIES_BRANCHED_SHARED \
+ SPLIT_DATA_ENTRY(ccl_global float3, throughput, 1) \
+ SPLIT_DATA_ENTRY(PathRadiance, path_radiance, 1) \
+ SPLIT_DATA_ENTRY(ccl_global Ray, ray, 1) \
+ SPLIT_DATA_ENTRY(ccl_global PathState, path_state, 1) \
+ SPLIT_DATA_ENTRY(ccl_global Intersection, isect, 1) \
+ SPLIT_DATA_ENTRY(ccl_global BsdfEval, bsdf_eval, 1) \
+ SPLIT_DATA_ENTRY(ccl_global int, is_lamp, 1) \
+ SPLIT_DATA_ENTRY(ccl_global Ray, light_ray, 1) \
+ SPLIT_DATA_ENTRY(ShaderData, sd, 1) \
+ SPLIT_DATA_ENTRY(ShaderData, sd_DL_shadow, 1) \
+ SPLIT_DATA_SUBSURFACE_ENTRIES \
+ SPLIT_DATA_VOLUME_ENTRIES \
+ SPLIT_DATA_BRANCHED_ENTRIES \
+
+/* struct that holds pointers to data in the shared state buffer */
+typedef struct SplitData {
+#define SPLIT_DATA_ENTRY(type, name, num) type *name;
+ SPLIT_DATA_ENTRIES
+#undef SPLIT_DATA_ENTRY
+
+ /* this is actually in a separate buffer from the rest of the split state data (so it can be read back from
+ * the host easily) but is still used the same as the other data so we have it here in this struct as well
+ */
+ ccl_global char *ray_state;
+} SplitData;
+
+#ifndef __KERNEL_CUDA__
+# define kernel_split_state (kg->split_data)
+# define kernel_split_params (kg->split_param_data)
+#else
+__device__ SplitData __split_data;
+# define kernel_split_state (__split_data)
+__device__ SplitParams __split_param_data;
+# define kernel_split_params (__split_param_data)
+#endif /* __KERNEL_CUDA__ */
+
+/* Local storage for queue_enqueue kernel. */
+typedef struct QueueEnqueueLocals {
+ uint queue_atomics[2];
+} QueueEnqueueLocals;
+
+/* Local storage for holdout_emission_blurring_pathtermination_ao kernel. */
+typedef struct BackgroundAOLocals {
+ uint queue_atomics_bg;
+ uint queue_atomics_ao;
+} BackgroundAOLocals;
+
+typedef struct ShaderSortLocals {
+ uint local_value[SHADER_SORT_BLOCK_SIZE];
+ ushort local_index[SHADER_SORT_BLOCK_SIZE];
+} ShaderSortLocals;
+
+CCL_NAMESPACE_END
+
+#endif /* __KERNEL_SPLIT_DATA_TYPES_H__ */
diff --git a/intern/cycles/kernel/split/kernel_subsurface_scatter.h b/intern/cycles/kernel/split/kernel_subsurface_scatter.h
new file mode 100644
index 00000000000..3b957856aea
--- /dev/null
+++ b/intern/cycles/kernel/split/kernel_subsurface_scatter.h
@@ -0,0 +1,313 @@
+/*
+ * Copyright 2011-2017 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+CCL_NAMESPACE_BEGIN
+
+#if defined(__BRANCHED_PATH__) && defined(__SUBSURFACE__)
+
+ccl_device_inline void kernel_split_branched_path_subsurface_indirect_light_init(KernelGlobals *kg, int ray_index)
+{
+ kernel_split_branched_path_indirect_loop_init(kg, ray_index);
+
+ SplitBranchedState *branched_state = &kernel_split_state.branched_state[ray_index];
+
+ branched_state->ss_next_closure = 0;
+ branched_state->ss_next_sample = 0;
+
+ branched_state->num_hits = 0;
+ branched_state->next_hit = 0;
+
+ ADD_RAY_FLAG(kernel_split_state.ray_state, ray_index, RAY_BRANCHED_SUBSURFACE_INDIRECT);
+}
+
+ccl_device_noinline bool kernel_split_branched_path_subsurface_indirect_light_iter(KernelGlobals *kg, int ray_index)
+{
+ SplitBranchedState *branched_state = &kernel_split_state.branched_state[ray_index];
+
+ ShaderData *sd = &branched_state->sd;
+ PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
+ ShaderData *emission_sd = &kernel_split_state.sd_DL_shadow[ray_index];
+
+ for(int i = branched_state->ss_next_closure; i < sd->num_closure; i++) {
+ ShaderClosure *sc = &sd->closure[i];
+
+ if(!CLOSURE_IS_BSSRDF(sc->type))
+ continue;
+
+ /* set up random number generator */
+ if(branched_state->ss_next_sample == 0 && branched_state->next_hit == 0 &&
+ branched_state->next_closure == 0 && branched_state->next_sample == 0)
+ {
+ branched_state->lcg_state = lcg_state_init_addrspace(&branched_state->path_state,
+ 0x68bc21eb);
+ }
+ int num_samples = kernel_data.integrator.subsurface_samples;
+ float num_samples_inv = 1.0f/num_samples;
+ uint bssrdf_rng_hash = cmj_hash(branched_state->path_state.rng_hash, i);
+
+ /* do subsurface scatter step with copy of shader data, this will
+ * replace the BSSRDF with a diffuse BSDF closure */
+ for(int j = branched_state->ss_next_sample; j < num_samples; j++) {
+ ccl_global SubsurfaceIntersection *ss_isect = &branched_state->ss_isect;
+ float bssrdf_u, bssrdf_v;
+ path_branched_rng_2D(kg,
+ bssrdf_rng_hash,
+ &branched_state->path_state,
+ j,
+ num_samples,
+ PRNG_BSDF_U,
+ &bssrdf_u,
+ &bssrdf_v);
+
+ /* intersection is expensive so avoid doing multiple times for the same input */
+ if(branched_state->next_hit == 0 && branched_state->next_closure == 0 && branched_state->next_sample == 0) {
+ uint lcg_state = branched_state->lcg_state;
+ SubsurfaceIntersection ss_isect_private;
+
+ branched_state->num_hits = subsurface_scatter_multi_intersect(kg,
+ &ss_isect_private,
+ sd,
+ sc,
+ &lcg_state,
+ bssrdf_u, bssrdf_v,
+ true);
+
+ branched_state->lcg_state = lcg_state;
+ *ss_isect = ss_isect_private;
+ }
+
+#ifdef __VOLUME__
+ Ray volume_ray = branched_state->ray;
+ bool need_update_volume_stack =
+ kernel_data.integrator.use_volumes &&
+ sd->object_flag & SD_OBJECT_INTERSECTS_VOLUME;
+#endif /* __VOLUME__ */
+
+ /* compute lighting with the BSDF closure */
+ for(int hit = branched_state->next_hit; hit < branched_state->num_hits; hit++) {
+ ShaderData *bssrdf_sd = &kernel_split_state.sd[ray_index];
+ *bssrdf_sd = *sd; /* note: copy happens each iteration of inner loop, this is
+ * important as the indirect path will write into bssrdf_sd */
+
+ SubsurfaceIntersection ss_isect_private = *ss_isect;
+ subsurface_scatter_multi_setup(kg,
+ &ss_isect_private,
+ hit,
+ bssrdf_sd,
+ &branched_state->path_state,
+ branched_state->path_state.flag,
+ sc,
+ true);
+ *ss_isect = ss_isect_private;
+
+ ccl_global PathState *hit_state = &kernel_split_state.path_state[ray_index];
+ *hit_state = branched_state->path_state;
+
+ path_state_branch(hit_state, j, num_samples);
+
+#ifdef __VOLUME__
+ if(need_update_volume_stack) {
+ /* Setup ray from previous surface point to the new one. */
+ float3 P = ray_offset(bssrdf_sd->P, -bssrdf_sd->Ng);
+ volume_ray.D = normalize_len(P - volume_ray.P, &volume_ray.t);
+
+ /* this next part is expensive as it does scene intersection so only do once */
+ if(branched_state->next_closure == 0 && branched_state->next_sample == 0) {
+ for(int k = 0; k < VOLUME_STACK_SIZE; k++) {
+ branched_state->volume_stack[k] = hit_state->volume_stack[k];
+ }
+
+ kernel_volume_stack_update_for_subsurface(kg,
+ emission_sd,
+ &volume_ray,
+ branched_state->volume_stack);
+ }
+
+ for(int k = 0; k < VOLUME_STACK_SIZE; k++) {
+ hit_state->volume_stack[k] = branched_state->volume_stack[k];
+ }
+ }
+#endif /* __VOLUME__ */
+
+#ifdef __EMISSION__
+ if(branched_state->next_closure == 0 && branched_state->next_sample == 0) {
+ /* direct light */
+ if(kernel_data.integrator.use_direct_light) {
+ int all = (kernel_data.integrator.sample_all_lights_direct) ||
+ (branched_state->path_state.flag & PATH_RAY_SHADOW_CATCHER);
+ kernel_branched_path_surface_connect_light(kg,
+ bssrdf_sd,
+ emission_sd,
+ hit_state,
+ branched_state->throughput,
+ num_samples_inv,
+ L,
+ all);
+ }
+ }
+#endif /* __EMISSION__ */
+
+ /* indirect light */
+ if(kernel_split_branched_path_surface_indirect_light_iter(kg,
+ ray_index,
+ num_samples_inv,
+ bssrdf_sd,
+ false,
+ false))
+ {
+ branched_state->ss_next_closure = i;
+ branched_state->ss_next_sample = j;
+ branched_state->next_hit = hit;
+
+ return true;
+ }
+
+ branched_state->next_closure = 0;
+ }
+
+ branched_state->next_hit = 0;
+ }
+
+ branched_state->ss_next_sample = 0;
+ }
+
+ branched_state->ss_next_closure = sd->num_closure;
+
+ branched_state->waiting_on_shared_samples = (branched_state->shared_sample_count > 0);
+ if(branched_state->waiting_on_shared_samples) {
+ return true;
+ }
+
+ kernel_split_branched_path_indirect_loop_end(kg, ray_index);
+
+ return false;
+}
+
+#endif /* __BRANCHED_PATH__ && __SUBSURFACE__ */
+
+ccl_device void kernel_subsurface_scatter(KernelGlobals *kg)
+{
+ int thread_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+ if(thread_index == 0) {
+ /* We will empty both queues in this kernel. */
+ kernel_split_params.queue_index[QUEUE_ACTIVE_AND_REGENERATED_RAYS] = 0;
+ kernel_split_params.queue_index[QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS] = 0;
+ }
+
+ int ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
+ ray_index = get_ray_index(kg, ray_index,
+ QUEUE_ACTIVE_AND_REGENERATED_RAYS,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_size,
+ 1);
+ get_ray_index(kg, thread_index,
+ QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_size,
+ 1);
+
+#ifdef __SUBSURFACE__
+ ccl_global char *ray_state = kernel_split_state.ray_state;
+
+ if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
+ ccl_global PathState *state = &kernel_split_state.path_state[ray_index];
+ PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
+ ccl_global Ray *ray = &kernel_split_state.ray[ray_index];
+ ccl_global float3 *throughput = &kernel_split_state.throughput[ray_index];
+ ccl_global SubsurfaceIndirectRays *ss_indirect = &kernel_split_state.ss_rays[ray_index];
+ ShaderData *sd = &kernel_split_state.sd[ray_index];
+ ShaderData *emission_sd = &kernel_split_state.sd_DL_shadow[ray_index];
+
+ if(sd->flag & SD_BSSRDF) {
+
+#ifdef __BRANCHED_PATH__
+ if(!kernel_data.integrator.branched) {
+#endif
+ if(kernel_path_subsurface_scatter(kg,
+ sd,
+ emission_sd,
+ L,
+ state,
+ ray,
+ throughput,
+ ss_indirect))
+ {
+ kernel_split_path_end(kg, ray_index);
+ }
+#ifdef __BRANCHED_PATH__
+ }
+ else if(IS_FLAG(ray_state, ray_index, RAY_BRANCHED_INDIRECT)) {
+ float bssrdf_u, bssrdf_v;
+ path_state_rng_2D(kg,
+ state,
+ PRNG_BSDF_U,
+ &bssrdf_u, &bssrdf_v);
+
+ const ShaderClosure *sc = shader_bssrdf_pick(sd, throughput, &bssrdf_u);
+
+ /* do bssrdf scatter step if we picked a bssrdf closure */
+ if(sc) {
+ uint lcg_state = lcg_state_init_addrspace(state, 0x68bc21eb);
+ subsurface_scatter_step(kg,
+ sd,
+ state,
+ state->flag,
+ sc,
+ &lcg_state,
+ bssrdf_u, bssrdf_v,
+ false);
+ }
+ }
+ else {
+ kernel_split_branched_path_subsurface_indirect_light_init(kg, ray_index);
+
+ if(kernel_split_branched_path_subsurface_indirect_light_iter(kg, ray_index)) {
+ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
+ }
+ }
+#endif
+ }
+ }
+
+# ifdef __BRANCHED_PATH__
+ if(ccl_global_id(0) == 0 && ccl_global_id(1) == 0) {
+ kernel_split_params.queue_index[QUEUE_SUBSURFACE_INDIRECT_ITER] = 0;
+ }
+
+ /* iter loop */
+ ray_index = get_ray_index(kg, ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0),
+ QUEUE_SUBSURFACE_INDIRECT_ITER,
+ kernel_split_state.queue_data,
+ kernel_split_params.queue_size,
+ 1);
+
+ if(IS_STATE(ray_state, ray_index, RAY_SUBSURFACE_INDIRECT_NEXT_ITER)) {
+ /* for render passes, sum and reset indirect light pass variables
+ * for the next samples */
+ path_radiance_sum_indirect(&kernel_split_state.path_radiance[ray_index]);
+ path_radiance_reset_indirect(&kernel_split_state.path_radiance[ray_index]);
+
+ if(kernel_split_branched_path_subsurface_indirect_light_iter(kg, ray_index)) {
+ ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
+ }
+ }
+# endif /* __BRANCHED_PATH__ */
+
+#endif /* __SUBSURFACE__ */
+
+}
+
+CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/split/kernel_sum_all_radiance.h b/intern/cycles/kernel/split/kernel_sum_all_radiance.h
deleted file mode 100644
index a21e9b6a0b1..00000000000
--- a/intern/cycles/kernel/split/kernel_sum_all_radiance.h
+++ /dev/null
@@ -1,59 +0,0 @@
-/*
- * Copyright 2011-2015 Blender Foundation
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "../kernel_compat_opencl.h"
-#include "../kernel_math.h"
-#include "../kernel_types.h"
-#include "../kernel_globals.h"
-
-/* Since we process various samples in parallel; The output radiance of different samples
- * are stored in different locations; This kernel combines the output radiance contributed
- * by all different samples and stores them in the RenderTile's output buffer.
- */
-ccl_device void kernel_sum_all_radiance(
- ccl_constant KernelData *data, /* To get pass_stride to offet into buffer */
- ccl_global float *buffer, /* Output buffer of RenderTile */
- ccl_global float *per_sample_output_buffer, /* Radiance contributed by all samples */
- int parallel_samples, int sw, int sh, int stride,
- int buffer_offset_x,
- int buffer_offset_y,
- int buffer_stride,
- int start_sample)
-{
- int x = get_global_id(0);
- int y = get_global_id(1);
-
- if(x < sw && y < sh) {
- buffer += ((buffer_offset_x + x) + (buffer_offset_y + y) * buffer_stride) * (data->film.pass_stride);
- per_sample_output_buffer += ((x + y * stride) * parallel_samples) * (data->film.pass_stride);
-
- int sample_stride = (data->film.pass_stride);
-
- int sample_iterator = 0;
- int pass_stride_iterator = 0;
- int num_floats = data->film.pass_stride;
-
- for(sample_iterator = 0; sample_iterator < parallel_samples; sample_iterator++) {
- for(pass_stride_iterator = 0; pass_stride_iterator < num_floats; pass_stride_iterator++) {
- *(buffer + pass_stride_iterator) =
- (start_sample == 0 && sample_iterator == 0)
- ? *(per_sample_output_buffer + pass_stride_iterator)
- : *(buffer + pass_stride_iterator) + *(per_sample_output_buffer + pass_stride_iterator);
- }
- per_sample_output_buffer += sample_stride;
- }
- }
-}
diff --git a/intern/cycles/kernel/svm/svm.h b/intern/cycles/kernel/svm/svm.h
index 88ec7fe6fcc..d748e76fa80 100644
--- a/intern/cycles/kernel/svm/svm.h
+++ b/intern/cycles/kernel/svm/svm.h
@@ -39,7 +39,7 @@
* mostly taken care of in the SVM compiler.
*/
-#include "svm_types.h"
+#include "kernel/svm/svm_types.h"
CCL_NAMESPACE_BEGIN
@@ -139,49 +139,49 @@ CCL_NAMESPACE_END
/* Nodes */
-#include "svm_noise.h"
+#include "kernel/svm/svm_noise.h"
#include "svm_texture.h"
-#include "svm_color_util.h"
-#include "svm_math_util.h"
-
-#include "svm_attribute.h"
-#include "svm_gradient.h"
-#include "svm_blackbody.h"
-#include "svm_closure.h"
-#include "svm_noisetex.h"
-#include "svm_convert.h"
-#include "svm_displace.h"
-#include "svm_fresnel.h"
-#include "svm_wireframe.h"
-#include "svm_wavelength.h"
-#include "svm_camera.h"
-#include "svm_geometry.h"
-#include "svm_hsv.h"
-#include "svm_image.h"
-#include "svm_gamma.h"
-#include "svm_brightness.h"
-#include "svm_invert.h"
-#include "svm_light_path.h"
-#include "svm_magic.h"
-#include "svm_mapping.h"
-#include "svm_normal.h"
-#include "svm_wave.h"
-#include "svm_math.h"
-#include "svm_mix.h"
-#include "svm_ramp.h"
-#include "svm_sepcomb_hsv.h"
-#include "svm_sepcomb_vector.h"
-#include "svm_musgrave.h"
-#include "svm_sky.h"
-#include "svm_tex_coord.h"
-#include "svm_value.h"
-#include "svm_voronoi.h"
-#include "svm_checker.h"
-#include "svm_brick.h"
-#include "svm_vector_transform.h"
-#include "svm_voxel.h"
-#include "svm_bump.h"
+#include "kernel/svm/svm_color_util.h"
+#include "kernel/svm/svm_math_util.h"
+
+#include "kernel/svm/svm_attribute.h"
+#include "kernel/svm/svm_gradient.h"
+#include "kernel/svm/svm_blackbody.h"
+#include "kernel/svm/svm_closure.h"
+#include "kernel/svm/svm_noisetex.h"
+#include "kernel/svm/svm_convert.h"
+#include "kernel/svm/svm_displace.h"
+#include "kernel/svm/svm_fresnel.h"
+#include "kernel/svm/svm_wireframe.h"
+#include "kernel/svm/svm_wavelength.h"
+#include "kernel/svm/svm_camera.h"
+#include "kernel/svm/svm_geometry.h"
+#include "kernel/svm/svm_hsv.h"
+#include "kernel/svm/svm_image.h"
+#include "kernel/svm/svm_gamma.h"
+#include "kernel/svm/svm_brightness.h"
+#include "kernel/svm/svm_invert.h"
+#include "kernel/svm/svm_light_path.h"
+#include "kernel/svm/svm_magic.h"
+#include "kernel/svm/svm_mapping.h"
+#include "kernel/svm/svm_normal.h"
+#include "kernel/svm/svm_wave.h"
+#include "kernel/svm/svm_math.h"
+#include "kernel/svm/svm_mix.h"
+#include "kernel/svm/svm_ramp.h"
+#include "kernel/svm/svm_sepcomb_hsv.h"
+#include "kernel/svm/svm_sepcomb_vector.h"
+#include "kernel/svm/svm_musgrave.h"
+#include "kernel/svm/svm_sky.h"
+#include "kernel/svm/svm_tex_coord.h"
+#include "kernel/svm/svm_value.h"
+#include "kernel/svm/svm_voronoi.h"
+#include "kernel/svm/svm_checker.h"
+#include "kernel/svm/svm_brick.h"
+#include "kernel/svm/svm_vector_transform.h"
+#include "kernel/svm/svm_voxel.h"
+#include "kernel/svm/svm_bump.h"
CCL_NAMESPACE_BEGIN
@@ -192,7 +192,7 @@ CCL_NAMESPACE_BEGIN
ccl_device_noinline void svm_eval_nodes(KernelGlobals *kg, ShaderData *sd, ccl_addr_space PathState *state, ShaderType type, int path_flag)
{
float stack[SVM_STACK_SIZE];
- int offset = ccl_fetch(sd, shader) & SHADER_MASK;
+ int offset = sd->shader & SHADER_MASK;
while(1) {
uint4 node = read_node(kg, &offset);
diff --git a/intern/cycles/kernel/svm/svm_attribute.h b/intern/cycles/kernel/svm/svm_attribute.h
index 0e55c99ae97..229a3f20421 100644
--- a/intern/cycles/kernel/svm/svm_attribute.h
+++ b/intern/cycles/kernel/svm/svm_attribute.h
@@ -27,7 +27,7 @@ ccl_device AttributeDescriptor svm_node_attr_init(KernelGlobals *kg, ShaderData
AttributeDescriptor desc;
- if(ccl_fetch(sd, object) != OBJECT_NONE) {
+ if(sd->object != OBJECT_NONE) {
desc = find_attribute(kg, sd, node.y);
if(desc.offset == ATTR_STD_NOT_FOUND) {
desc = attribute_not_found();
diff --git a/intern/cycles/kernel/svm/svm_blackbody.h b/intern/cycles/kernel/svm/svm_blackbody.h
index b750ad87b7f..51590b18505 100644
--- a/intern/cycles/kernel/svm/svm_blackbody.h
+++ b/intern/cycles/kernel/svm/svm_blackbody.h
@@ -41,8 +41,7 @@ ccl_device void svm_node_blackbody(KernelGlobals *kg, ShaderData *sd, float *sta
float3 color_rgb = svm_math_blackbody_color(temperature);
- if(stack_valid(col_offset))
- stack_store_float3(stack, col_offset, color_rgb);
+ stack_store_float3(stack, col_offset, color_rgb);
}
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/svm/svm_bump.h b/intern/cycles/kernel/svm/svm_bump.h
index 04a8c7b64e5..610d9af9e1f 100644
--- a/intern/cycles/kernel/svm/svm_bump.h
+++ b/intern/cycles/kernel/svm/svm_bump.h
@@ -21,9 +21,9 @@ CCL_NAMESPACE_BEGIN
ccl_device void svm_node_enter_bump_eval(KernelGlobals *kg, ShaderData *sd, float *stack, uint offset)
{
/* save state */
- stack_store_float3(stack, offset+0, ccl_fetch(sd, P));
- stack_store_float3(stack, offset+3, ccl_fetch(sd, dP).dx);
- stack_store_float3(stack, offset+6, ccl_fetch(sd, dP).dy);
+ stack_store_float3(stack, offset+0, sd->P);
+ stack_store_float3(stack, offset+3, sd->dP.dx);
+ stack_store_float3(stack, offset+6, sd->dP.dy);
/* set state as if undisplaced */
const AttributeDescriptor desc = find_attribute(kg, sd, ATTR_STD_POSITION_UNDISPLACED);
@@ -36,18 +36,18 @@ ccl_device void svm_node_enter_bump_eval(KernelGlobals *kg, ShaderData *sd, floa
object_dir_transform(kg, sd, &dPdx);
object_dir_transform(kg, sd, &dPdy);
- ccl_fetch(sd, P) = P;
- ccl_fetch(sd, dP).dx = dPdx;
- ccl_fetch(sd, dP).dy = dPdy;
+ sd->P = P;
+ sd->dP.dx = dPdx;
+ sd->dP.dy = dPdy;
}
}
ccl_device void svm_node_leave_bump_eval(KernelGlobals *kg, ShaderData *sd, float *stack, uint offset)
{
/* restore state */
- ccl_fetch(sd, P) = stack_load_float3(stack, offset+0);
- ccl_fetch(sd, dP).dx = stack_load_float3(stack, offset+3);
- ccl_fetch(sd, dP).dy = stack_load_float3(stack, offset+6);
+ sd->P = stack_load_float3(stack, offset+0);
+ sd->dP.dx = stack_load_float3(stack, offset+3);
+ sd->dP.dy = stack_load_float3(stack, offset+6);
}
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/svm/svm_camera.h b/intern/cycles/kernel/svm/svm_camera.h
index 00678a49d70..90249dfd978 100644
--- a/intern/cycles/kernel/svm/svm_camera.h
+++ b/intern/cycles/kernel/svm/svm_camera.h
@@ -23,7 +23,7 @@ ccl_device void svm_node_camera(KernelGlobals *kg, ShaderData *sd, float *stack,
float3 vector;
Transform tfm = kernel_data.cam.worldtocamera;
- vector = transform_point(&tfm, ccl_fetch(sd, P));
+ vector = transform_point(&tfm, sd->P);
zdepth = vector.z;
distance = len(vector);
diff --git a/intern/cycles/kernel/svm/svm_closure.h b/intern/cycles/kernel/svm/svm_closure.h
index 017d697f9f8..4268813b263 100644
--- a/intern/cycles/kernel/svm/svm_closure.h
+++ b/intern/cycles/kernel/svm/svm_closure.h
@@ -25,13 +25,13 @@ ccl_device void svm_node_glass_setup(ShaderData *sd, MicrofacetBsdf *bsdf, int t
bsdf->alpha_y = 0.0f;
bsdf->alpha_x = 0.0f;
bsdf->ior = eta;
- ccl_fetch(sd, flag) |= bsdf_refraction_setup(bsdf);
+ sd->flag |= bsdf_refraction_setup(bsdf);
}
else {
bsdf->alpha_y = 0.0f;
bsdf->alpha_x = 0.0f;
bsdf->ior = 0.0f;
- ccl_fetch(sd, flag) |= bsdf_reflection_setup(bsdf);
+ sd->flag |= bsdf_reflection_setup(bsdf);
}
}
else if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID) {
@@ -40,9 +40,9 @@ ccl_device void svm_node_glass_setup(ShaderData *sd, MicrofacetBsdf *bsdf, int t
bsdf->ior = eta;
if(refract)
- ccl_fetch(sd, flag) |= bsdf_microfacet_beckmann_refraction_setup(bsdf);
+ sd->flag |= bsdf_microfacet_beckmann_refraction_setup(bsdf);
else
- ccl_fetch(sd, flag) |= bsdf_microfacet_beckmann_setup(bsdf);
+ sd->flag |= bsdf_microfacet_beckmann_setup(bsdf);
}
else {
bsdf->alpha_x = roughness;
@@ -50,9 +50,9 @@ ccl_device void svm_node_glass_setup(ShaderData *sd, MicrofacetBsdf *bsdf, int t
bsdf->ior = eta;
if(refract)
- ccl_fetch(sd, flag) |= bsdf_microfacet_ggx_refraction_setup(bsdf);
+ sd->flag |= bsdf_microfacet_ggx_refraction_setup(bsdf);
else
- ccl_fetch(sd, flag) |= bsdf_microfacet_ggx_setup(bsdf);
+ sd->flag |= bsdf_microfacet_ggx_setup(bsdf);
}
}
@@ -70,14 +70,353 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
if(mix_weight == 0.0f)
return;
- float3 N = stack_valid(data_node.x)? stack_load_float3(stack, data_node.x): ccl_fetch(sd, N);
+ float3 N = stack_valid(data_node.x)? stack_load_float3(stack, data_node.x): sd->N;
float param1 = (stack_valid(param1_offset))? stack_load_float(stack, param1_offset): __uint_as_float(node.z);
float param2 = (stack_valid(param2_offset))? stack_load_float(stack, param2_offset): __uint_as_float(node.w);
switch(type) {
+#ifdef __PRINCIPLED__
+ case CLOSURE_BSDF_PRINCIPLED_ID: {
+ uint specular_offset, roughness_offset, specular_tint_offset, anisotropic_offset, sheen_offset,
+ sheen_tint_offset, clearcoat_offset, clearcoat_roughness_offset, eta_offset, transmission_offset,
+ anisotropic_rotation_offset, transmission_roughness_offset;
+ uint4 data_node2 = read_node(kg, offset);
+
+ float3 T = stack_load_float3(stack, data_node.y);
+ decode_node_uchar4(data_node.z, &specular_offset, &roughness_offset, &specular_tint_offset, &anisotropic_offset);
+ decode_node_uchar4(data_node.w, &sheen_offset, &sheen_tint_offset, &clearcoat_offset, &clearcoat_roughness_offset);
+ decode_node_uchar4(data_node2.x, &eta_offset, &transmission_offset, &anisotropic_rotation_offset, &transmission_roughness_offset);
+
+ // get Disney principled parameters
+ float metallic = param1;
+ float subsurface = param2;
+ float specular = stack_load_float(stack, specular_offset);
+ float roughness = stack_load_float(stack, roughness_offset);
+ float specular_tint = stack_load_float(stack, specular_tint_offset);
+ float anisotropic = stack_load_float(stack, anisotropic_offset);
+ float sheen = stack_load_float(stack, sheen_offset);
+ float sheen_tint = stack_load_float(stack, sheen_tint_offset);
+ float clearcoat = stack_load_float(stack, clearcoat_offset);
+ float clearcoat_roughness = stack_load_float(stack, clearcoat_roughness_offset);
+ float transmission = stack_load_float(stack, transmission_offset);
+ float anisotropic_rotation = stack_load_float(stack, anisotropic_rotation_offset);
+ float transmission_roughness = stack_load_float(stack, transmission_roughness_offset);
+ float eta = fmaxf(stack_load_float(stack, eta_offset), 1e-5f);
+
+ ClosureType distribution = stack_valid(data_node2.y) ? (ClosureType) data_node2.y : CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID;
+
+ /* rotate tangent */
+ if(anisotropic_rotation != 0.0f)
+ T = rotate_around_axis(T, N, anisotropic_rotation * M_2PI_F);
+
+ /* calculate ior */
+ float ior = (sd->flag & SD_BACKFACING) ? 1.0f / eta : eta;
+
+ // calculate fresnel for refraction
+ float cosNO = dot(N, sd->I);
+ float fresnel = fresnel_dielectric_cos(cosNO, ior);
+
+ // calculate weights of the diffuse and specular part
+ float diffuse_weight = (1.0f - saturate(metallic)) * (1.0f - saturate(transmission));
+
+ float final_transmission = saturate(transmission) * (1.0f - saturate(metallic));
+ float specular_weight = (1.0f - final_transmission);
+
+ // get the base color
+ uint4 data_base_color = read_node(kg, offset);
+ float3 base_color = stack_valid(data_base_color.x) ? stack_load_float3(stack, data_base_color.x) :
+ make_float3(__uint_as_float(data_base_color.y), __uint_as_float(data_base_color.z), __uint_as_float(data_base_color.w));
+
+ // get the additional clearcoat normal and subsurface scattering radius
+ uint4 data_cn_ssr = read_node(kg, offset);
+ float3 clearcoat_normal = stack_valid(data_cn_ssr.x) ? stack_load_float3(stack, data_cn_ssr.x) : sd->N;
+ float3 subsurface_radius = stack_valid(data_cn_ssr.y) ? stack_load_float3(stack, data_cn_ssr.y) : make_float3(1.0f, 1.0f, 1.0f);
+
+ // get the subsurface color
+ uint4 data_subsurface_color = read_node(kg, offset);
+ float3 subsurface_color = stack_valid(data_subsurface_color.x) ? stack_load_float3(stack, data_subsurface_color.x) :
+ make_float3(__uint_as_float(data_subsurface_color.y), __uint_as_float(data_subsurface_color.z), __uint_as_float(data_subsurface_color.w));
+
+ float3 weight = sd->svm_closure_weight * mix_weight;
+
+#ifdef __SUBSURFACE__
+ float3 mixed_ss_base_color = subsurface_color * subsurface + base_color * (1.0f - subsurface);
+ float3 subsurf_weight = weight * mixed_ss_base_color * diffuse_weight;
+ float subsurf_sample_weight = fabsf(average(subsurf_weight));
+
+ /* disable in case of diffuse ancestor, can't see it well then and
+ * adds considerably noise due to probabilities of continuing path
+ * getting lower and lower */
+ if(path_flag & PATH_RAY_DIFFUSE_ANCESTOR) {
+ subsurface = 0.0f;
+
+ /* need to set the base color in this case such that the
+ * rays get the correctly mixed color after transmitting
+ * the object */
+ base_color = mixed_ss_base_color;
+ }
+
+ /* diffuse */
+ if(fabsf(average(mixed_ss_base_color)) > CLOSURE_WEIGHT_CUTOFF) {
+ if(subsurface <= CLOSURE_WEIGHT_CUTOFF && diffuse_weight > CLOSURE_WEIGHT_CUTOFF) {
+ float3 diff_weight = weight * base_color * diffuse_weight;
+
+ PrincipledDiffuseBsdf *bsdf = (PrincipledDiffuseBsdf*)bsdf_alloc(sd, sizeof(PrincipledDiffuseBsdf), diff_weight);
+
+ if(bsdf) {
+ bsdf->N = N;
+ bsdf->roughness = roughness;
+
+ /* setup bsdf */
+ sd->flag |= bsdf_principled_diffuse_setup(bsdf);
+ }
+ }
+ else if(subsurface > CLOSURE_WEIGHT_CUTOFF && subsurf_sample_weight > CLOSURE_WEIGHT_CUTOFF) {
+ /* radius * scale */
+ float3 radius = subsurface_radius * subsurface;
+ /* sharpness */
+ float sharpness = 0.0f;
+ /* texture color blur */
+ float texture_blur = 0.0f;
+
+ /* create one closure per color channel */
+ Bssrdf *bssrdf = bssrdf_alloc(sd, make_float3(subsurf_weight.x, 0.0f, 0.0f));
+ if(bssrdf) {
+ bssrdf->sample_weight = subsurf_sample_weight;
+ bssrdf->radius = radius.x;
+ bssrdf->texture_blur = texture_blur;
+ bssrdf->albedo = subsurface_color.x;
+ bssrdf->sharpness = sharpness;
+ bssrdf->N = N;
+ bssrdf->roughness = roughness;
+
+ /* setup bsdf */
+ sd->flag |= bssrdf_setup(bssrdf, (ClosureType)CLOSURE_BSSRDF_PRINCIPLED_ID);
+ }
+
+ bssrdf = bssrdf_alloc(sd, make_float3(0.0f, subsurf_weight.y, 0.0f));
+ if(bssrdf) {
+ bssrdf->sample_weight = subsurf_sample_weight;
+ bssrdf->radius = radius.y;
+ bssrdf->texture_blur = texture_blur;
+ bssrdf->albedo = subsurface_color.y;
+ bssrdf->sharpness = sharpness;
+ bssrdf->N = N;
+ bssrdf->roughness = roughness;
+
+ /* setup bsdf */
+ sd->flag |= bssrdf_setup(bssrdf, (ClosureType)CLOSURE_BSSRDF_PRINCIPLED_ID);
+ }
+
+ bssrdf = bssrdf_alloc(sd, make_float3(0.0f, 0.0f, subsurf_weight.z));
+ if(bssrdf) {
+ bssrdf->sample_weight = subsurf_sample_weight;
+ bssrdf->radius = radius.z;
+ bssrdf->texture_blur = texture_blur;
+ bssrdf->albedo = subsurface_color.z;
+ bssrdf->sharpness = sharpness;
+ bssrdf->N = N;
+ bssrdf->roughness = roughness;
+
+ /* setup bsdf */
+ sd->flag |= bssrdf_setup(bssrdf, (ClosureType)CLOSURE_BSSRDF_PRINCIPLED_ID);
+ }
+ }
+ }
+#else
+ /* diffuse */
+ if(diffuse_weight > CLOSURE_WEIGHT_CUTOFF) {
+ float3 diff_weight = weight * base_color * diffuse_weight;
+
+ PrincipledDiffuseBsdf *bsdf = (PrincipledDiffuseBsdf*)bsdf_alloc(sd, sizeof(PrincipledDiffuseBsdf), diff_weight);
+
+ if(bsdf) {
+ bsdf->N = N;
+ bsdf->roughness = roughness;
+
+ /* setup bsdf */
+ sd->flag |= bsdf_principled_diffuse_setup(bsdf);
+ }
+ }
+#endif
+
+ /* sheen */
+ if(diffuse_weight > CLOSURE_WEIGHT_CUTOFF && sheen > CLOSURE_WEIGHT_CUTOFF) {
+ float m_cdlum = linear_rgb_to_gray(base_color);
+ float3 m_ctint = m_cdlum > 0.0f ? base_color / m_cdlum : make_float3(1.0f, 1.0f, 1.0f); // normalize lum. to isolate hue+sat
+
+ /* color of the sheen component */
+ float3 sheen_color = make_float3(1.0f, 1.0f, 1.0f) * (1.0f - sheen_tint) + m_ctint * sheen_tint;
+
+ float3 sheen_weight = weight * sheen * sheen_color * diffuse_weight;
+
+ PrincipledSheenBsdf *bsdf = (PrincipledSheenBsdf*)bsdf_alloc(sd, sizeof(PrincipledSheenBsdf), sheen_weight);
+
+ if(bsdf) {
+ bsdf->N = N;
+
+ /* setup bsdf */
+ sd->flag |= bsdf_principled_sheen_setup(bsdf);
+ }
+ }
+
+ /* specular reflection */
+#ifdef __CAUSTICS_TRICKS__
+ if(kernel_data.integrator.caustics_reflective || (path_flag & PATH_RAY_DIFFUSE) == 0) {
+#endif
+ if(specular_weight > CLOSURE_WEIGHT_CUTOFF && (specular > CLOSURE_WEIGHT_CUTOFF || metallic > CLOSURE_WEIGHT_CUTOFF)) {
+ float3 spec_weight = weight * specular_weight;
+
+ MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), spec_weight);
+ MicrofacetExtra *extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));
+
+ if(bsdf && extra) {
+ bsdf->N = N;
+ bsdf->ior = (2.0f / (1.0f - safe_sqrtf(0.08f * specular))) - 1.0f;
+ bsdf->T = T;
+ bsdf->extra = extra;
+
+ float aspect = safe_sqrtf(1.0f - anisotropic * 0.9f);
+ float r2 = roughness * roughness;
+
+ bsdf->alpha_x = r2 / aspect;
+ bsdf->alpha_y = r2 * aspect;
+
+ float m_cdlum = 0.3f * base_color.x + 0.6f * base_color.y + 0.1f * base_color.z; // luminance approx.
+ float3 m_ctint = m_cdlum > 0.0f ? base_color / m_cdlum : make_float3(0.0f, 0.0f, 0.0f); // normalize lum. to isolate hue+sat
+ float3 tmp_col = make_float3(1.0f, 1.0f, 1.0f) * (1.0f - specular_tint) + m_ctint * specular_tint;
+
+ bsdf->extra->cspec0 = (specular * 0.08f * tmp_col) * (1.0f - metallic) + base_color * metallic;
+ bsdf->extra->color = base_color;
+
+ /* setup bsdf */
+ if(distribution == CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID || roughness <= 0.075f) /* use single-scatter GGX */
+ sd->flag |= bsdf_microfacet_ggx_aniso_fresnel_setup(bsdf, sd);
+ else /* use multi-scatter GGX */
+ sd->flag |= bsdf_microfacet_multi_ggx_aniso_fresnel_setup(bsdf, sd);
+ }
+ }
+#ifdef __CAUSTICS_TRICKS__
+ }
+#endif
+
+ /* BSDF */
+#ifdef __CAUSTICS_TRICKS__
+ if(kernel_data.integrator.caustics_reflective || kernel_data.integrator.caustics_refractive || (path_flag & PATH_RAY_DIFFUSE) == 0) {
+#endif
+ if(final_transmission > CLOSURE_WEIGHT_CUTOFF) {
+ float3 glass_weight = weight * final_transmission;
+ float3 cspec0 = base_color * specular_tint + make_float3(1.0f, 1.0f, 1.0f) * (1.0f - specular_tint);
+
+ if(roughness <= 5e-2f || distribution == CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID) { /* use single-scatter GGX */
+ float refl_roughness = roughness;
+
+ /* reflection */
+#ifdef __CAUSTICS_TRICKS__
+ if(kernel_data.integrator.caustics_reflective || (path_flag & PATH_RAY_DIFFUSE) == 0)
+#endif
+ {
+ MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), glass_weight*fresnel);
+ MicrofacetExtra *extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));
+
+ if(bsdf && extra) {
+ bsdf->N = N;
+ bsdf->extra = extra;
+
+ bsdf->alpha_x = refl_roughness * refl_roughness;
+ bsdf->alpha_y = refl_roughness * refl_roughness;
+ bsdf->ior = ior;
+
+ bsdf->extra->color = base_color;
+ bsdf->extra->cspec0 = cspec0;
+
+ /* setup bsdf */
+ sd->flag |= bsdf_microfacet_ggx_fresnel_setup(bsdf, sd);
+ }
+ }
+
+ /* refraction */
+#ifdef __CAUSTICS_TRICKS__
+ if(kernel_data.integrator.caustics_refractive || (path_flag & PATH_RAY_DIFFUSE) == 0)
+#endif
+ {
+ MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), base_color*glass_weight*(1.0f - fresnel));
+
+ if(bsdf) {
+ bsdf->N = N;
+
+ if(distribution == CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID)
+ transmission_roughness = 1.0f - (1.0f - refl_roughness) * (1.0f - transmission_roughness);
+ else
+ transmission_roughness = refl_roughness;
+
+ bsdf->alpha_x = transmission_roughness * transmission_roughness;
+ bsdf->alpha_y = transmission_roughness * transmission_roughness;
+ bsdf->ior = ior;
+
+ /* setup bsdf */
+ sd->flag |= bsdf_microfacet_ggx_refraction_setup(bsdf);
+ }
+ }
+ }
+ else { /* use multi-scatter GGX */
+ MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), glass_weight);
+ MicrofacetExtra *extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));
+
+ if(bsdf && extra) {
+ bsdf->N = N;
+ bsdf->extra = extra;
+ bsdf->T = make_float3(0.0f, 0.0f, 0.0f);
+
+ bsdf->alpha_x = roughness * roughness;
+ bsdf->alpha_y = roughness * roughness;
+ bsdf->ior = ior;
+
+ bsdf->extra->color = base_color;
+ bsdf->extra->cspec0 = cspec0;
+
+ /* setup bsdf */
+ sd->flag |= bsdf_microfacet_multi_ggx_glass_fresnel_setup(bsdf, sd);
+ }
+ }
+ }
+#ifdef __CAUSTICS_TRICKS__
+ }
+#endif
+
+ /* clearcoat */
+#ifdef __CAUSTICS_TRICKS__
+ if(kernel_data.integrator.caustics_reflective || (path_flag & PATH_RAY_DIFFUSE) == 0) {
+#endif
+ if(clearcoat > CLOSURE_WEIGHT_CUTOFF) {
+ MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), weight);
+ MicrofacetExtra *extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));
+
+ if(bsdf && extra) {
+ bsdf->N = clearcoat_normal;
+ bsdf->ior = 1.5f;
+ bsdf->extra = extra;
+
+ bsdf->alpha_x = clearcoat_roughness * clearcoat_roughness;
+ bsdf->alpha_y = clearcoat_roughness * clearcoat_roughness;
+
+ bsdf->extra->cspec0 = make_float3(0.04f, 0.04f, 0.04f);
+ bsdf->extra->clearcoat = clearcoat;
+
+ /* setup bsdf */
+ sd->flag |= bsdf_microfacet_ggx_clearcoat_setup(bsdf, sd);
+ }
+ }
+#ifdef __CAUSTICS_TRICKS__
+ }
+#endif
+
+ break;
+ }
+#endif /* __PRINCIPLED__ */
case CLOSURE_BSDF_DIFFUSE_ID: {
- float3 weight = ccl_fetch(sd, svm_closure_weight) * mix_weight;
+ float3 weight = sd->svm_closure_weight * mix_weight;
OrenNayarBsdf *bsdf = (OrenNayarBsdf*)bsdf_alloc(sd, sizeof(OrenNayarBsdf), weight);
if(bsdf) {
@@ -86,31 +425,32 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
float roughness = param1;
if(roughness == 0.0f) {
- ccl_fetch(sd, flag) |= bsdf_diffuse_setup((DiffuseBsdf*)bsdf);
+ sd->flag |= bsdf_diffuse_setup((DiffuseBsdf*)bsdf);
}
else {
bsdf->roughness = roughness;
- ccl_fetch(sd, flag) |= bsdf_oren_nayar_setup(bsdf);
+ sd->flag |= bsdf_oren_nayar_setup(bsdf);
}
}
break;
}
case CLOSURE_BSDF_TRANSLUCENT_ID: {
- float3 weight = ccl_fetch(sd, svm_closure_weight) * mix_weight;
+ float3 weight = sd->svm_closure_weight * mix_weight;
DiffuseBsdf *bsdf = (DiffuseBsdf*)bsdf_alloc(sd, sizeof(DiffuseBsdf), weight);
if(bsdf) {
bsdf->N = N;
- ccl_fetch(sd, flag) |= bsdf_translucent_setup(bsdf);
+ sd->flag |= bsdf_translucent_setup(bsdf);
}
break;
}
case CLOSURE_BSDF_TRANSPARENT_ID: {
- float3 weight = ccl_fetch(sd, svm_closure_weight) * mix_weight;
+ float3 weight = sd->svm_closure_weight * mix_weight;
ShaderClosure *bsdf = bsdf_alloc(sd, sizeof(ShaderClosure), weight);
if(bsdf) {
- ccl_fetch(sd, flag) |= bsdf_transparent_setup(bsdf);
+ bsdf->N = N;
+ sd->flag |= bsdf_transparent_setup(bsdf);
}
break;
}
@@ -123,7 +463,7 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
if(!kernel_data.integrator.caustics_reflective && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
- float3 weight = ccl_fetch(sd, svm_closure_weight) * mix_weight;
+ float3 weight = sd->svm_closure_weight * mix_weight;
MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), weight);
if(bsdf) {
@@ -135,21 +475,21 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
/* setup bsdf */
if(type == CLOSURE_BSDF_REFLECTION_ID)
- ccl_fetch(sd, flag) |= bsdf_reflection_setup(bsdf);
+ sd->flag |= bsdf_reflection_setup(bsdf);
else if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_ID)
- ccl_fetch(sd, flag) |= bsdf_microfacet_beckmann_setup(bsdf);
+ sd->flag |= bsdf_microfacet_beckmann_setup(bsdf);
else if(type == CLOSURE_BSDF_MICROFACET_GGX_ID)
- ccl_fetch(sd, flag) |= bsdf_microfacet_ggx_setup(bsdf);
+ sd->flag |= bsdf_microfacet_ggx_setup(bsdf);
else if(type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID) {
kernel_assert(stack_valid(data_node.z));
bsdf->extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));
if(bsdf->extra) {
bsdf->extra->color = stack_load_float3(stack, data_node.z);
- ccl_fetch(sd, flag) |= bsdf_microfacet_multi_ggx_setup(bsdf);
+ sd->flag |= bsdf_microfacet_multi_ggx_setup(bsdf);
}
}
else
- ccl_fetch(sd, flag) |= bsdf_ashikhmin_shirley_setup(bsdf);
+ sd->flag |= bsdf_ashikhmin_shirley_setup(bsdf);
}
break;
@@ -161,7 +501,7 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
if(!kernel_data.integrator.caustics_refractive && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
- float3 weight = ccl_fetch(sd, svm_closure_weight) * mix_weight;
+ float3 weight = sd->svm_closure_weight * mix_weight;
MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), weight);
if(bsdf) {
@@ -169,7 +509,7 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
bsdf->extra = NULL;
float eta = fmaxf(param2, 1e-5f);
- eta = (ccl_fetch(sd, flag) & SD_BACKFACING)? 1.0f/eta: eta;
+ eta = (sd->flag & SD_BACKFACING)? 1.0f/eta: eta;
/* setup bsdf */
if(type == CLOSURE_BSDF_REFRACTION_ID) {
@@ -177,7 +517,7 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
bsdf->alpha_y = 0.0f;
bsdf->ior = eta;
- ccl_fetch(sd, flag) |= bsdf_refraction_setup(bsdf);
+ sd->flag |= bsdf_refraction_setup(bsdf);
}
else {
bsdf->alpha_x = param1;
@@ -185,9 +525,9 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
bsdf->ior = eta;
if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID)
- ccl_fetch(sd, flag) |= bsdf_microfacet_beckmann_refraction_setup(bsdf);
+ sd->flag |= bsdf_microfacet_beckmann_refraction_setup(bsdf);
else
- ccl_fetch(sd, flag) |= bsdf_microfacet_ggx_refraction_setup(bsdf);
+ sd->flag |= bsdf_microfacet_ggx_refraction_setup(bsdf);
}
}
@@ -203,14 +543,14 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
break;
}
#endif
- float3 weight = ccl_fetch(sd, svm_closure_weight) * mix_weight;
+ float3 weight = sd->svm_closure_weight * mix_weight;
/* index of refraction */
float eta = fmaxf(param2, 1e-5f);
- eta = (ccl_fetch(sd, flag) & SD_BACKFACING)? 1.0f/eta: eta;
+ eta = (sd->flag & SD_BACKFACING)? 1.0f/eta: eta;
/* fresnel */
- float cosNO = dot(N, ccl_fetch(sd, I));
+ float cosNO = dot(N, sd->I);
float fresnel = fresnel_dielectric_cos(cosNO, eta);
float roughness = param1;
@@ -249,7 +589,7 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
if(!kernel_data.integrator.caustics_reflective && !kernel_data.integrator.caustics_refractive && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
- float3 weight = ccl_fetch(sd, svm_closure_weight) * mix_weight;
+ float3 weight = sd->svm_closure_weight * mix_weight;
MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), weight);
MicrofacetExtra *extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));
@@ -261,13 +601,13 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
bsdf->alpha_x = param1;
bsdf->alpha_y = param1;
float eta = fmaxf(param2, 1e-5f);
- bsdf->ior = (ccl_fetch(sd, flag) & SD_BACKFACING)? 1.0f/eta: eta;
+ bsdf->ior = (sd->flag & SD_BACKFACING)? 1.0f/eta: eta;
kernel_assert(stack_valid(data_node.z));
bsdf->extra->color = stack_load_float3(stack, data_node.z);
/* setup bsdf */
- ccl_fetch(sd, flag) |= bsdf_microfacet_multi_ggx_glass_setup(bsdf);
+ sd->flag |= bsdf_microfacet_multi_ggx_glass_setup(bsdf);
}
break;
@@ -280,7 +620,7 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
if(!kernel_data.integrator.caustics_reflective && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
- float3 weight = ccl_fetch(sd, svm_closure_weight) * mix_weight;
+ float3 weight = sd->svm_closure_weight * mix_weight;
MicrofacetBsdf *bsdf = (MicrofacetBsdf*)bsdf_alloc(sd, sizeof(MicrofacetBsdf), weight);
if(bsdf) {
@@ -310,33 +650,33 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
bsdf->ior = 0.0f;
if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID) {
- ccl_fetch(sd, flag) |= bsdf_microfacet_beckmann_aniso_setup(bsdf);
+ sd->flag |= bsdf_microfacet_beckmann_aniso_setup(bsdf);
}
else if(type == CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID) {
- ccl_fetch(sd, flag) |= bsdf_microfacet_ggx_aniso_setup(bsdf);
+ sd->flag |= bsdf_microfacet_ggx_aniso_setup(bsdf);
}
else if(type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID) {
kernel_assert(stack_valid(data_node.w));
bsdf->extra = (MicrofacetExtra*)closure_alloc_extra(sd, sizeof(MicrofacetExtra));
if(bsdf->extra) {
bsdf->extra->color = stack_load_float3(stack, data_node.w);
- ccl_fetch(sd, flag) |= bsdf_microfacet_multi_ggx_aniso_setup(bsdf);
+ sd->flag |= bsdf_microfacet_multi_ggx_aniso_setup(bsdf);
}
}
else
- ccl_fetch(sd, flag) |= bsdf_ashikhmin_shirley_aniso_setup(bsdf);
+ sd->flag |= bsdf_ashikhmin_shirley_aniso_setup(bsdf);
}
break;
}
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID: {
- float3 weight = ccl_fetch(sd, svm_closure_weight) * mix_weight;
+ float3 weight = sd->svm_closure_weight * mix_weight;
VelvetBsdf *bsdf = (VelvetBsdf*)bsdf_alloc(sd, sizeof(VelvetBsdf), weight);
if(bsdf) {
bsdf->N = N;
bsdf->sigma = saturate(param1);
- ccl_fetch(sd, flag) |= bsdf_ashikhmin_velvet_setup(bsdf);
+ sd->flag |= bsdf_ashikhmin_velvet_setup(bsdf);
}
break;
}
@@ -344,9 +684,10 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
#ifdef __CAUSTICS_TRICKS__
if(!kernel_data.integrator.caustics_reflective && (path_flag & PATH_RAY_DIFFUSE))
break;
+ ATTR_FALLTHROUGH;
#endif
case CLOSURE_BSDF_DIFFUSE_TOON_ID: {
- float3 weight = ccl_fetch(sd, svm_closure_weight) * mix_weight;
+ float3 weight = sd->svm_closure_weight * mix_weight;
ToonBsdf *bsdf = (ToonBsdf*)bsdf_alloc(sd, sizeof(ToonBsdf), weight);
if(bsdf) {
@@ -355,34 +696,36 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
bsdf->smooth = param2;
if(type == CLOSURE_BSDF_DIFFUSE_TOON_ID)
- ccl_fetch(sd, flag) |= bsdf_diffuse_toon_setup(bsdf);
+ sd->flag |= bsdf_diffuse_toon_setup(bsdf);
else
- ccl_fetch(sd, flag) |= bsdf_glossy_toon_setup(bsdf);
+ sd->flag |= bsdf_glossy_toon_setup(bsdf);
}
break;
}
#ifdef __HAIR__
case CLOSURE_BSDF_HAIR_REFLECTION_ID:
case CLOSURE_BSDF_HAIR_TRANSMISSION_ID: {
- float3 weight = ccl_fetch(sd, svm_closure_weight) * mix_weight;
+ float3 weight = sd->svm_closure_weight * mix_weight;
- if(ccl_fetch(sd, flag) & SD_BACKFACING && ccl_fetch(sd, type) & PRIMITIVE_ALL_CURVE) {
+ if(sd->flag & SD_BACKFACING && sd->type & PRIMITIVE_ALL_CURVE) {
ShaderClosure *bsdf = bsdf_alloc(sd, sizeof(ShaderClosure), weight);
if(bsdf) {
+ bsdf->N = N;
/* todo: giving a fixed weight here will cause issues when
* mixing multiple BSDFS. energy will not be conserved and
* the throughput can blow up after multiple bounces. we
* better figure out a way to skip backfaces from rays
* spawned by transmission from the front */
bsdf->weight = make_float3(1.0f, 1.0f, 1.0f);
- ccl_fetch(sd, flag) |= bsdf_transparent_setup(bsdf);
+ sd->flag |= bsdf_transparent_setup(bsdf);
}
}
else {
HairBsdf *bsdf = (HairBsdf*)bsdf_alloc(sd, sizeof(HairBsdf), weight);
if(bsdf) {
+ bsdf->N = N;
bsdf->roughness1 = param1;
bsdf->roughness2 = param2;
bsdf->offset = -stack_load_float(stack, data_node.z);
@@ -390,18 +733,18 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
if(stack_valid(data_node.y)) {
bsdf->T = normalize(stack_load_float3(stack, data_node.y));
}
- else if(!(ccl_fetch(sd, type) & PRIMITIVE_ALL_CURVE)) {
- bsdf->T = normalize(ccl_fetch(sd, dPdv));
+ else if(!(sd->type & PRIMITIVE_ALL_CURVE)) {
+ bsdf->T = normalize(sd->dPdv);
bsdf->offset = 0.0f;
}
else
- bsdf->T = normalize(ccl_fetch(sd, dPdu));
+ bsdf->T = normalize(sd->dPdu);
if(type == CLOSURE_BSDF_HAIR_REFLECTION_ID) {
- ccl_fetch(sd, flag) |= bsdf_hair_reflection_setup(bsdf);
+ sd->flag |= bsdf_hair_reflection_setup(bsdf);
}
else {
- ccl_fetch(sd, flag) |= bsdf_hair_transmission_setup(bsdf);
+ sd->flag |= bsdf_hair_transmission_setup(bsdf);
}
}
}
@@ -414,8 +757,8 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
case CLOSURE_BSSRDF_CUBIC_ID:
case CLOSURE_BSSRDF_GAUSSIAN_ID:
case CLOSURE_BSSRDF_BURLEY_ID: {
- float3 albedo = ccl_fetch(sd, svm_closure_weight);
- float3 weight = ccl_fetch(sd, svm_closure_weight) * mix_weight;
+ float3 albedo = sd->svm_closure_weight;
+ float3 weight = sd->svm_closure_weight * mix_weight;
float sample_weight = fabsf(average(weight));
/* disable in case of diffuse ancestor, can't see it well then and
@@ -441,7 +784,7 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
bssrdf->albedo = albedo.x;
bssrdf->sharpness = sharpness;
bssrdf->N = N;
- ccl_fetch(sd, flag) |= bssrdf_setup(bssrdf, (ClosureType)type);
+ sd->flag |= bssrdf_setup(bssrdf, (ClosureType)type);
}
bssrdf = bssrdf_alloc(sd, make_float3(0.0f, weight.y, 0.0f));
@@ -452,7 +795,7 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
bssrdf->albedo = albedo.y;
bssrdf->sharpness = sharpness;
bssrdf->N = N;
- ccl_fetch(sd, flag) |= bssrdf_setup(bssrdf, (ClosureType)type);
+ sd->flag |= bssrdf_setup(bssrdf, (ClosureType)type);
}
bssrdf = bssrdf_alloc(sd, make_float3(0.0f, 0.0f, weight.z));
@@ -463,7 +806,7 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
bssrdf->albedo = albedo.z;
bssrdf->sharpness = sharpness;
bssrdf->N = N;
- ccl_fetch(sd, flag) |= bssrdf_setup(bssrdf, (ClosureType)type);
+ sd->flag |= bssrdf_setup(bssrdf, (ClosureType)type);
}
}
@@ -493,21 +836,21 @@ ccl_device void svm_node_closure_volume(KernelGlobals *kg, ShaderData *sd, float
switch(type) {
case CLOSURE_VOLUME_ABSORPTION_ID: {
- float3 weight = (make_float3(1.0f, 1.0f, 1.0f) - ccl_fetch(sd, svm_closure_weight)) * mix_weight * density;
+ float3 weight = (make_float3(1.0f, 1.0f, 1.0f) - sd->svm_closure_weight) * mix_weight * density;
ShaderClosure *sc = closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_NONE_ID, weight);
if(sc) {
- ccl_fetch(sd, flag) |= volume_absorption_setup(sc);
+ sd->flag |= volume_absorption_setup(sc);
}
break;
}
case CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID: {
- float3 weight = ccl_fetch(sd, svm_closure_weight) * mix_weight * density;
+ float3 weight = sd->svm_closure_weight * mix_weight * density;
HenyeyGreensteinVolume *volume = (HenyeyGreensteinVolume*)bsdf_alloc(sd, sizeof(HenyeyGreensteinVolume), weight);
if(volume) {
volume->g = param2; /* g */
- ccl_fetch(sd, flag) |= volume_henyey_greenstein_setup(volume);
+ sd->flag |= volume_henyey_greenstein_setup(volume);
}
break;
}
@@ -527,12 +870,12 @@ ccl_device void svm_node_closure_emission(ShaderData *sd, float *stack, uint4 no
if(mix_weight == 0.0f)
return;
- closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_EMISSION_ID, ccl_fetch(sd, svm_closure_weight) * mix_weight);
+ closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_EMISSION_ID, sd->svm_closure_weight * mix_weight);
}
else
- closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_EMISSION_ID, ccl_fetch(sd, svm_closure_weight));
+ closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_EMISSION_ID, sd->svm_closure_weight);
- ccl_fetch(sd, flag) |= SD_EMISSION;
+ sd->flag |= SD_EMISSION;
}
ccl_device void svm_node_closure_background(ShaderData *sd, float *stack, uint4 node)
@@ -545,10 +888,10 @@ ccl_device void svm_node_closure_background(ShaderData *sd, float *stack, uint4
if(mix_weight == 0.0f)
return;
- closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_BACKGROUND_ID, ccl_fetch(sd, svm_closure_weight) * mix_weight);
+ closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_BACKGROUND_ID, sd->svm_closure_weight * mix_weight);
}
else
- closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_BACKGROUND_ID, ccl_fetch(sd, svm_closure_weight));
+ closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_BACKGROUND_ID, sd->svm_closure_weight);
}
ccl_device void svm_node_closure_holdout(ShaderData *sd, float *stack, uint4 node)
@@ -561,12 +904,12 @@ ccl_device void svm_node_closure_holdout(ShaderData *sd, float *stack, uint4 nod
if(mix_weight == 0.0f)
return;
- closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_HOLDOUT_ID, ccl_fetch(sd, svm_closure_weight) * mix_weight);
+ closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_HOLDOUT_ID, sd->svm_closure_weight * mix_weight);
}
else
- closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_HOLDOUT_ID, ccl_fetch(sd, svm_closure_weight));
+ closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_HOLDOUT_ID, sd->svm_closure_weight);
- ccl_fetch(sd, flag) |= SD_HOLDOUT;
+ sd->flag |= SD_HOLDOUT;
}
ccl_device void svm_node_closure_ambient_occlusion(ShaderData *sd, float *stack, uint4 node)
@@ -579,19 +922,19 @@ ccl_device void svm_node_closure_ambient_occlusion(ShaderData *sd, float *stack,
if(mix_weight == 0.0f)
return;
- closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_AMBIENT_OCCLUSION_ID, ccl_fetch(sd, svm_closure_weight) * mix_weight);
+ closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_AMBIENT_OCCLUSION_ID, sd->svm_closure_weight * mix_weight);
}
else
- closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_AMBIENT_OCCLUSION_ID, ccl_fetch(sd, svm_closure_weight));
+ closure_alloc(sd, sizeof(ShaderClosure), CLOSURE_AMBIENT_OCCLUSION_ID, sd->svm_closure_weight);
- ccl_fetch(sd, flag) |= SD_AO;
+ sd->flag |= SD_AO;
}
/* Closure Nodes */
ccl_device_inline void svm_node_closure_store_weight(ShaderData *sd, float3 weight)
{
- ccl_fetch(sd, svm_closure_weight) = weight;
+ sd->svm_closure_weight = weight;
}
ccl_device void svm_node_closure_set_weight(ShaderData *sd, uint r, uint g, uint b)
@@ -641,7 +984,7 @@ ccl_device void svm_node_mix_closure(ShaderData *sd, float *stack, uint4 node)
ccl_device void svm_node_set_normal(KernelGlobals *kg, ShaderData *sd, float *stack, uint in_direction, uint out_normal)
{
float3 normal = stack_load_float3(stack, in_direction);
- ccl_fetch(sd, N) = normal;
+ sd->N = normal;
stack_store_float3(stack, out_normal, normal);
}
diff --git a/intern/cycles/kernel/svm/svm_displace.h b/intern/cycles/kernel/svm/svm_displace.h
index 890ab41aaaa..656357be52d 100644
--- a/intern/cycles/kernel/svm/svm_displace.h
+++ b/intern/cycles/kernel/svm/svm_displace.h
@@ -25,10 +25,10 @@ ccl_device void svm_node_set_bump(KernelGlobals *kg, ShaderData *sd, float *stac
uint normal_offset, distance_offset, invert, use_object_space;
decode_node_uchar4(node.y, &normal_offset, &distance_offset, &invert, &use_object_space);
- float3 normal_in = stack_valid(normal_offset)? stack_load_float3(stack, normal_offset): ccl_fetch(sd, N);
+ float3 normal_in = stack_valid(normal_offset)? stack_load_float3(stack, normal_offset): sd->N;
- float3 dPdx = ccl_fetch(sd, dP).dx;
- float3 dPdy = ccl_fetch(sd, dP).dy;
+ float3 dPdx = sd->dP.dx;
+ float3 dPdy = sd->dP.dy;
if(use_object_space) {
object_inverse_normal_transform(kg, sd, &normal_in);
@@ -63,8 +63,13 @@ ccl_device void svm_node_set_bump(KernelGlobals *kg, ShaderData *sd, float *stac
strength = max(strength, 0.0f);
/* compute and output perturbed normal */
- float3 normal_out = normalize(absdet*normal_in - distance*signf(det)*surfgrad);
- normal_out = normalize(strength*normal_out + (1.0f - strength)*normal_in);
+ float3 normal_out = safe_normalize(absdet*normal_in - distance*signf(det)*surfgrad);
+ if(is_zero(normal_out)) {
+ normal_out = normal_in;
+ }
+ else {
+ normal_out = normalize(strength*normal_out + (1.0f - strength)*normal_in);
+ }
if(use_object_space) {
object_normal_transform(kg, sd, &normal_out);
@@ -80,14 +85,14 @@ ccl_device void svm_node_set_displacement(KernelGlobals *kg, ShaderData *sd, flo
{
float d = stack_load_float(stack, fac_offset);
- float3 dP = ccl_fetch(sd, N);
+ float3 dP = sd->N;
object_inverse_normal_transform(kg, sd, &dP);
dP *= d*0.1f; /* todo: get rid of this factor */
object_dir_transform(kg, sd, &dP);
- ccl_fetch(sd, P) += dP;
+ sd->P += dP;
}
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/svm/svm_fresnel.h b/intern/cycles/kernel/svm/svm_fresnel.h
index 23c97d80cb0..3703ec55015 100644
--- a/intern/cycles/kernel/svm/svm_fresnel.h
+++ b/intern/cycles/kernel/svm/svm_fresnel.h
@@ -23,12 +23,12 @@ ccl_device void svm_node_fresnel(ShaderData *sd, float *stack, uint ior_offset,
uint normal_offset, out_offset;
decode_node_uchar4(node, &normal_offset, &out_offset, NULL, NULL);
float eta = (stack_valid(ior_offset))? stack_load_float(stack, ior_offset): __uint_as_float(ior_value);
- float3 normal_in = stack_valid(normal_offset)? stack_load_float3(stack, normal_offset): ccl_fetch(sd, N);
+ float3 normal_in = stack_valid(normal_offset)? stack_load_float3(stack, normal_offset): sd->N;
eta = fmaxf(eta, 1e-5f);
- eta = (ccl_fetch(sd, flag) & SD_BACKFACING)? 1.0f/eta: eta;
+ eta = (sd->flag & SD_BACKFACING)? 1.0f/eta: eta;
- float f = fresnel_dielectric_cos(dot(ccl_fetch(sd, I), normal_in), eta);
+ float f = fresnel_dielectric_cos(dot(sd->I, normal_in), eta);
stack_store_float(stack, out_offset, f);
}
@@ -44,18 +44,18 @@ ccl_device void svm_node_layer_weight(ShaderData *sd, float *stack, uint4 node)
decode_node_uchar4(node.w, &type, &normal_offset, &out_offset, NULL);
float blend = (stack_valid(blend_offset))? stack_load_float(stack, blend_offset): __uint_as_float(blend_value);
- float3 normal_in = (stack_valid(normal_offset))? stack_load_float3(stack, normal_offset): ccl_fetch(sd, N);
+ float3 normal_in = (stack_valid(normal_offset))? stack_load_float3(stack, normal_offset): sd->N;
float f;
if(type == NODE_LAYER_WEIGHT_FRESNEL) {
float eta = fmaxf(1.0f - blend, 1e-5f);
- eta = (ccl_fetch(sd, flag) & SD_BACKFACING)? eta: 1.0f/eta;
+ eta = (sd->flag & SD_BACKFACING)? eta: 1.0f/eta;
- f = fresnel_dielectric_cos(dot(ccl_fetch(sd, I), normal_in), eta);
+ f = fresnel_dielectric_cos(dot(sd->I, normal_in), eta);
}
else {
- f = fabsf(dot(ccl_fetch(sd, I), normal_in));
+ f = fabsf(dot(sd->I, normal_in));
if(blend != 0.5f) {
blend = clamp(blend, 0.0f, 1.0f-1e-5f);
diff --git a/intern/cycles/kernel/svm/svm_geometry.h b/intern/cycles/kernel/svm/svm_geometry.h
index 7d512f7ff4d..cce4e89e715 100644
--- a/intern/cycles/kernel/svm/svm_geometry.h
+++ b/intern/cycles/kernel/svm/svm_geometry.h
@@ -27,16 +27,17 @@ ccl_device_inline void svm_node_geometry(KernelGlobals *kg,
float3 data;
switch(type) {
- case NODE_GEOM_P: data = ccl_fetch(sd, P); break;
- case NODE_GEOM_N: data = ccl_fetch(sd, N); break;
+ case NODE_GEOM_P: data = sd->P; break;
+ case NODE_GEOM_N: data = sd->N; break;
#ifdef __DPDU__
case NODE_GEOM_T: data = primitive_tangent(kg, sd); break;
#endif
- case NODE_GEOM_I: data = ccl_fetch(sd, I); break;
- case NODE_GEOM_Ng: data = ccl_fetch(sd, Ng); break;
+ case NODE_GEOM_I: data = sd->I; break;
+ case NODE_GEOM_Ng: data = sd->Ng; break;
#ifdef __UV__
- case NODE_GEOM_uv: data = make_float3(ccl_fetch(sd, u), ccl_fetch(sd, v), 0.0f); break;
+ case NODE_GEOM_uv: data = make_float3(sd->u, sd->v, 0.0f); break;
#endif
+ default: data = make_float3(0.0f, 0.0f, 0.0f);
}
stack_store_float3(stack, out_offset, data);
@@ -48,8 +49,8 @@ ccl_device void svm_node_geometry_bump_dx(KernelGlobals *kg, ShaderData *sd, flo
float3 data;
switch(type) {
- case NODE_GEOM_P: data = ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx; break;
- case NODE_GEOM_uv: data = make_float3(ccl_fetch(sd, u) + ccl_fetch(sd, du).dx, ccl_fetch(sd, v) + ccl_fetch(sd, dv).dx, 0.0f); break;
+ case NODE_GEOM_P: data = sd->P + sd->dP.dx; break;
+ case NODE_GEOM_uv: data = make_float3(sd->u + sd->du.dx, sd->v + sd->dv.dx, 0.0f); break;
default: svm_node_geometry(kg, sd, stack, type, out_offset); return;
}
@@ -65,8 +66,8 @@ ccl_device void svm_node_geometry_bump_dy(KernelGlobals *kg, ShaderData *sd, flo
float3 data;
switch(type) {
- case NODE_GEOM_P: data = ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy; break;
- case NODE_GEOM_uv: data = make_float3(ccl_fetch(sd, u) + ccl_fetch(sd, du).dy, ccl_fetch(sd, v) + ccl_fetch(sd, dv).dy, 0.0f); break;
+ case NODE_GEOM_P: data = sd->P + sd->dP.dy; break;
+ case NODE_GEOM_uv: data = make_float3(sd->u + sd->du.dy, sd->v + sd->dv.dy, 0.0f); break;
default: svm_node_geometry(kg, sd, stack, type, out_offset); return;
}
@@ -87,9 +88,9 @@ ccl_device void svm_node_object_info(KernelGlobals *kg, ShaderData *sd, float *s
stack_store_float3(stack, out_offset, object_location(kg, sd));
return;
}
- case NODE_INFO_OB_INDEX: data = object_pass_id(kg, ccl_fetch(sd, object)); break;
+ case NODE_INFO_OB_INDEX: data = object_pass_id(kg, sd->object); break;
case NODE_INFO_MAT_INDEX: data = shader_pass_id(kg, sd); break;
- case NODE_INFO_OB_RANDOM: data = object_random_number(kg, ccl_fetch(sd, object)); break;
+ case NODE_INFO_OB_RANDOM: data = object_random_number(kg, sd->object); break;
default: data = 0.0f; break;
}
@@ -106,44 +107,44 @@ ccl_device void svm_node_particle_info(KernelGlobals *kg,
{
switch(type) {
case NODE_INFO_PAR_INDEX: {
- int particle_id = object_particle_id(kg, ccl_fetch(sd, object));
+ int particle_id = object_particle_id(kg, sd->object);
stack_store_float(stack, out_offset, particle_index(kg, particle_id));
break;
}
case NODE_INFO_PAR_AGE: {
- int particle_id = object_particle_id(kg, ccl_fetch(sd, object));
+ int particle_id = object_particle_id(kg, sd->object);
stack_store_float(stack, out_offset, particle_age(kg, particle_id));
break;
}
case NODE_INFO_PAR_LIFETIME: {
- int particle_id = object_particle_id(kg, ccl_fetch(sd, object));
+ int particle_id = object_particle_id(kg, sd->object);
stack_store_float(stack, out_offset, particle_lifetime(kg, particle_id));
break;
}
case NODE_INFO_PAR_LOCATION: {
- int particle_id = object_particle_id(kg, ccl_fetch(sd, object));
+ int particle_id = object_particle_id(kg, sd->object);
stack_store_float3(stack, out_offset, particle_location(kg, particle_id));
break;
}
#if 0 /* XXX float4 currently not supported in SVM stack */
case NODE_INFO_PAR_ROTATION: {
- int particle_id = object_particle_id(kg, ccl_fetch(sd, object));
+ int particle_id = object_particle_id(kg, sd->object);
stack_store_float4(stack, out_offset, particle_rotation(kg, particle_id));
break;
}
#endif
case NODE_INFO_PAR_SIZE: {
- int particle_id = object_particle_id(kg, ccl_fetch(sd, object));
+ int particle_id = object_particle_id(kg, sd->object);
stack_store_float(stack, out_offset, particle_size(kg, particle_id));
break;
}
case NODE_INFO_PAR_VELOCITY: {
- int particle_id = object_particle_id(kg, ccl_fetch(sd, object));
+ int particle_id = object_particle_id(kg, sd->object);
stack_store_float3(stack, out_offset, particle_velocity(kg, particle_id));
break;
}
case NODE_INFO_PAR_ANGULAR_VELOCITY: {
- int particle_id = object_particle_id(kg, ccl_fetch(sd, object));
+ int particle_id = object_particle_id(kg, sd->object);
stack_store_float3(stack, out_offset, particle_angular_velocity(kg, particle_id));
break;
}
@@ -165,7 +166,7 @@ ccl_device void svm_node_hair_info(KernelGlobals *kg,
switch(type) {
case NODE_INFO_CURVE_IS_STRAND: {
- data = (ccl_fetch(sd, type) & PRIMITIVE_ALL_CURVE) != 0;
+ data = (sd->type & PRIMITIVE_ALL_CURVE) != 0;
stack_store_float(stack, out_offset, data);
break;
}
@@ -177,7 +178,7 @@ ccl_device void svm_node_hair_info(KernelGlobals *kg,
break;
}
/*case NODE_INFO_CURVE_FADE: {
- data = ccl_fetch(sd, curve_transparency);
+ data = sd->curve_transparency;
stack_store_float(stack, out_offset, data);
break;
}*/
diff --git a/intern/cycles/kernel/svm/svm_image.h b/intern/cycles/kernel/svm/svm_image.h
index 2afdf61b476..4226e7adfe0 100644
--- a/intern/cycles/kernel/svm/svm_image.h
+++ b/intern/cycles/kernel/svm/svm_image.h
@@ -16,186 +16,25 @@
CCL_NAMESPACE_BEGIN
-/* Float4 textures on various devices. */
-#if defined(__KERNEL_CPU__)
-# define TEX_NUM_FLOAT4_IMAGES TEX_NUM_FLOAT4_CPU
-#elif defined(__KERNEL_CUDA__)
-# if __CUDA_ARCH__ < 300
-# define TEX_NUM_FLOAT4_IMAGES TEX_NUM_FLOAT4_CUDA
-# else
-# define TEX_NUM_FLOAT4_IMAGES TEX_NUM_FLOAT4_CUDA_KEPLER
-# endif
-#else
-# define TEX_NUM_FLOAT4_IMAGES TEX_NUM_FLOAT4_OPENCL
-#endif
-
ccl_device float4 svm_image_texture(KernelGlobals *kg, int id, float x, float y, uint srgb, uint use_alpha)
{
-#ifdef __KERNEL_CPU__
-# ifdef __KERNEL_SSE2__
- ssef r_ssef;
- float4 &r = (float4 &)r_ssef;
- r = kernel_tex_image_interp(id, x, y);
-# else
- float4 r = kernel_tex_image_interp(id, x, y);
-# endif
-#elif defined(__KERNEL_OPENCL__)
float4 r = kernel_tex_image_interp(kg, id, x, y);
-#else
- float4 r;
-
-# if __CUDA_ARCH__ < 300
- /* not particularly proud of this massive switch, what are the
- * alternatives?
- * - use a single big 1D texture, and do our own lookup/filtering
- * - group by size and use a 3d texture, performance impact
- * - group into larger texture with some padding for correct lerp
- *
- * also note that cuda has a textures limit (128 for Fermi, 256 for Kepler),
- * and we cannot use all since we still need some for other storage */
-
- switch(id) {
- case 0: r = kernel_tex_image_interp(__tex_image_float4_000, x, y); break;
- case 1: r = kernel_tex_image_interp(__tex_image_float4_001, x, y); break;
- case 2: r = kernel_tex_image_interp(__tex_image_float4_002, x, y); break;
- case 3: r = kernel_tex_image_interp(__tex_image_float4_003, x, y); break;
- case 4: r = kernel_tex_image_interp(__tex_image_float4_004, x, y); break;
- case 5: r = kernel_tex_image_interp(__tex_image_byte4_005, x, y); break;
- case 6: r = kernel_tex_image_interp(__tex_image_byte4_006, x, y); break;
- case 7: r = kernel_tex_image_interp(__tex_image_byte4_007, x, y); break;
- case 8: r = kernel_tex_image_interp(__tex_image_byte4_008, x, y); break;
- case 9: r = kernel_tex_image_interp(__tex_image_byte4_009, x, y); break;
- case 10: r = kernel_tex_image_interp(__tex_image_byte4_010, x, y); break;
- case 11: r = kernel_tex_image_interp(__tex_image_byte4_011, x, y); break;
- case 12: r = kernel_tex_image_interp(__tex_image_byte4_012, x, y); break;
- case 13: r = kernel_tex_image_interp(__tex_image_byte4_013, x, y); break;
- case 14: r = kernel_tex_image_interp(__tex_image_byte4_014, x, y); break;
- case 15: r = kernel_tex_image_interp(__tex_image_byte4_015, x, y); break;
- case 16: r = kernel_tex_image_interp(__tex_image_byte4_016, x, y); break;
- case 17: r = kernel_tex_image_interp(__tex_image_byte4_017, x, y); break;
- case 18: r = kernel_tex_image_interp(__tex_image_byte4_018, x, y); break;
- case 19: r = kernel_tex_image_interp(__tex_image_byte4_019, x, y); break;
- case 20: r = kernel_tex_image_interp(__tex_image_byte4_020, x, y); break;
- case 21: r = kernel_tex_image_interp(__tex_image_byte4_021, x, y); break;
- case 22: r = kernel_tex_image_interp(__tex_image_byte4_022, x, y); break;
- case 23: r = kernel_tex_image_interp(__tex_image_byte4_023, x, y); break;
- case 24: r = kernel_tex_image_interp(__tex_image_byte4_024, x, y); break;
- case 25: r = kernel_tex_image_interp(__tex_image_byte4_025, x, y); break;
- case 26: r = kernel_tex_image_interp(__tex_image_byte4_026, x, y); break;
- case 27: r = kernel_tex_image_interp(__tex_image_byte4_027, x, y); break;
- case 28: r = kernel_tex_image_interp(__tex_image_byte4_028, x, y); break;
- case 29: r = kernel_tex_image_interp(__tex_image_byte4_029, x, y); break;
- case 30: r = kernel_tex_image_interp(__tex_image_byte4_030, x, y); break;
- case 31: r = kernel_tex_image_interp(__tex_image_byte4_031, x, y); break;
- case 32: r = kernel_tex_image_interp(__tex_image_byte4_032, x, y); break;
- case 33: r = kernel_tex_image_interp(__tex_image_byte4_033, x, y); break;
- case 34: r = kernel_tex_image_interp(__tex_image_byte4_034, x, y); break;
- case 35: r = kernel_tex_image_interp(__tex_image_byte4_035, x, y); break;
- case 36: r = kernel_tex_image_interp(__tex_image_byte4_036, x, y); break;
- case 37: r = kernel_tex_image_interp(__tex_image_byte4_037, x, y); break;
- case 38: r = kernel_tex_image_interp(__tex_image_byte4_038, x, y); break;
- case 39: r = kernel_tex_image_interp(__tex_image_byte4_039, x, y); break;
- case 40: r = kernel_tex_image_interp(__tex_image_byte4_040, x, y); break;
- case 41: r = kernel_tex_image_interp(__tex_image_byte4_041, x, y); break;
- case 42: r = kernel_tex_image_interp(__tex_image_byte4_042, x, y); break;
- case 43: r = kernel_tex_image_interp(__tex_image_byte4_043, x, y); break;
- case 44: r = kernel_tex_image_interp(__tex_image_byte4_044, x, y); break;
- case 45: r = kernel_tex_image_interp(__tex_image_byte4_045, x, y); break;
- case 46: r = kernel_tex_image_interp(__tex_image_byte4_046, x, y); break;
- case 47: r = kernel_tex_image_interp(__tex_image_byte4_047, x, y); break;
- case 48: r = kernel_tex_image_interp(__tex_image_byte4_048, x, y); break;
- case 49: r = kernel_tex_image_interp(__tex_image_byte4_049, x, y); break;
- case 50: r = kernel_tex_image_interp(__tex_image_byte4_050, x, y); break;
- case 51: r = kernel_tex_image_interp(__tex_image_byte4_051, x, y); break;
- case 52: r = kernel_tex_image_interp(__tex_image_byte4_052, x, y); break;
- case 53: r = kernel_tex_image_interp(__tex_image_byte4_053, x, y); break;
- case 54: r = kernel_tex_image_interp(__tex_image_byte4_054, x, y); break;
- case 55: r = kernel_tex_image_interp(__tex_image_byte4_055, x, y); break;
- case 56: r = kernel_tex_image_interp(__tex_image_byte4_056, x, y); break;
- case 57: r = kernel_tex_image_interp(__tex_image_byte4_057, x, y); break;
- case 58: r = kernel_tex_image_interp(__tex_image_byte4_058, x, y); break;
- case 59: r = kernel_tex_image_interp(__tex_image_byte4_059, x, y); break;
- case 60: r = kernel_tex_image_interp(__tex_image_byte4_060, x, y); break;
- case 61: r = kernel_tex_image_interp(__tex_image_byte4_061, x, y); break;
- case 62: r = kernel_tex_image_interp(__tex_image_byte4_062, x, y); break;
- case 63: r = kernel_tex_image_interp(__tex_image_byte4_063, x, y); break;
- case 64: r = kernel_tex_image_interp(__tex_image_byte4_064, x, y); break;
- case 65: r = kernel_tex_image_interp(__tex_image_byte4_065, x, y); break;
- case 66: r = kernel_tex_image_interp(__tex_image_byte4_066, x, y); break;
- case 67: r = kernel_tex_image_interp(__tex_image_byte4_067, x, y); break;
- case 68: r = kernel_tex_image_interp(__tex_image_byte4_068, x, y); break;
- case 69: r = kernel_tex_image_interp(__tex_image_byte4_069, x, y); break;
- case 70: r = kernel_tex_image_interp(__tex_image_byte4_070, x, y); break;
- case 71: r = kernel_tex_image_interp(__tex_image_byte4_071, x, y); break;
- case 72: r = kernel_tex_image_interp(__tex_image_byte4_072, x, y); break;
- case 73: r = kernel_tex_image_interp(__tex_image_byte4_073, x, y); break;
- case 74: r = kernel_tex_image_interp(__tex_image_byte4_074, x, y); break;
- case 75: r = kernel_tex_image_interp(__tex_image_byte4_075, x, y); break;
- case 76: r = kernel_tex_image_interp(__tex_image_byte4_076, x, y); break;
- case 77: r = kernel_tex_image_interp(__tex_image_byte4_077, x, y); break;
- case 78: r = kernel_tex_image_interp(__tex_image_byte4_078, x, y); break;
- case 79: r = kernel_tex_image_interp(__tex_image_byte4_079, x, y); break;
- case 80: r = kernel_tex_image_interp(__tex_image_byte4_080, x, y); break;
- case 81: r = kernel_tex_image_interp(__tex_image_byte4_081, x, y); break;
- case 82: r = kernel_tex_image_interp(__tex_image_byte4_082, x, y); break;
- case 83: r = kernel_tex_image_interp(__tex_image_byte4_083, x, y); break;
- case 84: r = kernel_tex_image_interp(__tex_image_byte4_084, x, y); break;
- case 85: r = kernel_tex_image_interp(__tex_image_byte4_085, x, y); break;
- case 86: r = kernel_tex_image_interp(__tex_image_byte4_086, x, y); break;
- case 87: r = kernel_tex_image_interp(__tex_image_byte4_087, x, y); break;
- case 88: r = kernel_tex_image_interp(__tex_image_byte4_088, x, y); break;
- case 89: r = kernel_tex_image_interp(__tex_image_byte4_089, x, y); break;
- default:
- kernel_assert(0);
- return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
- }
-# else
- CUtexObject tex = kernel_tex_fetch(__bindless_mapping, id);
- /* float4, byte4 and half4 */
- if(id < TEX_START_FLOAT_CUDA_KEPLER)
- r = kernel_tex_image_interp_float4(tex, x, y);
- /* float, byte and half */
- else {
- float f = kernel_tex_image_interp_float(tex, x, y);
- r = make_float4(f, f, f, 1.0f);
- }
-# endif
-#endif
-
-#ifdef __KERNEL_SSE2__
- float alpha = r.w;
+ const float alpha = r.w;
if(use_alpha && alpha != 1.0f && alpha != 0.0f) {
- r_ssef = r_ssef / ssef(alpha);
- if(id >= TEX_NUM_FLOAT4_IMAGES)
- r_ssef = min(r_ssef, ssef(1.0f));
- r.w = alpha;
- }
-
- if(srgb) {
- r_ssef = color_srgb_to_scene_linear(r_ssef);
- r.w = alpha;
- }
-#else
- if(use_alpha && r.w != 1.0f && r.w != 0.0f) {
- float invw = 1.0f/r.w;
- r.x *= invw;
- r.y *= invw;
- r.z *= invw;
-
- if(id >= TEX_NUM_FLOAT4_IMAGES) {
- r.x = min(r.x, 1.0f);
- r.y = min(r.y, 1.0f);
- r.z = min(r.z, 1.0f);
+ r /= alpha;
+ const int texture_type = kernel_tex_type(id);
+ if(texture_type == IMAGE_DATA_TYPE_BYTE4 ||
+ texture_type == IMAGE_DATA_TYPE_BYTE)
+ {
+ r = min(r, make_float4(1.0f, 1.0f, 1.0f, 1.0f));
}
+ r.w = alpha;
}
if(srgb) {
- r.x = color_srgb_to_scene_linear(r.x);
- r.y = color_srgb_to_scene_linear(r.y);
- r.z = color_srgb_to_scene_linear(r.z);
+ r = color_srgb_to_scene_linear_v4(r);
}
-#endif
return r;
}
@@ -238,12 +77,14 @@ ccl_device void svm_node_tex_image(KernelGlobals *kg, ShaderData *sd, float *sta
ccl_device void svm_node_tex_image_box(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
/* get object space normal */
- float3 N = ccl_fetch(sd, N);
+ float3 N = sd->N;
- N = ccl_fetch(sd, N);
+ N = sd->N;
object_inverse_normal_transform(kg, sd, &N);
/* project from direction vector to barycentric coordinates in triangles */
+ float3 signed_N = N;
+
N.x = fabsf(N.x);
N.y = fabsf(N.y);
N.z = fabsf(N.z);
@@ -313,12 +154,19 @@ ccl_device void svm_node_tex_image_box(KernelGlobals *kg, ShaderData *sd, float
float4 f = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
uint use_alpha = stack_valid(alpha_offset);
- if(weight.x > 0.0f)
- f += weight.x*svm_image_texture(kg, id, co.y, co.z, srgb, use_alpha);
- if(weight.y > 0.0f)
- f += weight.y*svm_image_texture(kg, id, co.x, co.z, srgb, use_alpha);
- if(weight.z > 0.0f)
- f += weight.z*svm_image_texture(kg, id, co.y, co.x, srgb, use_alpha);
+ /* Map so that no textures are flipped, rotation is somewhat arbitrary. */
+ if(weight.x > 0.0f) {
+ float2 uv = make_float2((signed_N.x < 0.0f)? 1.0f - co.y: co.y, co.z);
+ f += weight.x*svm_image_texture(kg, id, uv.x, uv.y, srgb, use_alpha);
+ }
+ if(weight.y > 0.0f) {
+ float2 uv = make_float2((signed_N.y > 0.0f)? 1.0f - co.x: co.x, co.z);
+ f += weight.y*svm_image_texture(kg, id, uv.x, uv.y, srgb, use_alpha);
+ }
+ if(weight.z > 0.0f) {
+ float2 uv = make_float2((signed_N.z > 0.0f)? 1.0f - co.y: co.y, co.x);
+ f += weight.z*svm_image_texture(kg, id, uv.x, uv.y, srgb, use_alpha);
+ }
if(stack_valid(out_offset))
stack_store_float3(stack, out_offset, make_float3(f.x, f.y, f.z));
@@ -337,8 +185,8 @@ ccl_device void svm_node_tex_environment(KernelGlobals *kg, ShaderData *sd, floa
float3 co = stack_load_float3(stack, co_offset);
float2 uv;
- co = normalize(co);
-
+ co = safe_normalize(co);
+
if(projection == 0)
uv = direction_to_equirectangular(co);
else
diff --git a/intern/cycles/kernel/svm/svm_light_path.h b/intern/cycles/kernel/svm/svm_light_path.h
index f35ea05048b..1492e358608 100644
--- a/intern/cycles/kernel/svm/svm_light_path.h
+++ b/intern/cycles/kernel/svm/svm_light_path.h
@@ -31,9 +31,11 @@ ccl_device void svm_node_light_path(ShaderData *sd, ccl_addr_space PathState *st
case NODE_LP_reflection: info = (path_flag & PATH_RAY_REFLECT)? 1.0f: 0.0f; break;
case NODE_LP_transmission: info = (path_flag & PATH_RAY_TRANSMIT)? 1.0f: 0.0f; break;
case NODE_LP_volume_scatter: info = (path_flag & PATH_RAY_VOLUME_SCATTER)? 1.0f: 0.0f; break;
- case NODE_LP_backfacing: info = (ccl_fetch(sd, flag) & SD_BACKFACING)? 1.0f: 0.0f; break;
- case NODE_LP_ray_length: info = ccl_fetch(sd, ray_length); break;
+ case NODE_LP_backfacing: info = (sd->flag & SD_BACKFACING)? 1.0f: 0.0f; break;
+ case NODE_LP_ray_length: info = sd->ray_length; break;
case NODE_LP_ray_depth: info = (float)state->bounce; break;
+ case NODE_LP_ray_diffuse: info = (float)state->diffuse_bounce; break;
+ case NODE_LP_ray_glossy: info = (float)state->glossy_bounce; break;
case NODE_LP_ray_transparent: info = (float)state->transparent_bounce; break;
case NODE_LP_ray_transmission: info = (float)state->transmission_bounce; break;
}
@@ -54,14 +56,14 @@ ccl_device void svm_node_light_falloff(ShaderData *sd, float *stack, uint4 node)
switch(type) {
case NODE_LIGHT_FALLOFF_QUADRATIC: break;
- case NODE_LIGHT_FALLOFF_LINEAR: strength *= ccl_fetch(sd, ray_length); break;
- case NODE_LIGHT_FALLOFF_CONSTANT: strength *= ccl_fetch(sd, ray_length)*ccl_fetch(sd, ray_length); break;
+ case NODE_LIGHT_FALLOFF_LINEAR: strength *= sd->ray_length; break;
+ case NODE_LIGHT_FALLOFF_CONSTANT: strength *= sd->ray_length*sd->ray_length; break;
}
float smooth = stack_load_float(stack, smooth_offset);
if(smooth > 0.0f) {
- float squared = ccl_fetch(sd, ray_length)*ccl_fetch(sd, ray_length);
+ float squared = sd->ray_length*sd->ray_length;
/* Distant lamps set the ray length to FLT_MAX, which causes squared to overflow. */
if(isfinite(squared)) {
strength *= squared/(smooth + squared);
diff --git a/intern/cycles/kernel/svm/svm_math_util.h b/intern/cycles/kernel/svm/svm_math_util.h
index 01547b60014..1ce7777aac3 100644
--- a/intern/cycles/kernel/svm/svm_math_util.h
+++ b/intern/cycles/kernel/svm/svm_math_util.h
@@ -100,66 +100,64 @@ ccl_device float svm_math(NodeMath type, float Fac1, float Fac2)
return Fac;
}
-ccl_device float3 svm_math_blackbody_color(float t) {
- /* Calculate color in range 800..12000 using an approximation
- * a/x+bx+c for R and G and ((at + b)t + c)t + d) for B
- * Max absolute error for RGB is (0.00095, 0.00077, 0.00057),
- * which is enough to get the same 8 bit/channel color.
- */
-
- const float rc[6][3] = {
- { 2.52432244e+03f, -1.06185848e-03f, 3.11067539e+00f },
- { 3.37763626e+03f, -4.34581697e-04f, 1.64843306e+00f },
- { 4.10671449e+03f, -8.61949938e-05f, 6.41423749e-01f },
- { 4.66849800e+03f, 2.85655028e-05f, 1.29075375e-01f },
- { 4.60124770e+03f, 2.89727618e-05f, 1.48001316e-01f },
- { 3.78765709e+03f, 9.36026367e-06f, 3.98995841e-01f },
- };
-
- const float gc[6][3] = {
- { -7.50343014e+02f, 3.15679613e-04f, 4.73464526e-01f },
- { -1.00402363e+03f, 1.29189794e-04f, 9.08181524e-01f },
- { -1.22075471e+03f, 2.56245413e-05f, 1.20753416e+00f },
- { -1.42546105e+03f, -4.01730887e-05f, 1.44002695e+00f },
- { -1.18134453e+03f, -2.18913373e-05f, 1.30656109e+00f },
- { -5.00279505e+02f, -4.59745390e-06f, 1.09090465e+00f },
- };
-
- const float bc[6][4] = {
- { 0.0f, 0.0f, 0.0f, 0.0f }, /* zeros should be optimized by compiler */
- { 0.0f, 0.0f, 0.0f, 0.0f },
- { 0.0f, 0.0f, 0.0f, 0.0f },
- { -2.02524603e-11f, 1.79435860e-07f, -2.60561875e-04f, -1.41761141e-02f },
- { -2.22463426e-13f, -1.55078698e-08f, 3.81675160e-04f, -7.30646033e-01f },
- { 6.72595954e-13f, -2.73059993e-08f, 4.24068546e-04f, -7.52204323e-01f },
- };
-
- if(t >= 12000.0f)
+/* Calculate color in range 800..12000 using an approximation
+ * a/x+bx+c for R and G and ((at + b)t + c)t + d) for B
+ * Max absolute error for RGB is (0.00095, 0.00077, 0.00057),
+ * which is enough to get the same 8 bit/channel color.
+ */
+
+ccl_static_constant float blackbody_table_r[6][3] = {
+ { 2.52432244e+03f, -1.06185848e-03f, 3.11067539e+00f },
+ { 3.37763626e+03f, -4.34581697e-04f, 1.64843306e+00f },
+ { 4.10671449e+03f, -8.61949938e-05f, 6.41423749e-01f },
+ { 4.66849800e+03f, 2.85655028e-05f, 1.29075375e-01f },
+ { 4.60124770e+03f, 2.89727618e-05f, 1.48001316e-01f },
+ { 3.78765709e+03f, 9.36026367e-06f, 3.98995841e-01f },
+};
+
+ccl_static_constant float blackbody_table_g[6][3] = {
+ { -7.50343014e+02f, 3.15679613e-04f, 4.73464526e-01f },
+ { -1.00402363e+03f, 1.29189794e-04f, 9.08181524e-01f },
+ { -1.22075471e+03f, 2.56245413e-05f, 1.20753416e+00f },
+ { -1.42546105e+03f, -4.01730887e-05f, 1.44002695e+00f },
+ { -1.18134453e+03f, -2.18913373e-05f, 1.30656109e+00f },
+ { -5.00279505e+02f, -4.59745390e-06f, 1.09090465e+00f },
+};
+
+ccl_static_constant float blackbody_table_b[6][4] = {
+ { 0.0f, 0.0f, 0.0f, 0.0f }, /* zeros should be optimized by compiler */
+ { 0.0f, 0.0f, 0.0f, 0.0f },
+ { 0.0f, 0.0f, 0.0f, 0.0f },
+ { -2.02524603e-11f, 1.79435860e-07f, -2.60561875e-04f, -1.41761141e-02f },
+ { -2.22463426e-13f, -1.55078698e-08f, 3.81675160e-04f, -7.30646033e-01f },
+ { 6.72595954e-13f, -2.73059993e-08f, 4.24068546e-04f, -7.52204323e-01f },
+};
+
+
+ccl_device float3 svm_math_blackbody_color(float t)
+{
+ if(t >= 12000.0f) {
return make_float3(0.826270103f, 0.994478524f, 1.56626022f);
+ }
+ else if(t < 965.0f) {
+ /* For 800 <= t < 965 color does not change in OSL implementation, so keep color the same */
+ return make_float3(4.70366907f, 0.0f, 0.0f);
+ }
+
+ int i = (t >= 6365.0f)? 5:
+ (t >= 3315.0f)? 4:
+ (t >= 1902.0f)? 3:
+ (t >= 1449.0f)? 2:
+ (t >= 1167.0f)? 1: 0;
+
+ ccl_constant float *r = blackbody_table_r[i];
+ ccl_constant float *g = blackbody_table_g[i];
+ ccl_constant float *b = blackbody_table_b[i];
- /* Define a macro to reduce stack usage for nvcc */
-#define MAKE_BB_RGB(i) make_float3(\
- rc[i][0] / t + rc[i][1] * t + rc[i][2],\
- gc[i][0] / t + gc[i][1] * t + gc[i][2],\
- ((bc[i][0] * t + bc[i][1]) * t + bc[i][2]) * t + bc[i][3])
-
- if(t >= 6365.0f)
- return MAKE_BB_RGB(5);
- if(t >= 3315.0f)
- return MAKE_BB_RGB(4);
- if(t >= 1902.0f)
- return MAKE_BB_RGB(3);
- if(t >= 1449.0f)
- return MAKE_BB_RGB(2);
- if(t >= 1167.0f)
- return MAKE_BB_RGB(1);
- if(t >= 965.0f)
- return MAKE_BB_RGB(0);
-
-#undef MAKE_BB_RGB
-
- /* For 800 <= t < 965 color does not change in OSL implementation, so keep color the same */
- return make_float3(4.70366907f, 0.0f, 0.0f);
+ const float t_inv = 1.0f / t;
+ return make_float3(r[0] * t_inv + r[1] * t + r[2],
+ g[0] * t_inv + g[1] * t + g[2],
+ ((b[0] * t + b[1]) * t + b[2]) * t + b[3]);
}
ccl_device_inline float3 svm_math_gamma_color(float3 color, float gamma)
diff --git a/intern/cycles/kernel/svm/svm_noisetex.h b/intern/cycles/kernel/svm/svm_noisetex.h
index 62ff38cf1c5..0347ab7b193 100644
--- a/intern/cycles/kernel/svm/svm_noisetex.h
+++ b/intern/cycles/kernel/svm/svm_noisetex.h
@@ -18,50 +18,42 @@ CCL_NAMESPACE_BEGIN
/* Noise */
-ccl_device_inline void svm_noise(float3 p, float detail, float distortion, float *fac, float3 *color)
-{
- int hard = 0;
-
- if(distortion != 0.0f) {
- float3 r, offset = make_float3(13.5f, 13.5f, 13.5f);
-
- r.x = noise(p + offset) * distortion;
- r.y = noise(p) * distortion;
- r.z = noise(p - offset) * distortion;
-
- p += r;
- }
-
- *fac = noise_turbulence(p, detail, hard);
- *color = make_float3(*fac,
- noise_turbulence(make_float3(p.y, p.x, p.z), detail, hard),
- noise_turbulence(make_float3(p.y, p.z, p.x), detail, hard));
-}
-
ccl_device void svm_node_tex_noise(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, int *offset)
{
uint co_offset, scale_offset, detail_offset, distortion_offset, fac_offset, color_offset;
decode_node_uchar4(node.y, &co_offset, &scale_offset, &detail_offset, &distortion_offset);
+ decode_node_uchar4(node.z, &color_offset, &fac_offset, NULL, NULL);
uint4 node2 = read_node(kg, offset);
float scale = stack_load_float_default(stack, scale_offset, node2.x);
float detail = stack_load_float_default(stack, detail_offset, node2.y);
float distortion = stack_load_float_default(stack, distortion_offset, node2.z);
- float3 co = stack_load_float3(stack, co_offset);
+ float3 p = stack_load_float3(stack, co_offset) * scale;
+ int hard = 0;
- float3 color;
- float f;
+ if(distortion != 0.0f) {
+ float3 r, offset = make_float3(13.5f, 13.5f, 13.5f);
+
+ r.x = noise(p + offset) * distortion;
+ r.y = noise(p) * distortion;
+ r.z = noise(p - offset) * distortion;
- svm_noise(co*scale, detail, distortion, &f, &color);
+ p += r;
+ }
- decode_node_uchar4(node.z, &color_offset, &fac_offset, NULL, NULL);
+ float f = noise_turbulence(p, detail, hard);
- if(stack_valid(fac_offset))
+ if(stack_valid(fac_offset)) {
stack_store_float(stack, fac_offset, f);
- if(stack_valid(color_offset))
+ }
+ if(stack_valid(color_offset)) {
+ float3 color = make_float3(f,
+ noise_turbulence(make_float3(p.y, p.x, p.z), detail, hard),
+ noise_turbulence(make_float3(p.y, p.z, p.x), detail, hard));
stack_store_float3(stack, color_offset, color);
+ }
}
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/svm/svm_tex_coord.h b/intern/cycles/kernel/svm/svm_tex_coord.h
index c0b01262212..c94327401f5 100644
--- a/intern/cycles/kernel/svm/svm_tex_coord.h
+++ b/intern/cycles/kernel/svm/svm_tex_coord.h
@@ -31,9 +31,9 @@ ccl_device void svm_node_tex_coord(KernelGlobals *kg,
switch(type) {
case NODE_TEXCO_OBJECT: {
- data = ccl_fetch(sd, P);
+ data = sd->P;
if(node.w == 0) {
- if(ccl_fetch(sd, object) != OBJECT_NONE) {
+ if(sd->object != OBJECT_NONE) {
object_inverse_position_transform(kg, sd, &data);
}
}
@@ -48,47 +48,47 @@ ccl_device void svm_node_tex_coord(KernelGlobals *kg,
break;
}
case NODE_TEXCO_NORMAL: {
- data = ccl_fetch(sd, N);
+ data = sd->N;
object_inverse_normal_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
- if(ccl_fetch(sd, object) != OBJECT_NONE)
- data = transform_point(&tfm, ccl_fetch(sd, P));
+ if(sd->object != OBJECT_NONE)
+ data = transform_point(&tfm, sd->P);
else
- data = transform_point(&tfm, ccl_fetch(sd, P) + camera_position(kg));
+ data = transform_point(&tfm, sd->P + camera_position(kg));
break;
}
case NODE_TEXCO_WINDOW: {
- if((path_flag & PATH_RAY_CAMERA) && ccl_fetch(sd, object) == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
- data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, ray_P));
+ if((path_flag & PATH_RAY_CAMERA) && sd->object == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
+ data = camera_world_to_ndc(kg, sd, sd->ray_P);
else
- data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, P));
+ data = camera_world_to_ndc(kg, sd, sd->P);
data.z = 0.0f;
break;
}
case NODE_TEXCO_REFLECTION: {
- if(ccl_fetch(sd, object) != OBJECT_NONE)
- data = 2.0f*dot(ccl_fetch(sd, N), ccl_fetch(sd, I))*ccl_fetch(sd, N) - ccl_fetch(sd, I);
+ if(sd->object != OBJECT_NONE)
+ data = 2.0f*dot(sd->N, sd->I)*sd->N - sd->I;
else
- data = ccl_fetch(sd, I);
+ data = sd->I;
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
- data = object_dupli_generated(kg, ccl_fetch(sd, object));
+ data = object_dupli_generated(kg, sd->object);
break;
}
case NODE_TEXCO_DUPLI_UV: {
- data = object_dupli_uv(kg, ccl_fetch(sd, object));
+ data = object_dupli_uv(kg, sd->object);
break;
}
case NODE_TEXCO_VOLUME_GENERATED: {
- data = ccl_fetch(sd, P);
+ data = sd->P;
#ifdef __VOLUME__
- if(ccl_fetch(sd, object) != OBJECT_NONE)
+ if(sd->object != OBJECT_NONE)
data = volume_normalized_position(kg, sd, data);
#endif
break;
@@ -112,9 +112,9 @@ ccl_device void svm_node_tex_coord_bump_dx(KernelGlobals *kg,
switch(type) {
case NODE_TEXCO_OBJECT: {
- data = ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx;
+ data = sd->P + sd->dP.dx;
if(node.w == 0) {
- if(ccl_fetch(sd, object) != OBJECT_NONE) {
+ if(sd->object != OBJECT_NONE) {
object_inverse_position_transform(kg, sd, &data);
}
}
@@ -129,47 +129,47 @@ ccl_device void svm_node_tex_coord_bump_dx(KernelGlobals *kg,
break;
}
case NODE_TEXCO_NORMAL: {
- data = ccl_fetch(sd, N);
+ data = sd->N;
object_inverse_normal_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
- if(ccl_fetch(sd, object) != OBJECT_NONE)
- data = transform_point(&tfm, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx);
+ if(sd->object != OBJECT_NONE)
+ data = transform_point(&tfm, sd->P + sd->dP.dx);
else
- data = transform_point(&tfm, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx + camera_position(kg));
+ data = transform_point(&tfm, sd->P + sd->dP.dx + camera_position(kg));
break;
}
case NODE_TEXCO_WINDOW: {
- if((path_flag & PATH_RAY_CAMERA) && ccl_fetch(sd, object) == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
- data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, ray_P) + ccl_fetch(sd, ray_dP).dx);
+ if((path_flag & PATH_RAY_CAMERA) && sd->object == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
+ data = camera_world_to_ndc(kg, sd, sd->ray_P + sd->ray_dP.dx);
else
- data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx);
+ data = camera_world_to_ndc(kg, sd, sd->P + sd->dP.dx);
data.z = 0.0f;
break;
}
case NODE_TEXCO_REFLECTION: {
- if(ccl_fetch(sd, object) != OBJECT_NONE)
- data = 2.0f*dot(ccl_fetch(sd, N), ccl_fetch(sd, I))*ccl_fetch(sd, N) - ccl_fetch(sd, I);
+ if(sd->object != OBJECT_NONE)
+ data = 2.0f*dot(sd->N, sd->I)*sd->N - sd->I;
else
- data = ccl_fetch(sd, I);
+ data = sd->I;
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
- data = object_dupli_generated(kg, ccl_fetch(sd, object));
+ data = object_dupli_generated(kg, sd->object);
break;
}
case NODE_TEXCO_DUPLI_UV: {
- data = object_dupli_uv(kg, ccl_fetch(sd, object));
+ data = object_dupli_uv(kg, sd->object);
break;
}
case NODE_TEXCO_VOLUME_GENERATED: {
- data = ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx;
+ data = sd->P + sd->dP.dx;
#ifdef __VOLUME__
- if(ccl_fetch(sd, object) != OBJECT_NONE)
+ if(sd->object != OBJECT_NONE)
data = volume_normalized_position(kg, sd, data);
#endif
break;
@@ -196,9 +196,9 @@ ccl_device void svm_node_tex_coord_bump_dy(KernelGlobals *kg,
switch(type) {
case NODE_TEXCO_OBJECT: {
- data = ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy;
+ data = sd->P + sd->dP.dy;
if(node.w == 0) {
- if(ccl_fetch(sd, object) != OBJECT_NONE) {
+ if(sd->object != OBJECT_NONE) {
object_inverse_position_transform(kg, sd, &data);
}
}
@@ -213,47 +213,47 @@ ccl_device void svm_node_tex_coord_bump_dy(KernelGlobals *kg,
break;
}
case NODE_TEXCO_NORMAL: {
- data = ccl_fetch(sd, N);
+ data = sd->N;
object_inverse_normal_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
- if(ccl_fetch(sd, object) != OBJECT_NONE)
- data = transform_point(&tfm, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy);
+ if(sd->object != OBJECT_NONE)
+ data = transform_point(&tfm, sd->P + sd->dP.dy);
else
- data = transform_point(&tfm, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy + camera_position(kg));
+ data = transform_point(&tfm, sd->P + sd->dP.dy + camera_position(kg));
break;
}
case NODE_TEXCO_WINDOW: {
- if((path_flag & PATH_RAY_CAMERA) && ccl_fetch(sd, object) == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
- data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, ray_P) + ccl_fetch(sd, ray_dP).dy);
+ if((path_flag & PATH_RAY_CAMERA) && sd->object == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
+ data = camera_world_to_ndc(kg, sd, sd->ray_P + sd->ray_dP.dy);
else
- data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy);
+ data = camera_world_to_ndc(kg, sd, sd->P + sd->dP.dy);
data.z = 0.0f;
break;
}
case NODE_TEXCO_REFLECTION: {
- if(ccl_fetch(sd, object) != OBJECT_NONE)
- data = 2.0f*dot(ccl_fetch(sd, N), ccl_fetch(sd, I))*ccl_fetch(sd, N) - ccl_fetch(sd, I);
+ if(sd->object != OBJECT_NONE)
+ data = 2.0f*dot(sd->N, sd->I)*sd->N - sd->I;
else
- data = ccl_fetch(sd, I);
+ data = sd->I;
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
- data = object_dupli_generated(kg, ccl_fetch(sd, object));
+ data = object_dupli_generated(kg, sd->object);
break;
}
case NODE_TEXCO_DUPLI_UV: {
- data = object_dupli_uv(kg, ccl_fetch(sd, object));
+ data = object_dupli_uv(kg, sd->object);
break;
}
case NODE_TEXCO_VOLUME_GENERATED: {
- data = ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy;
+ data = sd->P + sd->dP.dy;
#ifdef __VOLUME__
- if(ccl_fetch(sd, object) != OBJECT_NONE)
+ if(sd->object != OBJECT_NONE)
data = volume_normalized_position(kg, sd, data);
#endif
break;
@@ -274,12 +274,12 @@ ccl_device void svm_node_normal_map(KernelGlobals *kg, ShaderData *sd, float *st
float3 color = stack_load_float3(stack, color_offset);
color = 2.0f*make_float3(color.x - 0.5f, color.y - 0.5f, color.z - 0.5f);
- bool is_backfacing = (ccl_fetch(sd, flag) & SD_BACKFACING) != 0;
+ bool is_backfacing = (sd->flag & SD_BACKFACING) != 0;
float3 N;
if(space == NODE_NORMAL_MAP_TANGENT) {
/* tangent space */
- if(ccl_fetch(sd, object) == OBJECT_NONE) {
+ if(sd->object == OBJECT_NONE) {
stack_store_float3(stack, normal_offset, make_float3(0.0f, 0.0f, 0.0f));
return;
}
@@ -299,11 +299,11 @@ ccl_device void svm_node_normal_map(KernelGlobals *kg, ShaderData *sd, float *st
float sign = primitive_attribute_float(kg, sd, attr_sign, NULL, NULL);
float3 normal;
- if(ccl_fetch(sd, shader) & SHADER_SMOOTH_NORMAL) {
+ if(sd->shader & SHADER_SMOOTH_NORMAL) {
normal = primitive_attribute_float3(kg, sd, attr_normal, NULL, NULL);
}
else {
- normal = ccl_fetch(sd, Ng);
+ normal = sd->Ng;
/* the normal is already inverted, which is too soon for the math here */
if(is_backfacing) {
@@ -345,11 +345,11 @@ ccl_device void svm_node_normal_map(KernelGlobals *kg, ShaderData *sd, float *st
if(strength != 1.0f) {
strength = max(strength, 0.0f);
- N = safe_normalize(ccl_fetch(sd, N) + (N - ccl_fetch(sd, N))*strength);
+ N = safe_normalize(sd->N + (N - sd->N)*strength);
}
if(is_zero(N)) {
- N = ccl_fetch(sd, N);
+ N = sd->N;
}
stack_store_float3(stack, normal_offset, N);
@@ -377,7 +377,7 @@ ccl_device void svm_node_tangent(KernelGlobals *kg, ShaderData *sd, float *stack
float3 generated;
if(desc.offset == ATTR_STD_NOT_FOUND)
- generated = ccl_fetch(sd, P);
+ generated = sd->P;
else
generated = primitive_attribute_float3(kg, sd, desc, NULL, NULL);
@@ -390,7 +390,7 @@ ccl_device void svm_node_tangent(KernelGlobals *kg, ShaderData *sd, float *stack
}
object_normal_transform(kg, sd, &tangent);
- tangent = cross(ccl_fetch(sd, N), normalize(cross(tangent, ccl_fetch(sd, N))));
+ tangent = cross(sd->N, normalize(cross(tangent, sd->N)));
stack_store_float3(stack, tangent_offset, tangent);
}
diff --git a/intern/cycles/kernel/svm/svm_types.h b/intern/cycles/kernel/svm/svm_types.h
index 5adf7d34f7f..d859cae1708 100644
--- a/intern/cycles/kernel/svm/svm_types.h
+++ b/intern/cycles/kernel/svm/svm_types.h
@@ -188,6 +188,8 @@ typedef enum NodeLightPath {
NODE_LP_backfacing,
NODE_LP_ray_length,
NODE_LP_ray_depth,
+ NODE_LP_ray_diffuse,
+ NODE_LP_ray_glossy,
NODE_LP_ray_transparent,
NODE_LP_ray_transmission,
} NodeLightPath;
@@ -395,17 +397,23 @@ typedef enum ClosureType {
CLOSURE_BSDF_DIFFUSE_ID,
CLOSURE_BSDF_OREN_NAYAR_ID,
CLOSURE_BSDF_DIFFUSE_RAMP_ID,
+ CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID,
+ CLOSURE_BSDF_PRINCIPLED_SHEEN_ID,
CLOSURE_BSDF_DIFFUSE_TOON_ID,
/* Glossy */
- CLOSURE_BSDF_GLOSSY_ID,
CLOSURE_BSDF_REFLECTION_ID,
CLOSURE_BSDF_MICROFACET_GGX_ID,
+ CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID,
+ CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID,
CLOSURE_BSDF_MICROFACET_BECKMANN_ID,
CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID,
+ CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID,
CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID,
CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID,
+ CLOSURE_BSDF_MICROFACET_GGX_ANISO_FRESNEL_ID,
CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID,
+ CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_FRESNEL_ID,
CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID,
CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID,
CLOSURE_BSDF_ASHIKHMIN_VELVET_ID,
@@ -414,24 +422,26 @@ typedef enum ClosureType {
CLOSURE_BSDF_HAIR_REFLECTION_ID,
/* Transmission */
- CLOSURE_BSDF_TRANSMISSION_ID,
CLOSURE_BSDF_TRANSLUCENT_ID,
CLOSURE_BSDF_REFRACTION_ID,
CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID,
CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID,
+ CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID,
CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID,
CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID,
- CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID,
+ CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID,
CLOSURE_BSDF_SHARP_GLASS_ID,
CLOSURE_BSDF_HAIR_TRANSMISSION_ID,
/* Special cases */
CLOSURE_BSDF_BSSRDF_ID,
+ CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID,
CLOSURE_BSDF_TRANSPARENT_ID,
/* BSSRDF */
CLOSURE_BSSRDF_CUBIC_ID,
CLOSURE_BSSRDF_GAUSSIAN_ID,
+ CLOSURE_BSSRDF_PRINCIPLED_ID,
CLOSURE_BSSRDF_BURLEY_ID,
/* Other */
@@ -445,19 +455,24 @@ typedef enum ClosureType {
CLOSURE_VOLUME_ABSORPTION_ID,
CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID,
+ CLOSURE_BSDF_PRINCIPLED_ID,
+
NBUILTIN_CLOSURES
} ClosureType;
/* watch this, being lazy with memory usage */
#define CLOSURE_IS_BSDF(type) (type <= CLOSURE_BSDF_TRANSPARENT_ID)
#define CLOSURE_IS_BSDF_DIFFUSE(type) (type >= CLOSURE_BSDF_DIFFUSE_ID && type <= CLOSURE_BSDF_DIFFUSE_TOON_ID)
-#define CLOSURE_IS_BSDF_GLOSSY(type) (type >= CLOSURE_BSDF_GLOSSY_ID && type <= CLOSURE_BSDF_HAIR_REFLECTION_ID)
-#define CLOSURE_IS_BSDF_TRANSMISSION(type) (type >= CLOSURE_BSDF_TRANSMISSION_ID && type <= CLOSURE_BSDF_HAIR_TRANSMISSION_ID)
-#define CLOSURE_IS_BSDF_BSSRDF(type) (type == CLOSURE_BSDF_BSSRDF_ID)
+#define CLOSURE_IS_BSDF_GLOSSY(type) (type >= CLOSURE_BSDF_REFLECTION_ID && type <= CLOSURE_BSDF_HAIR_REFLECTION_ID)
+#define CLOSURE_IS_BSDF_TRANSMISSION(type) (type >= CLOSURE_BSDF_TRANSLUCENT_ID && type <= CLOSURE_BSDF_HAIR_TRANSMISSION_ID)
+#define CLOSURE_IS_BSDF_BSSRDF(type) (type == CLOSURE_BSDF_BSSRDF_ID || type == CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID)
+#define CLOSURE_IS_BSDF_TRANSPARENT(type) (type == CLOSURE_BSDF_TRANSPARENT_ID)
#define CLOSURE_IS_BSDF_ANISOTROPIC(type) (type >= CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID && type <= CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID)
#define CLOSURE_IS_BSDF_MULTISCATTER(type) (type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID ||\
type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID || \
- type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID)
+ type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID)
+#define CLOSURE_IS_BSDF_MICROFACET(type) ((type >= CLOSURE_BSDF_REFLECTION_ID && type <= CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID) ||\
+ (type >= CLOSURE_BSDF_REFRACTION_ID && type <= CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID))
#define CLOSURE_IS_BSDF_OR_BSSRDF(type) (type <= CLOSURE_BSSRDF_BURLEY_ID)
#define CLOSURE_IS_BSSRDF(type) (type >= CLOSURE_BSSRDF_CUBIC_ID && type <= CLOSURE_BSSRDF_BURLEY_ID)
#define CLOSURE_IS_VOLUME(type) (type >= CLOSURE_VOLUME_ID && type <= CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID)
@@ -466,7 +481,8 @@ typedef enum ClosureType {
#define CLOSURE_IS_BACKGROUND(type) (type == CLOSURE_BACKGROUND_ID)
#define CLOSURE_IS_AMBIENT_OCCLUSION(type) (type == CLOSURE_AMBIENT_OCCLUSION_ID)
#define CLOSURE_IS_PHASE(type) (type == CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID)
-#define CLOSURE_IS_GLASS(type) (type >= CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID && type <= CLOSURE_BSDF_SHARP_GLASS_ID)
+#define CLOSURE_IS_GLASS(type) (type >= CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID && type <= CLOSURE_BSDF_SHARP_GLASS_ID)
+#define CLOSURE_IS_PRINCIPLED(type) (type == CLOSURE_BSDF_PRINCIPLED_ID)
#define CLOSURE_WEIGHT_CUTOFF 1e-5f
diff --git a/intern/cycles/kernel/svm/svm_vector_transform.h b/intern/cycles/kernel/svm/svm_vector_transform.h
index 4c32130d06d..4e92f27acdb 100644
--- a/intern/cycles/kernel/svm/svm_vector_transform.h
+++ b/intern/cycles/kernel/svm/svm_vector_transform.h
@@ -33,7 +33,7 @@ ccl_device void svm_node_vector_transform(KernelGlobals *kg, ShaderData *sd, flo
NodeVectorTransformConvertSpace to = (NodeVectorTransformConvertSpace)ito;
Transform tfm;
- bool is_object = (ccl_fetch(sd, object) != OBJECT_NONE);
+ bool is_object = (sd->object != OBJECT_NONE);
bool is_direction = (type == NODE_VECTOR_TRANSFORM_TYPE_VECTOR || type == NODE_VECTOR_TRANSFORM_TYPE_NORMAL);
/* From world */
diff --git a/intern/cycles/kernel/svm/svm_voxel.h b/intern/cycles/kernel/svm/svm_voxel.h
index a8b3604a8a7..d967516a5c9 100644
--- a/intern/cycles/kernel/svm/svm_voxel.h
+++ b/intern/cycles/kernel/svm/svm_voxel.h
@@ -42,24 +42,8 @@ ccl_device void svm_node_tex_voxel(KernelGlobals *kg,
tfm.w = read_node_float(kg, offset);
co = transform_point(&tfm, co);
}
- float4 r;
-# if defined(__KERNEL_CUDA__)
-# if __CUDA_ARCH__ >= 300
- CUtexObject tex = kernel_tex_fetch(__bindless_mapping, id);
- if(id < 2048) /* TODO(dingto): Make this a variable */
- r = kernel_tex_image_interp_3d_float4(tex, co.x, co.y, co.z);
- else {
- float f = kernel_tex_image_interp_3d_float(tex, co.x, co.y, co.z);
- r = make_float4(f, f, f, 1.0f);
- }
-# else /* __CUDA_ARCH__ >= 300 */
- r = volume_image_texture_3d(id, co.x, co.y, co.z);
-# endif
-# elif defined(__KERNEL_OPENCL__)
- r = kernel_tex_image_interp_3d(kg, id, co.x, co.y, co.z);
-# else
- r = kernel_tex_image_interp_3d(id, co.x, co.y, co.z);
-# endif /* __KERNEL_CUDA__ */
+
+ float4 r = kernel_tex_image_interp_3d(kg, id, co.x, co.y, co.z, INTERPOLATION_NONE);
#else
float4 r = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
#endif
diff --git a/intern/cycles/kernel/svm/svm_wavelength.h b/intern/cycles/kernel/svm/svm_wavelength.h
index 57030f3979d..855b356b397 100644
--- a/intern/cycles/kernel/svm/svm_wavelength.h
+++ b/intern/cycles/kernel/svm/svm_wavelength.h
@@ -34,44 +34,44 @@ CCL_NAMESPACE_BEGIN
/* Wavelength to RGB */
+// CIE colour matching functions xBar, yBar, and zBar for
+// wavelengths from 380 through 780 nanometers, every 5
+// nanometers. For a wavelength lambda in this range:
+// cie_colour_match[(lambda - 380) / 5][0] = xBar
+// cie_colour_match[(lambda - 380) / 5][1] = yBar
+// cie_colour_match[(lambda - 380) / 5][2] = zBar
+ccl_static_constant float cie_colour_match[81][3] = {
+ {0.0014f,0.0000f,0.0065f}, {0.0022f,0.0001f,0.0105f}, {0.0042f,0.0001f,0.0201f},
+ {0.0076f,0.0002f,0.0362f}, {0.0143f,0.0004f,0.0679f}, {0.0232f,0.0006f,0.1102f},
+ {0.0435f,0.0012f,0.2074f}, {0.0776f,0.0022f,0.3713f}, {0.1344f,0.0040f,0.6456f},
+ {0.2148f,0.0073f,1.0391f}, {0.2839f,0.0116f,1.3856f}, {0.3285f,0.0168f,1.6230f},
+ {0.3483f,0.0230f,1.7471f}, {0.3481f,0.0298f,1.7826f}, {0.3362f,0.0380f,1.7721f},
+ {0.3187f,0.0480f,1.7441f}, {0.2908f,0.0600f,1.6692f}, {0.2511f,0.0739f,1.5281f},
+ {0.1954f,0.0910f,1.2876f}, {0.1421f,0.1126f,1.0419f}, {0.0956f,0.1390f,0.8130f},
+ {0.0580f,0.1693f,0.6162f}, {0.0320f,0.2080f,0.4652f}, {0.0147f,0.2586f,0.3533f},
+ {0.0049f,0.3230f,0.2720f}, {0.0024f,0.4073f,0.2123f}, {0.0093f,0.5030f,0.1582f},
+ {0.0291f,0.6082f,0.1117f}, {0.0633f,0.7100f,0.0782f}, {0.1096f,0.7932f,0.0573f},
+ {0.1655f,0.8620f,0.0422f}, {0.2257f,0.9149f,0.0298f}, {0.2904f,0.9540f,0.0203f},
+ {0.3597f,0.9803f,0.0134f}, {0.4334f,0.9950f,0.0087f}, {0.5121f,1.0000f,0.0057f},
+ {0.5945f,0.9950f,0.0039f}, {0.6784f,0.9786f,0.0027f}, {0.7621f,0.9520f,0.0021f},
+ {0.8425f,0.9154f,0.0018f}, {0.9163f,0.8700f,0.0017f}, {0.9786f,0.8163f,0.0014f},
+ {1.0263f,0.7570f,0.0011f}, {1.0567f,0.6949f,0.0010f}, {1.0622f,0.6310f,0.0008f},
+ {1.0456f,0.5668f,0.0006f}, {1.0026f,0.5030f,0.0003f}, {0.9384f,0.4412f,0.0002f},
+ {0.8544f,0.3810f,0.0002f}, {0.7514f,0.3210f,0.0001f}, {0.6424f,0.2650f,0.0000f},
+ {0.5419f,0.2170f,0.0000f}, {0.4479f,0.1750f,0.0000f}, {0.3608f,0.1382f,0.0000f},
+ {0.2835f,0.1070f,0.0000f}, {0.2187f,0.0816f,0.0000f}, {0.1649f,0.0610f,0.0000f},
+ {0.1212f,0.0446f,0.0000f}, {0.0874f,0.0320f,0.0000f}, {0.0636f,0.0232f,0.0000f},
+ {0.0468f,0.0170f,0.0000f}, {0.0329f,0.0119f,0.0000f}, {0.0227f,0.0082f,0.0000f},
+ {0.0158f,0.0057f,0.0000f}, {0.0114f,0.0041f,0.0000f}, {0.0081f,0.0029f,0.0000f},
+ {0.0058f,0.0021f,0.0000f}, {0.0041f,0.0015f,0.0000f}, {0.0029f,0.0010f,0.0000f},
+ {0.0020f,0.0007f,0.0000f}, {0.0014f,0.0005f,0.0000f}, {0.0010f,0.0004f,0.0000f},
+ {0.0007f,0.0002f,0.0000f}, {0.0005f,0.0002f,0.0000f}, {0.0003f,0.0001f,0.0000f},
+ {0.0002f,0.0001f,0.0000f}, {0.0002f,0.0001f,0.0000f}, {0.0001f,0.0000f,0.0000f},
+ {0.0001f,0.0000f,0.0000f}, {0.0001f,0.0000f,0.0000f}, {0.0000f,0.0000f,0.0000f}
+};
+
ccl_device void svm_node_wavelength(ShaderData *sd, float *stack, uint wavelength, uint color_out)
{
- // CIE colour matching functions xBar, yBar, and zBar for
- // wavelengths from 380 through 780 nanometers, every 5
- // nanometers. For a wavelength lambda in this range:
- // cie_colour_match[(lambda - 380) / 5][0] = xBar
- // cie_colour_match[(lambda - 380) / 5][1] = yBar
- // cie_colour_match[(lambda - 380) / 5][2] = zBar
- const float cie_colour_match[81][3] = {
- {0.0014f,0.0000f,0.0065f}, {0.0022f,0.0001f,0.0105f}, {0.0042f,0.0001f,0.0201f},
- {0.0076f,0.0002f,0.0362f}, {0.0143f,0.0004f,0.0679f}, {0.0232f,0.0006f,0.1102f},
- {0.0435f,0.0012f,0.2074f}, {0.0776f,0.0022f,0.3713f}, {0.1344f,0.0040f,0.6456f},
- {0.2148f,0.0073f,1.0391f}, {0.2839f,0.0116f,1.3856f}, {0.3285f,0.0168f,1.6230f},
- {0.3483f,0.0230f,1.7471f}, {0.3481f,0.0298f,1.7826f}, {0.3362f,0.0380f,1.7721f},
- {0.3187f,0.0480f,1.7441f}, {0.2908f,0.0600f,1.6692f}, {0.2511f,0.0739f,1.5281f},
- {0.1954f,0.0910f,1.2876f}, {0.1421f,0.1126f,1.0419f}, {0.0956f,0.1390f,0.8130f},
- {0.0580f,0.1693f,0.6162f}, {0.0320f,0.2080f,0.4652f}, {0.0147f,0.2586f,0.3533f},
- {0.0049f,0.3230f,0.2720f}, {0.0024f,0.4073f,0.2123f}, {0.0093f,0.5030f,0.1582f},
- {0.0291f,0.6082f,0.1117f}, {0.0633f,0.7100f,0.0782f}, {0.1096f,0.7932f,0.0573f},
- {0.1655f,0.8620f,0.0422f}, {0.2257f,0.9149f,0.0298f}, {0.2904f,0.9540f,0.0203f},
- {0.3597f,0.9803f,0.0134f}, {0.4334f,0.9950f,0.0087f}, {0.5121f,1.0000f,0.0057f},
- {0.5945f,0.9950f,0.0039f}, {0.6784f,0.9786f,0.0027f}, {0.7621f,0.9520f,0.0021f},
- {0.8425f,0.9154f,0.0018f}, {0.9163f,0.8700f,0.0017f}, {0.9786f,0.8163f,0.0014f},
- {1.0263f,0.7570f,0.0011f}, {1.0567f,0.6949f,0.0010f}, {1.0622f,0.6310f,0.0008f},
- {1.0456f,0.5668f,0.0006f}, {1.0026f,0.5030f,0.0003f}, {0.9384f,0.4412f,0.0002f},
- {0.8544f,0.3810f,0.0002f}, {0.7514f,0.3210f,0.0001f}, {0.6424f,0.2650f,0.0000f},
- {0.5419f,0.2170f,0.0000f}, {0.4479f,0.1750f,0.0000f}, {0.3608f,0.1382f,0.0000f},
- {0.2835f,0.1070f,0.0000f}, {0.2187f,0.0816f,0.0000f}, {0.1649f,0.0610f,0.0000f},
- {0.1212f,0.0446f,0.0000f}, {0.0874f,0.0320f,0.0000f}, {0.0636f,0.0232f,0.0000f},
- {0.0468f,0.0170f,0.0000f}, {0.0329f,0.0119f,0.0000f}, {0.0227f,0.0082f,0.0000f},
- {0.0158f,0.0057f,0.0000f}, {0.0114f,0.0041f,0.0000f}, {0.0081f,0.0029f,0.0000f},
- {0.0058f,0.0021f,0.0000f}, {0.0041f,0.0015f,0.0000f}, {0.0029f,0.0010f,0.0000f},
- {0.0020f,0.0007f,0.0000f}, {0.0014f,0.0005f,0.0000f}, {0.0010f,0.0004f,0.0000f},
- {0.0007f,0.0002f,0.0000f}, {0.0005f,0.0002f,0.0000f}, {0.0003f,0.0001f,0.0000f},
- {0.0002f,0.0001f,0.0000f}, {0.0002f,0.0001f,0.0000f}, {0.0001f,0.0000f,0.0000f},
- {0.0001f,0.0000f,0.0000f}, {0.0001f,0.0000f,0.0000f}, {0.0000f,0.0000f,0.0000f}
- };
-
float lambda_nm = stack_load_float(stack, wavelength);
float ii = (lambda_nm-380.0f) * (1.0f/5.0f); // scaled 0..80
int i = float_to_int(ii);
@@ -82,7 +82,7 @@ ccl_device void svm_node_wavelength(ShaderData *sd, float *stack, uint wavelengt
}
else {
ii -= i;
- const float *c = cie_colour_match[i];
+ ccl_constant float *c = cie_colour_match[i];
color = interp(make_float3(c[0], c[1], c[2]), make_float3(c[3], c[4], c[5]), ii);
}
@@ -92,8 +92,7 @@ ccl_device void svm_node_wavelength(ShaderData *sd, float *stack, uint wavelengt
/* Clamp to zero if values are smaller */
color = max(color, make_float3(0.0f, 0.0f, 0.0f));
- if(stack_valid(color_out))
- stack_store_float3(stack, color_out, color);
+ stack_store_float3(stack, color_out, color);
}
CCL_NAMESPACE_END
diff --git a/intern/cycles/kernel/svm/svm_wireframe.h b/intern/cycles/kernel/svm/svm_wireframe.h
index 6eed9bc1a99..3c6353c8001 100644
--- a/intern/cycles/kernel/svm/svm_wireframe.h
+++ b/intern/cycles/kernel/svm/svm_wireframe.h
@@ -41,9 +41,9 @@ ccl_device_inline float wireframe(KernelGlobals *kg,
float3 *P)
{
#ifdef __HAIR__
- if(ccl_fetch(sd, prim) != PRIM_NONE && ccl_fetch(sd, type) & PRIMITIVE_ALL_TRIANGLE)
+ if(sd->prim != PRIM_NONE && sd->type & PRIMITIVE_ALL_TRIANGLE)
#else
- if(ccl_fetch(sd, prim) != PRIM_NONE)
+ if(sd->prim != PRIM_NONE)
#endif
{
float3 Co[3];
@@ -52,12 +52,12 @@ ccl_device_inline float wireframe(KernelGlobals *kg,
/* Triangles */
int np = 3;
- if(ccl_fetch(sd, type) & PRIMITIVE_TRIANGLE)
- triangle_vertices(kg, ccl_fetch(sd, prim), Co);
+ if(sd->type & PRIMITIVE_TRIANGLE)
+ triangle_vertices(kg, sd->prim, Co);
else
- motion_triangle_vertices(kg, ccl_fetch(sd, object), ccl_fetch(sd, prim), ccl_fetch(sd, time), Co);
+ motion_triangle_vertices(kg, sd->object, sd->prim, sd->time, Co);
- if(!(ccl_fetch(sd, flag) & SD_TRANSFORM_APPLIED)) {
+ if(!(sd->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
object_position_transform(kg, sd, &Co[0]);
object_position_transform(kg, sd, &Co[1]);
object_position_transform(kg, sd, &Co[2]);
@@ -66,8 +66,8 @@ ccl_device_inline float wireframe(KernelGlobals *kg,
if(pixel_size) {
// Project the derivatives of P to the viewing plane defined
// by I so we have a measure of how big is a pixel at this point
- float pixelwidth_x = len(ccl_fetch(sd, dP).dx - dot(ccl_fetch(sd, dP).dx, ccl_fetch(sd, I)) * ccl_fetch(sd, I));
- float pixelwidth_y = len(ccl_fetch(sd, dP).dy - dot(ccl_fetch(sd, dP).dy, ccl_fetch(sd, I)) * ccl_fetch(sd, I));
+ float pixelwidth_x = len(sd->dP.dx - dot(sd->dP.dx, sd->I) * sd->I);
+ float pixelwidth_y = len(sd->dP.dy - dot(sd->dP.dy, sd->I) * sd->I);
// Take the average of both axis' length
pixelwidth = (pixelwidth_x + pixelwidth_y) * 0.5f;
}
@@ -113,20 +113,20 @@ ccl_device void svm_node_wireframe(KernelGlobals *kg,
* With OpenCL 2.0 it's possible to avoid this change, but for until
* then we'll be living with such an exception.
*/
- float3 P = ccl_fetch(sd, P);
+ float3 P = sd->P;
float f = wireframe(kg, sd, size, pixel_size, &P);
#else
- float f = wireframe(kg, sd, size, pixel_size, &ccl_fetch(sd, P));
+ float f = wireframe(kg, sd, size, pixel_size, &sd->P);
#endif
/* TODO(sergey): Think of faster way to calculate derivatives. */
if(bump_offset == NODE_BUMP_OFFSET_DX) {
- float3 Px = ccl_fetch(sd, P) - ccl_fetch(sd, dP).dx;
- f += (f - wireframe(kg, sd, size, pixel_size, &Px)) / len(ccl_fetch(sd, dP).dx);
+ float3 Px = sd->P - sd->dP.dx;
+ f += (f - wireframe(kg, sd, size, pixel_size, &Px)) / len(sd->dP.dx);
}
else if(bump_offset == NODE_BUMP_OFFSET_DY) {
- float3 Py = ccl_fetch(sd, P) - ccl_fetch(sd, dP).dy;
- f += (f - wireframe(kg, sd, size, pixel_size, &Py)) / len(ccl_fetch(sd, dP).dy);
+ float3 Py = sd->P - sd->dP.dy;
+ f += (f - wireframe(kg, sd, size, pixel_size, &Py)) / len(sd->dP.dy);
}
if(stack_valid(out_fac))